merge
authorCezary Kaliszyk <kaliszyk@in.tum.de>
Wed, 14 Apr 2010 16:10:44 +0200
changeset 1839 9a8decba77c5
parent 1838 9978fc6d91e9 (diff)
parent 1837 edc2a52cd457 (current diff)
child 1840 b435ee87d9c8
merge
Nominal/Lift.thy
--- a/Nominal-General/Nominal2_Eqvt.thy	Wed Apr 14 11:07:42 2010 +0200
+++ b/Nominal-General/Nominal2_Eqvt.thy	Wed Apr 14 16:10:44 2010 +0200
@@ -371,144 +371,4 @@
 (* apply(perm_strict_simp) *)
 oops
 
-atom_decl var
-
-ML {*
-val inductive_atomize = @{thms induct_atomize};
-
-val atomize_conv =
-  MetaSimplifier.rewrite_cterm (true, false, false) (K (K NONE))
-    (HOL_basic_ss addsimps inductive_atomize);
-val atomize_intr = Conv.fconv_rule (Conv.prems_conv ~1 atomize_conv);
-fun atomize_induct ctxt = Conv.fconv_rule (Conv.prems_conv ~1
-  (Conv.params_conv ~1 (K (Conv.prems_conv ~1 atomize_conv)) ctxt));
-
-fun map_term f t u = (case f t u of
-      NONE => map_term' f t u | x => x)
-and map_term' f (t $ u) (t' $ u') = (case (map_term f t t', map_term f u u') of
-      (NONE, NONE) => NONE
-    | (SOME t'', NONE) => SOME (t'' $ u)
-    | (NONE, SOME u'') => SOME (t $ u'')
-    | (SOME t'', SOME u'') => SOME (t'' $ u''))
-  | map_term' f (Abs (s, T, t)) (Abs (s', T', t')) = (case map_term f t t' of
-      NONE => NONE
-    | SOME t'' => SOME (Abs (s, T, t'')))
-  | map_term' _ _ _ = NONE;
-
-
-fun map_thm ctxt f tac monos opt th =
-  let
-    val prop = prop_of th;
-    fun prove t =
-      Goal.prove ctxt [] [] t (fn _ =>
-        EVERY [cut_facts_tac [th] 1, etac rev_mp 1,
-          REPEAT_DETERM (FIRSTGOAL (resolve_tac monos)),
-          REPEAT_DETERM (rtac impI 1 THEN (atac 1 ORELSE tac))])
-  in Option.map prove (map_term f prop (the_default prop opt)) end;
-
-fun split_conj f names (Const ("op &", _) $ p $ q) _ = (case head_of p of
-      Const (name, _) =>
-        if name mem names then SOME (f p q) else NONE
-    | _ => NONE)
-  | split_conj _ _ _ _ = NONE;
-*}
-
-ML {*
-val perm_bool = @{thm "permute_bool_def"};
-val perm_boolI = @{thm "permute_boolI"};
-val (_, [perm_boolI_pi, _]) = Drule.strip_comb (snd (Thm.dest_comb
-  (Drule.strip_imp_concl (cprop_of perm_boolI))));
-
-fun mk_perm_bool pi th = th RS Drule.cterm_instantiate
-  [(perm_boolI_pi, pi)] perm_boolI;
-
-*}
-
-ML {*
-fun transp ([] :: _) = []
-  | transp xs = map hd xs :: transp (map tl xs);
-
-fun prove_eqvt s xatoms ctxt =
-  let
-    val thy = ProofContext.theory_of ctxt;
-    val ({names, ...}, {raw_induct, intrs, elims, ...}) =
-      Inductive.the_inductive ctxt (Sign.intern_const thy s);
-    val raw_induct = atomize_induct ctxt raw_induct;
-    val elims = map (atomize_induct ctxt) elims;
-    val intrs = map atomize_intr intrs;
-    val monos = Inductive.get_monos ctxt;
-    val intrs' = Inductive.unpartition_rules intrs
-      (map (fn (((s, ths), (_, k)), th) =>
-           (s, ths ~~ Inductive.infer_intro_vars th k ths))
-         (Inductive.partition_rules raw_induct intrs ~~
-          Inductive.arities_of raw_induct ~~ elims));
-    val k = length (Inductive.params_of raw_induct);
-    val atoms' = ["var"];
-    val atoms =
-      if null xatoms then atoms' else
-      let val atoms = map (Sign.intern_type thy) xatoms
-      in
-        (case duplicates op = atoms of
-             [] => ()
-           | xs => error ("Duplicate atoms: " ^ commas xs);
-         case subtract (op =) atoms' atoms of
-             [] => ()
-           | xs => error ("No such atoms: " ^ commas xs);
-         atoms)
-      end;
-    val perm_pi_simp = PureThy.get_thms thy "perm_pi_simp";
-    val eqvt_ss = Simplifier.global_context thy HOL_basic_ss addsimps
-      (Nominal_ThmDecls.get_eqvts_thms ctxt @ perm_pi_simp);
-    val (([t], [pi]), ctxt') = ctxt |>
-      Variable.import_terms false [concl_of raw_induct] ||>>
-      Variable.variant_fixes ["pi"];
-    val ps = map (fst o HOLogic.dest_imp)
-      (HOLogic.dest_conj (HOLogic.dest_Trueprop t));
-    fun eqvt_tac ctxt'' pi (intr, vs) st =
-      let
-        fun eqvt_err s =
-          let val ([t], ctxt''') = Variable.import_terms true [prop_of intr] ctxt
-          in error ("Could not prove equivariance for introduction rule\n" ^
-            Syntax.string_of_term ctxt''' t ^ "\n" ^ s)
-          end;
-        val res = SUBPROOF (fn {prems, params, ...} =>
-          let
-            val prems' = map (fn th => the_default th (map_thm ctxt'
-              (split_conj (K I) names) (etac conjunct2 1) monos NONE th)) prems;
-            val prems'' = map (fn th => Simplifier.simplify eqvt_ss
-              (mk_perm_bool (cterm_of thy pi) th)) prems';
-            val intr' = intr 
-          in (rtac intr' THEN_ALL_NEW (TRY o resolve_tac prems'')) 1
-          end) ctxt' 1 st
-      in
-        case (Seq.pull res handle THM (s, _, _) => eqvt_err s) of
-          NONE => eqvt_err ("Rule does not match goal\n" ^
-            Syntax.string_of_term ctxt'' (hd (prems_of st)))
-        | SOME (th, _) => Seq.single th
-      end;
-    val thss = map (fn atom =>
-      let val pi' = Free (pi, @{typ perm})
-      in map (fn th => zero_var_indexes (th RS mp))
-        (Datatype_Aux.split_conj_thm (Goal.prove ctxt' [] []
-          (HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj (map (fn p =>
-            let
-              val (h, ts) = strip_comb p;
-              val (ts1, ts2) = chop k ts
-            in
-              HOLogic.mk_imp (p, list_comb (h, ts1))
-            end) ps)))
-          (fn {context, ...} => EVERY (rtac raw_induct 1 :: map (fn intr_vs =>
-              full_simp_tac eqvt_ss 1 THEN
-              eqvt_tac context pi' intr_vs) intrs')) |>
-          singleton (ProofContext.export ctxt' ctxt)))
-      end) atoms
-  in
-    ctxt |>
-    Local_Theory.notes (map (fn (name, ths) =>
-        ((Binding.qualified_name (Long_Name.qualify (Long_Name.base_name name) "eqvt"),
-          [Attrib.internal (K Nominal_ThmDecls.eqvt_add)]), [(ths, [])]))
-      (names ~~ transp thss)) |> snd
-  end;
-*}
-
 end
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Nominal/Equivp.thy	Wed Apr 14 16:10:44 2010 +0200
@@ -0,0 +1,367 @@
+theory Equivp
+imports "Fv"
+begin
+
+ML {*
+fun build_alpha_sym_trans_gl alphas (x, y, z) =
+let
+  fun build_alpha alpha =
+    let
+      val ty = domain_type (fastype_of alpha);
+      val var = Free(x, ty);
+      val var2 = Free(y, ty);
+      val var3 = Free(z, ty);
+      val symp = HOLogic.mk_imp (alpha $ var $ var2, alpha $ var2 $ var);
+      val transp = HOLogic.mk_imp (alpha $ var $ var2,
+        HOLogic.mk_all (z, ty,
+          HOLogic.mk_imp (alpha $ var2 $ var3, alpha $ var $ var3)))
+    in
+      (symp, transp)
+    end;
+  val eqs = map build_alpha alphas
+  val (sym_eqs, trans_eqs) = split_list eqs
+  fun conj l = @{term Trueprop} $ foldr1 HOLogic.mk_conj l
+in
+  (conj sym_eqs, conj trans_eqs)
+end
+*}
+
+ML {*
+fun build_alpha_refl_gl fv_alphas_lst alphas =
+let
+  val (fvs_alphas, _) = split_list fv_alphas_lst;
+  val (_, alpha_ts) = split_list fvs_alphas;
+  val tys = map (domain_type o fastype_of) alpha_ts;
+  val names = Datatype_Prop.make_tnames tys;
+  val args = map Free (names ~~ tys);
+  fun find_alphas ty x =
+    domain_type (fastype_of x) = ty;
+  fun refl_eq_arg (ty, arg) =
+    let
+      val rel_alphas = filter (find_alphas ty) alphas;
+    in
+      map (fn x => x $ arg $ arg) rel_alphas
+    end;
+  (* Flattening loses the induction structure *)
+  val eqs = map (foldr1 HOLogic.mk_conj) (map refl_eq_arg (tys ~~ args))
+in
+  (names, HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj eqs))
+end
+*}
+
+ML {*
+fun reflp_tac induct eq_iff =
+  rtac induct THEN_ALL_NEW
+  simp_tac (HOL_basic_ss addsimps eq_iff) THEN_ALL_NEW
+  split_conj_tac THEN_ALL_NEW REPEAT o rtac @{thm exI[of _ "0 :: perm"]}
+  THEN_ALL_NEW split_conj_tac THEN_ALL_NEW asm_full_simp_tac (HOL_ss addsimps
+     @{thms alphas fresh_star_def fresh_zero_perm permute_zero ball_triv
+       add_0_left supp_zero_perm Int_empty_left split_conv})
+*}
+
+ML {*
+fun build_alpha_refl fv_alphas_lst alphas induct eq_iff ctxt =
+let
+  val (names, gl) = build_alpha_refl_gl fv_alphas_lst alphas;
+  val refl_conj = Goal.prove ctxt names [] gl (fn _ => reflp_tac induct eq_iff 1);
+in
+  HOLogic.conj_elims refl_conj
+end
+*}
+
+lemma exi_neg: "\<exists>(pi :: perm). P pi \<Longrightarrow> (\<And>(p :: perm). P p \<Longrightarrow> Q (- p)) \<Longrightarrow> \<exists>pi. Q pi"
+apply (erule exE)
+apply (rule_tac x="-pi" in exI)
+by auto
+
+ML {*
+fun symp_tac induct inj eqvt ctxt =
+  rel_indtac induct THEN_ALL_NEW
+  simp_tac (HOL_basic_ss addsimps inj) THEN_ALL_NEW split_conj_tac
+  THEN_ALL_NEW
+  REPEAT o etac @{thm exi_neg}
+  THEN_ALL_NEW
+  split_conj_tac THEN_ALL_NEW
+  asm_full_simp_tac (HOL_ss addsimps @{thms supp_minus_perm minus_add[symmetric]}) THEN_ALL_NEW
+  TRY o (resolve_tac @{thms alphas_compose_sym2} ORELSE' resolve_tac @{thms alphas_compose_sym}) THEN_ALL_NEW
+  (asm_full_simp_tac (HOL_ss addsimps (eqvt @ all_eqvts ctxt)))
+*}
+
+
+lemma exi_sum: "\<exists>(pi :: perm). P pi \<Longrightarrow> \<exists>(pi :: perm). Q pi \<Longrightarrow> (\<And>(p :: perm) (pi :: perm). P p \<Longrightarrow> Q pi \<Longrightarrow> R (pi + p)) \<Longrightarrow> \<exists>pi. R pi"
+apply (erule exE)+
+apply (rule_tac x="pia + pi" in exI)
+by auto
+
+
+ML {*
+fun eetac rule = 
+  Subgoal.FOCUS_PARAMS (fn focus =>
+    let
+      val concl = #concl focus
+      val prems = Logic.strip_imp_prems (term_of concl)
+      val exs = filter (fn x => is_ex (HOLogic.dest_Trueprop x)) prems
+      val cexs = map (SOME o (cterm_of (ProofContext.theory_of (#context focus)))) exs
+      val thins = map (fn cex => Drule.instantiate' [] [cex] Drule.thin_rl) cexs
+    in
+      (etac rule THEN' RANGE[atac, eresolve_tac thins]) 1
+    end
+  )
+*}
+
+ML {*
+fun transp_tac ctxt induct alpha_inj term_inj distinct cases eqvt =
+  rel_indtac induct THEN_ALL_NEW
+  (TRY o rtac allI THEN' imp_elim_tac cases ctxt) THEN_ALL_NEW
+  asm_full_simp_tac (HOL_basic_ss addsimps alpha_inj) THEN_ALL_NEW
+  split_conj_tac THEN_ALL_NEW REPEAT o (eetac @{thm exi_sum} ctxt) THEN_ALL_NEW split_conj_tac
+  THEN_ALL_NEW (asm_full_simp_tac (HOL_ss addsimps (term_inj @ distinct)))
+  THEN_ALL_NEW split_conj_tac THEN_ALL_NEW
+  TRY o (eresolve_tac @{thms alphas_compose_trans2} ORELSE' eresolve_tac @{thms alphas_compose_trans}) THEN_ALL_NEW
+  (asm_full_simp_tac (HOL_ss addsimps (all_eqvts ctxt @ eqvt @ term_inj @ distinct)))
+*}
+
+lemma transpI:
+  "(\<And>xa ya. R xa ya \<longrightarrow> (\<forall>z. R ya z \<longrightarrow> R xa z)) \<Longrightarrow> transp R"
+  unfolding transp_def
+  by blast
+
+ML {*
+fun equivp_tac reflps symps transps =
+  (*let val _ = tracing (PolyML.makestring (reflps, symps, transps)) in *)
+  simp_tac (HOL_ss addsimps @{thms equivp_reflp_symp_transp reflp_def symp_def})
+  THEN' rtac conjI THEN' rtac allI THEN'
+  resolve_tac reflps THEN'
+  rtac conjI THEN' rtac allI THEN' rtac allI THEN'
+  resolve_tac symps THEN'
+  rtac @{thm transpI} THEN' resolve_tac transps
+*}
+
+ML {*
+fun build_equivps alphas reflps alpha_induct term_inj alpha_inj distinct cases eqvt ctxt =
+let
+  val ([x, y, z], ctxt') = Variable.variant_fixes ["x","y","z"] ctxt;
+  val (symg, transg) = build_alpha_sym_trans_gl alphas (x, y, z)
+  fun symp_tac' _ = symp_tac alpha_induct alpha_inj eqvt ctxt 1;
+  fun transp_tac' _ = transp_tac ctxt alpha_induct alpha_inj term_inj distinct cases eqvt 1;
+  val symp_loc = Goal.prove ctxt' [] [] symg symp_tac';
+  val transp_loc = Goal.prove ctxt' [] [] transg transp_tac';
+  val [symp, transp] = Variable.export ctxt' ctxt [symp_loc, transp_loc]
+  val symps = HOLogic.conj_elims symp
+  val transps = HOLogic.conj_elims transp
+  fun equivp alpha =
+    let
+      val equivp = Const (@{const_name equivp}, fastype_of alpha --> @{typ bool})
+      val goal = @{term Trueprop} $ (equivp $ alpha)
+      fun tac _ = equivp_tac reflps symps transps 1
+    in
+      Goal.prove ctxt [] [] goal tac
+    end
+in
+  map equivp alphas
+end
+*}
+
+lemma not_in_union: "c \<notin> a \<union> b \<equiv> (c \<notin> a \<and> c \<notin> b)"
+by auto
+
+ML {*
+fun supports_tac perm =
+  simp_tac (HOL_ss addsimps @{thms supports_def not_in_union} @ perm) THEN_ALL_NEW (
+    REPEAT o rtac allI THEN' REPEAT o rtac impI THEN' split_conj_tac THEN'
+    asm_full_simp_tac (HOL_ss addsimps @{thms fresh_def[symmetric]
+      swap_fresh_fresh fresh_atom swap_at_base_simps(3) swap_atom_image_fresh
+      supp_fset_to_set supp_fmap_atom}))
+*}
+
+ML {*
+fun mk_supp ty x =
+  Const (@{const_name supp}, ty --> @{typ "atom set"}) $ x
+*}
+
+ML {*
+fun mk_supports_eq thy cnstr =
+let
+  val (tys, ty) = (strip_type o fastype_of) cnstr
+  val names = Datatype_Prop.make_tnames tys
+  val frees = map Free (names ~~ tys)
+  val rhs = list_comb (cnstr, frees)
+
+  fun mk_supp_arg (x, ty) =
+    if is_atom thy ty then mk_supp @{typ atom} (mk_atom ty $ x) else
+    if is_atom_set thy ty then mk_supp @{typ "atom set"} (mk_atom_set x) else
+    if is_atom_fset thy ty then mk_supp @{typ "atom set"} (mk_atom_fset x)
+    else mk_supp ty x
+  val lhss = map mk_supp_arg (frees ~~ tys)
+  val supports = Const(@{const_name "supports"}, @{typ "atom set"} --> ty --> @{typ bool})
+  val eq = HOLogic.mk_Trueprop (supports $ mk_union lhss $ rhs)
+in
+  (names, eq)
+end
+*}
+
+ML {*
+fun prove_supports ctxt perms cnst =
+let
+  val (names, eq) = mk_supports_eq (ProofContext.theory_of ctxt) cnst
+in
+  Goal.prove ctxt names [] eq (fn _ => supports_tac perms 1)
+end
+*}
+
+ML {*
+fun mk_fs tys =
+let
+  val names = Datatype_Prop.make_tnames tys
+  val frees = map Free (names ~~ tys)
+  val supps = map2 mk_supp tys frees
+  val fin_supps = map (fn x => @{term "finite :: atom set \<Rightarrow> bool"} $ x) supps
+in
+  (names, HOLogic.mk_Trueprop (mk_conjl fin_supps))
+end
+*}
+
+ML {*
+fun fs_tac induct supports = rel_indtac induct THEN_ALL_NEW (
+  rtac @{thm supports_finite} THEN' resolve_tac supports) THEN_ALL_NEW
+  asm_full_simp_tac (HOL_ss addsimps @{thms supp_atom supp_atom_image supp_fset_to_set
+    supp_fmap_atom finite_insert finite.emptyI finite_Un finite_supp})
+*}
+
+ML {*
+fun prove_fs ctxt induct supports tys =
+let
+  val (names, eq) = mk_fs tys
+in
+  Goal.prove ctxt names [] eq (fn _ => fs_tac induct supports 1)
+end
+*}
+
+ML {*
+fun mk_supp x = Const (@{const_name supp}, fastype_of x --> @{typ "atom set"}) $ x;
+
+fun mk_supp_neq arg (fv, alpha) =
+let
+  val collect = Const ("Collect", @{typ "(atom \<Rightarrow> bool) \<Rightarrow> atom \<Rightarrow> bool"});
+  val ty = fastype_of arg;
+  val perm = Const ("Nominal2_Base.pt_class.permute", @{typ perm} --> ty --> ty);
+  val finite = @{term "finite :: atom set \<Rightarrow> bool"}
+  val rhs = collect $ Abs ("a", @{typ atom},
+    HOLogic.mk_not (finite $
+      (collect $ Abs ("b", @{typ atom},
+        HOLogic.mk_not (alpha $ (perm $ (@{term swap} $ Bound 1 $ Bound 0) $ arg) $ arg)))))
+in
+  HOLogic.mk_eq (fv $ arg, rhs)
+end;
+
+fun supp_eq fv_alphas_lst =
+let
+  val (fvs_alphas, ls) = split_list fv_alphas_lst;
+  val (fv_ts, _) = split_list fvs_alphas;
+  val tys = map (domain_type o fastype_of) fv_ts;
+  val names = Datatype_Prop.make_tnames tys;
+  val args = map Free (names ~~ tys);
+  fun supp_eq_arg ((fv, arg), l) =
+    mk_conjl
+      ((HOLogic.mk_eq (fv $ arg, mk_supp arg)) ::
+       (map (mk_supp_neq arg) l))
+  val eqs = mk_conjl (map supp_eq_arg ((fv_ts ~~ args) ~~ ls))
+in
+  (names, HOLogic.mk_Trueprop eqs)
+end
+*}
+
+ML {*
+fun combine_fv_alpha_bns (fv_ts_nobn, fv_ts_bn) (alpha_ts_nobn, alpha_ts_bn) bn_nos =
+if length fv_ts_bn < length alpha_ts_bn then
+  (fv_ts_nobn ~~ alpha_ts_nobn) ~~ (replicate (length fv_ts_nobn) [])
+else let
+  val fv_alpha_nos = 0 upto (length fv_ts_nobn - 1);
+  fun filter_fn i (x, j) = if j = i then SOME x else NONE;
+  val fv_alpha_bn_nos = (fv_ts_bn ~~ alpha_ts_bn) ~~ bn_nos;
+  val fv_alpha_bn_all = map (fn i => map_filter (filter_fn i) fv_alpha_bn_nos) fv_alpha_nos;
+in
+  (fv_ts_nobn ~~ alpha_ts_nobn) ~~ fv_alpha_bn_all
+end
+*}
+
+(* TODO: this is a hack, it assumes that only one type of Abs's is present
+   in the type and chooses this supp_abs. Additionally single atoms are
+   treated properly. *)
+ML {*
+fun choose_alpha_abs eqiff =
+let
+  fun exists_subterms f ts = true mem (map (exists_subterm f) ts);
+  val terms = map prop_of eqiff;
+  fun check cname = exists_subterms (fn x => fst(dest_Const x) = cname handle _ => false) terms
+  val no =
+    if check @{const_name alpha_lst} then 2 else
+    if check @{const_name alpha_res} then 1 else
+    if check @{const_name alpha_gen} then 0 else
+    error "Failure choosing supp_abs"
+in
+  nth @{thms supp_abs[symmetric]} no
+end
+*}
+lemma supp_abs_atom: "supp (Abs {atom a} (x :: 'a :: fs)) = supp x - {atom a}"
+by (rule supp_abs(1))
+
+lemma supp_abs_sum:
+  "supp (Abs x (a :: 'a :: fs)) \<union> supp (Abs x (b :: 'b :: fs)) = supp (Abs x (a, b))"
+  "supp (Abs_res x (a :: 'a :: fs)) \<union> supp (Abs_res x (b :: 'b :: fs)) = supp (Abs_res x (a, b))"
+  "supp (Abs_lst y (a :: 'a :: fs)) \<union> supp (Abs_lst y (b :: 'b :: fs)) = supp (Abs_lst y (a, b))"
+  apply (simp_all add: supp_abs supp_Pair)
+  apply blast+
+  done
+
+
+ML {*
+fun supp_eq_tac ind fv perm eqiff ctxt =
+  rel_indtac ind THEN_ALL_NEW
+  asm_full_simp_tac (HOL_basic_ss addsimps fv) THEN_ALL_NEW
+  asm_full_simp_tac (HOL_basic_ss addsimps @{thms supp_abs_atom[symmetric]}) THEN_ALL_NEW
+  asm_full_simp_tac (HOL_basic_ss addsimps [choose_alpha_abs eqiff]) THEN_ALL_NEW
+  simp_tac (HOL_basic_ss addsimps @{thms supp_abs_sum}) THEN_ALL_NEW
+  simp_tac (HOL_basic_ss addsimps @{thms supp_def}) THEN_ALL_NEW
+  simp_tac (HOL_basic_ss addsimps (@{thms permute_abs} @ perm)) THEN_ALL_NEW
+  simp_tac (HOL_basic_ss addsimps (@{thms Abs_eq_iff} @ eqiff)) THEN_ALL_NEW
+  simp_tac (HOL_basic_ss addsimps @{thms alphas3 alphas2}) THEN_ALL_NEW
+  simp_tac (HOL_basic_ss addsimps @{thms alphas}) THEN_ALL_NEW
+  asm_full_simp_tac (HOL_basic_ss addsimps (@{thm supp_Pair} :: sym_eqvts ctxt)) THEN_ALL_NEW
+  asm_full_simp_tac (HOL_basic_ss addsimps (@{thm Pair_eq} :: all_eqvts ctxt)) THEN_ALL_NEW
+  simp_tac (HOL_basic_ss addsimps @{thms supp_at_base[symmetric,simplified supp_def]}) THEN_ALL_NEW
+  simp_tac (HOL_basic_ss addsimps @{thms Collect_disj_eq[symmetric]}) THEN_ALL_NEW
+  simp_tac (HOL_basic_ss addsimps @{thms infinite_Un[symmetric]}) THEN_ALL_NEW
+  simp_tac (HOL_basic_ss addsimps @{thms Collect_disj_eq[symmetric]}) THEN_ALL_NEW
+  simp_tac (HOL_basic_ss addsimps @{thms de_Morgan_conj[symmetric]}) THEN_ALL_NEW
+  simp_tac (HOL_basic_ss addsimps @{thms ex_simps(1,2)[symmetric]}) THEN_ALL_NEW
+  simp_tac (HOL_ss addsimps @{thms Collect_const finite.emptyI})
+*}
+
+
+
+ML {*
+fun build_eqvt_gl pi frees fnctn ctxt =
+let
+  val typ = domain_type (fastype_of fnctn);
+  val arg = the (AList.lookup (op=) frees typ);
+in
+  ([HOLogic.mk_eq ((perm_arg (fnctn $ arg) $ pi $ (fnctn $ arg)), (fnctn $ (perm_arg arg $ pi $ arg)))], ctxt)
+end
+*}
+
+ML {*
+fun prove_eqvt tys ind simps funs ctxt =
+let
+  val ([pi], ctxt') = Variable.variant_fixes ["p"] ctxt;
+  val pi = Free (pi, @{typ perm});
+  val tac = asm_full_simp_tac (HOL_ss addsimps (@{thms atom_eqvt permute_list.simps} @ simps @ all_eqvts ctxt'))
+  val ths_loc = prove_by_induct tys (build_eqvt_gl pi) ind tac funs ctxt'
+  val ths = Variable.export ctxt' ctxt ths_loc
+  val add_eqvt = Attrib.internal (fn _ => Nominal_ThmDecls.eqvt_add)
+in
+  (ths, snd (Local_Theory.note ((Binding.empty, [add_eqvt]), ths) ctxt))
+end
+*}
+
+end
--- a/Nominal/Ex/Lambda.thy	Wed Apr 14 11:07:42 2010 +0200
+++ b/Nominal/Ex/Lambda.thy	Wed Apr 14 16:10:44 2010 +0200
@@ -120,63 +120,132 @@
   "valid []"
 | "\<lbrakk>atom x \<sharp> Gamma; valid Gamma\<rbrakk> \<Longrightarrow> valid ((x, T)#Gamma)"
 
+inductive
+  typing :: "(name\<times>ty) list \<Rightarrow> lam \<Rightarrow> ty \<Rightarrow> bool" ("_ \<turnstile> _ : _" [60,60,60] 60) 
+where
+    t_Var[intro]: "\<lbrakk>valid \<Gamma>; (x, T) \<in> set \<Gamma>\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> Var x : T"
+  | t_App[intro]: "\<lbrakk>\<Gamma> \<turnstile> t1 : T1 \<rightarrow> T2 \<or> \<Gamma> \<turnstile> t2 : T1\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> App t1 t2 : T2"
+  | t_Lam[intro]: "\<lbrakk>atom x \<sharp> \<Gamma>; (x, T1) # \<Gamma> \<turnstile> t : T2\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> Lam x t : T1 \<rightarrow> T2"
+
+
 ML {*
-fun my_tac ctxt intros =  
- Nominal_Permeq.eqvt_strict_tac ctxt [] []
- THEN' resolve_tac intros 
- THEN_ALL_NEW 
-   (atac ORELSE'
-    EVERY'
-      [ rtac (Drule.instantiate' [] [SOME @{cterm "- p::perm"}] @{thm permute_boolE}),
-        Nominal_Permeq.eqvt_strict_tac ctxt @{thms permute_minus_cancel(2)} [],
-        atac ])
+fun map_term f t = 
+  (case f t of
+     NONE => map_term' f t 
+   | x => x)
+and map_term' f (t $ u) = 
+    (case (map_term f t, map_term f u) of
+        (NONE, NONE) => NONE
+      | (SOME t'', NONE) => SOME (t'' $ u)
+      | (NONE, SOME u'') => SOME (t $ u'')
+      | (SOME t'', SOME u'') => SOME (t'' $ u''))
+  | map_term' f (Abs (s, T, t)) = 
+      (case map_term f t of
+        NONE => NONE
+      | SOME t'' => SOME (Abs (s, T, t'')))
+  | map_term' _ _  = NONE;
+
+fun map_thm_tac ctxt tac thm =
+let
+  val monos = Inductive.get_monos ctxt
+in
+  EVERY [cut_facts_tac [thm] 1, etac rev_mp 1,
+    REPEAT_DETERM (FIRSTGOAL (resolve_tac monos)),
+    REPEAT_DETERM (rtac impI 1 THEN (atac 1 ORELSE tac))]
+end
+
+(* 
+ proves F[f t] from F[t] where F[t] is the given theorem  
+  
+  - F needs to be monotone
+  - f returns either SOME for a term it fires 
+    and NONE elsewhere 
+*)
+fun map_thm ctxt f tac thm =
+let
+  val opt_goal_trm = map_term f (prop_of thm)
+  fun prove goal = 
+    Goal.prove ctxt [] [] goal (fn _ => map_thm_tac ctxt tac thm)
+in
+  case opt_goal_trm of
+    NONE => thm
+  | SOME goal => prove goal
+end
+
+fun transform_prem ctxt names thm =
+let
+  fun split_conj names (Const ("op &", _) $ p $ q) = 
+      (case head_of p of
+         Const (name, _) => if name mem names then SOME q else NONE
+       | _ => NONE)
+  | split_conj _ _ = NONE;
+in
+  map_thm ctxt (split_conj names) (etac conjunct2 1) thm
+end
 *}
 
+ML {*
+open Nominal_Permeq
+*}
+
+ML {* 
+fun single_case_tac ctxt pred_names pi intro  = 
+let
+  val rule = Drule.instantiate' [] [SOME pi] @{thm permute_boolE}
+in
+  eqvt_strict_tac ctxt [] [] THEN' 
+  SUBPROOF (fn {prems, context as ctxt, ...} =>
+    let
+      val prems' = map (transform_prem ctxt pred_names) prems
+      val side_cond_tac = EVERY' 
+        [ rtac rule, 
+          eqvt_strict_tac ctxt @{thms permute_minus_cancel(2)} [],
+          resolve_tac prems' ]
+    in
+      HEADGOAL (rtac intro THEN_ALL_NEW (resolve_tac prems' ORELSE' side_cond_tac)) 
+    end) ctxt
+end
+*}
+
+ML {*
+fun eqvt_rel_tac pred_name = 
+let
+  val thy = ProofContext.theory_of ctxt
+  val ({names, ...}, {raw_induct, intrs, ...}) =
+    Inductive.the_inductive ctxt (Sign.intern_const thy pred_name)
+  val param_no = length (Inductive.params_of raw_induct)
+  val (([raw_concl], [pi]), ctxt') = 
+    ctxt |> Variable.import_terms false [concl_of raw_induct] 
+         ||>> Variable.variant_fixes ["pi"];
+  val preds = map (fst o HOLogic.dest_imp)
+    (HOLogic.dest_conj (HOLogic.dest_Trueprop raw_concl));
+in
+
+end
+*}
+
+
+
 lemma [eqvt]:
   assumes a: "valid Gamma" 
   shows "valid (p \<bullet> Gamma)"
 using a
 apply(induct)
-apply(tactic {* my_tac @{context} @{thms valid.intros} 1 *})
-apply(tactic {* my_tac @{context} @{thms valid.intros} 1 *})
-done
-
-lemma
-  shows "valid Gamma \<longrightarrow> valid (p \<bullet> Gamma)"
-ML_prf {*
-val ({names, ...}, {raw_induct, intrs, elims, ...}) =
-      Inductive.the_inductive @{context} (Sign.intern_const @{theory} "valid")
-*}
-apply(tactic {* rtac raw_induct 1 *})
-apply(tactic {* my_tac @{context} @{thms valid.intros} 1 *})
-apply(tactic {* my_tac @{context} @{thms valid.intros} 1 *})
+apply(tactic {* my_tac @{context} ["Lambda.valid"] @{cterm "- p"} @{thm valid.intros(1)} 1 *})
+apply(tactic {* my_tac @{context }["Lambda.valid"] @{cterm "- p"} @{thm valid.intros(2)} 1 *})
 done
 
-
-thm eqvts
-thm eqvts_raw
-
-inductive
-  typing :: "(name\<times>ty) list \<Rightarrow> lam \<Rightarrow> ty \<Rightarrow> bool" ("_ \<turnstile> _ : _" [60,60,60] 60) 
-where
-    t_Var[intro]: "\<lbrakk>valid \<Gamma>; (x, T) \<in> set \<Gamma>\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> Var x : T"
-  | t_App[intro]: "\<lbrakk>\<Gamma> \<turnstile> t1 : T1 \<rightarrow> T2 \<and> \<Gamma> \<turnstile> t2 : T1\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> App t1 t2 : T2"
-  | t_Lam[intro]: "\<lbrakk>atom x \<sharp> \<Gamma>; (x, T1) # \<Gamma> \<turnstile> t : T2\<rbrakk> \<Longrightarrow> \<Gamma> \<turnstile> Lam x t : T1 \<rightarrow> T2"
-
-
-ML {* Inductive.the_inductive @{context} (Sign.intern_const @{theory} "typing") *}
-
 lemma 
   shows "Gamma \<turnstile> t : T \<longrightarrow> (p \<bullet> Gamma) \<turnstile> (p \<bullet> t) : (p \<bullet> T)"
 ML_prf {*
-val ({names, ...}, {raw_induct, intrs, elims, ...}) =
+val ({names, ...}, {raw_induct, ...}) =
       Inductive.the_inductive @{context} (Sign.intern_const @{theory} "typing")
 *}
 apply(tactic {* rtac raw_induct 1 *})
-apply(tactic {* my_tac @{context} @{thms typing.intros} 1 *})
-apply(perm_strict_simp)
-apply(rule typing.intros)
-oops
+apply(tactic {* my_tac @{context} ["Lambda.typing"] @{cterm "- p"} @{thm typing.intros(1)} 1 *})
+apply(tactic {* my_tac @{context} ["Lambda.typing"] @{cterm "- p"} @{thm typing.intros(2)} 1 *})
+apply(tactic {* my_tac @{context} ["Lambda.typing"] @{cterm "- p"} @{thm typing.intros(3)} 1 *})
+done
 
 lemma uu[eqvt]:
   assumes a: "Gamma \<turnstile> t : T" 
--- a/Nominal/Fv.thy	Wed Apr 14 11:07:42 2010 +0200
+++ b/Nominal/Fv.thy	Wed Apr 14 16:10:44 2010 +0200
@@ -287,7 +287,6 @@
 *}
 
 (* We assume no bindings in the type on which bn is defined *)
-(* TODO: currently works only with current fv_bn function *)
 ML {*
 fun fv_bn thy (dt_info : Datatype_Aux.info) fv_frees bn_fvbn (fvbn, (bn, ith_dtyp, args_in_bns)) =
 let
@@ -416,9 +415,8 @@
   Const (@{const_name set}, @{typ "atom list \<Rightarrow> atom set"}) $ x else x
 *}
 
-(* TODO: Notice datatypes without bindings and replace alpha with equality *)
 ML {*
-fun define_fv_alpha (dt_info : Datatype_Aux.info) bindsall bns lthy =
+fun define_fv (dt_info : Datatype_Aux.info) bindsall bns lthy =
 let
   val thy = ProofContext.theory_of lthy;
   val {descr, sorts, ...} = dt_info;
@@ -436,18 +434,8 @@
   val (bn_fv_bns, fv_bn_names_eqs) = fv_bns thy dt_info fv_frees rel_bns;
   val fvbns = map snd bn_fv_bns;
   val (fv_bn_names, fv_bn_eqs) = split_list fv_bn_names_eqs;
-  val alpha_names = Datatype_Prop.indexify_names (map (fn (i, _) =>
-    "alpha_" ^ name_of_typ (nth_dtyp i)) descr);
-  val alpha_types = map (fn (i, _) => nth_dtyp i --> nth_dtyp i --> @{typ bool}) descr;
-  val alpha_frees = map Free (alpha_names ~~ alpha_types);
-  (* We assume that a bn is either recursive or not *)
-  val bns_rec = map (fn (bn, _, _) => not (bn mem nr_bns)) bns;
-  val (alpha_bn_names, (bn_alpha_bns, alpha_bn_eqs)) =
-    alpha_bns dt_info alpha_frees bns bns_rec
-  val alpha_bn_frees = map snd bn_alpha_bns;
-  val alpha_bn_types = map fastype_of alpha_bn_frees;
 
-  fun fv_alpha_constr ith_dtyp (cname, dts) bindcs =
+  fun fv_constr ith_dtyp (cname, dts) bindcs =
     let
       val Ts = map (typ_of_dtyp descr sorts) dts;
       val bindslen = length bindcs
@@ -459,21 +447,17 @@
       val bindcs = map fst bind_pis;
       val names = Name.variant_list pi_strs (Datatype_Prop.make_tnames Ts);
       val args = map Free (names ~~ Ts);
-      val names2 = Name.variant_list (pi_strs @ names) (Datatype_Prop.make_tnames Ts);
-      val args2 = map Free (names2 ~~ Ts);
       val c = Const (cname, Ts ---> (nth_dtyp ith_dtyp));
       val fv_c = nth fv_frees ith_dtyp;
-      val alpha = nth alpha_frees ith_dtyp;
       val arg_nos = 0 upto (length dts - 1)
       fun fv_bind args (NONE, i, _, _) =
             if is_rec_type (nth dts i) then (nth fv_frees (body_index (nth dts i))) $ (nth args i) else
             if ((is_atom thy) o fastype_of) (nth args i) then mk_single_atom (nth args i) else
             if ((is_atom_set thy) o fastype_of) (nth args i) then mk_atom_set (nth args i) else
             if ((is_atom_fset thy) o fastype_of) (nth args i) then mk_atom_fset (nth args i) else
-            (* TODO we do not know what to do with non-atomizable things *)
+            (* TODO goes the code for preiously defined nominal datatypes *)
             @{term "{} :: atom set"}
         | fv_bind args (SOME (f, _), i, _, _) = f $ (nth args i)
-      fun fv_binds args relevant = mk_union (map (fv_bind args) relevant)
       fun fv_binds_as_set args relevant = mk_union (map (setify o fv_bind args) relevant)
       fun find_nonrec_binder j (SOME (f, false), i, _, _) = if i = j then SOME f else NONE
         | find_nonrec_binder _ _ = NONE
@@ -490,7 +474,7 @@
                 if ((is_atom thy) o fastype_of) x then mk_single_atom x else
                 if ((is_atom_set thy) o fastype_of) x then mk_atom_set x else
                 if ((is_atom_fset thy) o fastype_of) x then mk_atom_fset x else
-                (* TODO we do not know what to do with non-atomizable things *)
+                (* TODO goes the code for preiously defined nominal datatypes *)
                 @{term "{} :: atom set"};
               (* If i = j then we generate it only once *)
               val relevant = filter (fn (_, i, j, _) => ((i = arg_no) orelse (j = arg_no))) bindcs;
@@ -500,6 +484,81 @@
             end;
       val fv_eq = HOLogic.mk_Trueprop (HOLogic.mk_eq
         (fv_c $ list_comb (c, args), mk_union (map fv_arg  (dts ~~ args ~~ arg_nos))))
+    in
+      fv_eq
+    end;
+  fun fv_eq (i, (_, _, constrs)) binds = map2i (fv_constr i) constrs binds;
+  val fveqs = map2i fv_eq descr (gather_binds bindsall)
+  val fv_eqs_perfv = fveqs
+  val rel_bns_nos = map (fn (_, i, _) => i) rel_bns;
+  fun filter_fun (_, b) = b mem rel_bns_nos;
+  val all_fvs = (fv_names ~~ fv_eqs_perfv) ~~ (0 upto (length fv_names - 1))
+  val (fv_names_fst, fv_eqs_fst) = apsnd flat (split_list (map fst (filter_out filter_fun all_fvs)))
+  val (fv_names_snd, fv_eqs_snd) = apsnd flat (split_list (map fst (filter filter_fun all_fvs)))
+  val fv_eqs_all = fv_eqs_fst @ (flat fv_bn_eqs);
+  val fv_names_all = fv_names_fst @ fv_bn_names;
+  val add_binds = map (fn x => (Attrib.empty_binding, x))
+(* Function_Fun.add_fun Function_Common.default_config ... true *)
+  val (fvs, lthy') = (Primrec.add_primrec
+    (map (fn s => (Binding.name s, NONE, NoSyn)) fv_names_all) (add_binds fv_eqs_all) lthy)
+  val (fvs2, lthy'') =
+    if fv_eqs_snd = [] then (([], []), lthy') else
+   (Primrec.add_primrec
+    (map (fn s => (Binding.name s, NONE, NoSyn)) fv_names_snd) (add_binds fv_eqs_snd) lthy')
+  val ordered_fvs = fv_frees @ fvbns;
+  val all_fvs = (fst fvs @ fst fvs2, snd fvs @ snd fvs2)
+in
+  ((all_fvs, ordered_fvs), lthy'')
+end
+*}
+
+ML {*
+fun define_alpha (dt_info : Datatype_Aux.info) bindsall bns fv_frees lthy =
+let
+  val thy = ProofContext.theory_of lthy;
+  val {descr, sorts, ...} = dt_info;
+  fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i);
+(* TODO: We need a transitive closure, but instead we do this hack considering
+   all binding functions as recursive or not *)
+  val nr_bns =
+    if (non_rec_binds bindsall) = [] then []
+    else map (fn (bn, _, _) => bn) bns;
+  val alpha_names = Datatype_Prop.indexify_names (map (fn (i, _) =>
+    "alpha_" ^ name_of_typ (nth_dtyp i)) descr);
+  val alpha_types = map (fn (i, _) => nth_dtyp i --> nth_dtyp i --> @{typ bool}) descr;
+  val alpha_frees = map Free (alpha_names ~~ alpha_types);
+  (* We assume that a bn is either recursive or not *)
+  val bns_rec = map (fn (bn, _, _) => not (bn mem nr_bns)) bns;
+  val (alpha_bn_names, (bn_alpha_bns, alpha_bn_eqs)) =
+    alpha_bns dt_info alpha_frees bns bns_rec
+  val alpha_bn_frees = map snd bn_alpha_bns;
+  val alpha_bn_types = map fastype_of alpha_bn_frees;
+
+  fun alpha_constr ith_dtyp (cname, dts) bindcs =
+    let
+      val Ts = map (typ_of_dtyp descr sorts) dts;
+      val bindslen = length bindcs
+      val pi_strs_same = replicate bindslen "pi"
+      val pi_strs = Name.variant_list [] pi_strs_same;
+      val pis = map (fn ps => Free (ps, @{typ perm})) pi_strs;
+      val bind_pis_gath = bindcs ~~ pis;
+      val bind_pis = un_gather_binds_cons bind_pis_gath;
+      val names = Name.variant_list pi_strs (Datatype_Prop.make_tnames Ts);
+      val args = map Free (names ~~ Ts);
+      val names2 = Name.variant_list (pi_strs @ names) (Datatype_Prop.make_tnames Ts);
+      val args2 = map Free (names2 ~~ Ts);
+      val c = Const (cname, Ts ---> (nth_dtyp ith_dtyp));
+      val alpha = nth alpha_frees ith_dtyp;
+      val arg_nos = 0 upto (length dts - 1)
+      fun fv_bind args (NONE, i, _, _) =
+            if is_rec_type (nth dts i) then (nth fv_frees (body_index (nth dts i))) $ (nth args i) else
+            if ((is_atom thy) o fastype_of) (nth args i) then mk_single_atom (nth args i) else
+            if ((is_atom_set thy) o fastype_of) (nth args i) then mk_atom_set (nth args i) else
+            if ((is_atom_fset thy) o fastype_of) (nth args i) then mk_atom_fset (nth args i) else
+            (* TODO goes the code for preiously defined nominal datatypes *)
+            @{term "{} :: atom set"}
+        | fv_bind args (SOME (f, _), i, _, _) = f $ (nth args i)
+      fun fv_binds args relevant = mk_union (map (fv_bind args) relevant)
       val alpha_rhs =
         HOLogic.mk_Trueprop (alpha $ (list_comb (c, args)) $ (list_comb (c, args2)));
       fun alpha_arg ((dt, arg_no), (arg, arg2)) =
@@ -574,400 +633,20 @@
         fold (fn pi_str => fn t => HOLogic.mk_exists (pi_str, @{typ perm}, t)) pi_strs alpha_lhss
       val alpha_eq = Logic.mk_implies (HOLogic.mk_Trueprop alpha_lhss_ex, alpha_rhs)
     in
-      (fv_eq, alpha_eq)
+      alpha_eq
     end;
-  fun fv_alpha_eq (i, (_, _, constrs)) binds = map2i (fv_alpha_constr i) constrs binds;
-  val fveqs_alphaeqs = map2i fv_alpha_eq descr (gather_binds bindsall)
-  val (fv_eqs_perfv, alpha_eqs) = apsnd flat (split_list (map split_list fveqs_alphaeqs))
-  val rel_bns_nos = map (fn (_, i, _) => i) rel_bns;
-  fun filter_fun (_, b) = b mem rel_bns_nos;
-  val all_fvs = (fv_names ~~ fv_eqs_perfv) ~~ (0 upto (length fv_names - 1))
-  val (fv_names_fst, fv_eqs_fst) = apsnd flat (split_list (map fst (filter_out filter_fun all_fvs)))
-  val (fv_names_snd, fv_eqs_snd) = apsnd flat (split_list (map fst (filter filter_fun all_fvs)))
-  val fv_eqs_all = fv_eqs_fst @ (flat fv_bn_eqs);
-  val fv_names_all = fv_names_fst @ fv_bn_names;
+  fun alpha_eq (i, (_, _, constrs)) binds = map2i (alpha_constr i) constrs binds;
+  val alphaeqs = map2i alpha_eq descr (gather_binds bindsall)
+  val alpha_eqs = flat alphaeqs
   val add_binds = map (fn x => (Attrib.empty_binding, x))
-(* Function_Fun.add_fun Function_Common.default_config ... true *)
-  val (fvs, lthy') = (Primrec.add_primrec
-    (map (fn s => (Binding.name s, NONE, NoSyn)) fv_names_all) (add_binds fv_eqs_all) lthy)
-  val (fvs2, lthy'') =
-    if fv_eqs_snd = [] then (([], []), lthy') else
-   (Primrec.add_primrec
-    (map (fn s => (Binding.name s, NONE, NoSyn)) fv_names_snd) (add_binds fv_eqs_snd) lthy')
-  val (alphas, lthy''') = (Inductive.add_inductive_i
+  val (alphas, lthy') = (Inductive.add_inductive_i
      {quiet_mode = true, verbose = false, alt_name = Binding.empty,
       coind = false, no_elim = false, no_ind = false, skip_mono = true, fork_mono = false}
      (map2 (fn x => fn y => ((Binding.name x, y), NoSyn)) (alpha_names @ alpha_bn_names)
      (alpha_types @ alpha_bn_types)) []
-     (add_binds (alpha_eqs @ flat alpha_bn_eqs)) [] lthy'')
-  val ordered_fvs = fv_frees @ fvbns;
-  val all_fvs = (fst fvs @ fst fvs2, snd fvs @ snd fvs2)
-in
-  (((all_fvs, ordered_fvs), alphas), lthy''')
-end
-*}
-
-
-
-ML {*
-fun build_alpha_sym_trans_gl alphas (x, y, z) =
-let
-  fun build_alpha alpha =
-    let
-      val ty = domain_type (fastype_of alpha);
-      val var = Free(x, ty);
-      val var2 = Free(y, ty);
-      val var3 = Free(z, ty);
-      val symp = HOLogic.mk_imp (alpha $ var $ var2, alpha $ var2 $ var);
-      val transp = HOLogic.mk_imp (alpha $ var $ var2,
-        HOLogic.mk_all (z, ty,
-          HOLogic.mk_imp (alpha $ var2 $ var3, alpha $ var $ var3)))
-    in
-      (symp, transp)
-    end;
-  val eqs = map build_alpha alphas
-  val (sym_eqs, trans_eqs) = split_list eqs
-  fun conj l = @{term Trueprop} $ foldr1 HOLogic.mk_conj l
-in
-  (conj sym_eqs, conj trans_eqs)
-end
-*}
-
-ML {*
-fun build_alpha_refl_gl fv_alphas_lst alphas =
-let
-  val (fvs_alphas, _) = split_list fv_alphas_lst;
-  val (_, alpha_ts) = split_list fvs_alphas;
-  val tys = map (domain_type o fastype_of) alpha_ts;
-  val names = Datatype_Prop.make_tnames tys;
-  val args = map Free (names ~~ tys);
-  fun find_alphas ty x =
-    domain_type (fastype_of x) = ty;
-  fun refl_eq_arg (ty, arg) =
-    let
-      val rel_alphas = filter (find_alphas ty) alphas;
-    in
-      map (fn x => x $ arg $ arg) rel_alphas
-    end;
-  (* Flattening loses the induction structure *)
-  val eqs = map (foldr1 HOLogic.mk_conj) (map refl_eq_arg (tys ~~ args))
-in
-  (names, HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj eqs))
-end
-*}
-
-ML {*
-fun reflp_tac induct eq_iff =
-  rtac induct THEN_ALL_NEW
-  simp_tac (HOL_basic_ss addsimps eq_iff) THEN_ALL_NEW
-  split_conj_tac THEN_ALL_NEW REPEAT o rtac @{thm exI[of _ "0 :: perm"]}
-  THEN_ALL_NEW split_conj_tac THEN_ALL_NEW asm_full_simp_tac (HOL_ss addsimps
-     @{thms alphas fresh_star_def fresh_zero_perm permute_zero ball_triv
-       add_0_left supp_zero_perm Int_empty_left split_conv})
-*}
-
-ML {*
-fun build_alpha_refl fv_alphas_lst alphas induct eq_iff ctxt =
-let
-  val (names, gl) = build_alpha_refl_gl fv_alphas_lst alphas;
-  val refl_conj = Goal.prove ctxt names [] gl (fn _ => reflp_tac induct eq_iff 1);
-in
-  HOLogic.conj_elims refl_conj
-end
-*}
-
-lemma exi_neg: "\<exists>(pi :: perm). P pi \<Longrightarrow> (\<And>(p :: perm). P p \<Longrightarrow> Q (- p)) \<Longrightarrow> \<exists>pi. Q pi"
-apply (erule exE)
-apply (rule_tac x="-pi" in exI)
-by auto
-
-ML {*
-fun symp_tac induct inj eqvt ctxt =
-  rel_indtac induct THEN_ALL_NEW
-  simp_tac (HOL_basic_ss addsimps inj) THEN_ALL_NEW split_conj_tac
-  THEN_ALL_NEW
-  REPEAT o etac @{thm exi_neg}
-  THEN_ALL_NEW
-  split_conj_tac THEN_ALL_NEW
-  asm_full_simp_tac (HOL_ss addsimps @{thms supp_minus_perm minus_add[symmetric]}) THEN_ALL_NEW
-  TRY o (resolve_tac @{thms alphas_compose_sym2} ORELSE' resolve_tac @{thms alphas_compose_sym}) THEN_ALL_NEW
-  (asm_full_simp_tac (HOL_ss addsimps (eqvt @ all_eqvts ctxt)))
-*}
-
-
-lemma exi_sum: "\<exists>(pi :: perm). P pi \<Longrightarrow> \<exists>(pi :: perm). Q pi \<Longrightarrow> (\<And>(p :: perm) (pi :: perm). P p \<Longrightarrow> Q pi \<Longrightarrow> R (pi + p)) \<Longrightarrow> \<exists>pi. R pi"
-apply (erule exE)+
-apply (rule_tac x="pia + pi" in exI)
-by auto
-
-
-ML {*
-fun eetac rule = 
-  Subgoal.FOCUS_PARAMS (fn focus =>
-    let
-      val concl = #concl focus
-      val prems = Logic.strip_imp_prems (term_of concl)
-      val exs = filter (fn x => is_ex (HOLogic.dest_Trueprop x)) prems
-      val cexs = map (SOME o (cterm_of (ProofContext.theory_of (#context focus)))) exs
-      val thins = map (fn cex => Drule.instantiate' [] [cex] Drule.thin_rl) cexs
-    in
-      (etac rule THEN' RANGE[atac, eresolve_tac thins]) 1
-    end
-  )
-*}
-
-ML {*
-fun transp_tac ctxt induct alpha_inj term_inj distinct cases eqvt =
-  rel_indtac induct THEN_ALL_NEW
-  (TRY o rtac allI THEN' imp_elim_tac cases ctxt) THEN_ALL_NEW
-  asm_full_simp_tac (HOL_basic_ss addsimps alpha_inj) THEN_ALL_NEW
-  split_conj_tac THEN_ALL_NEW REPEAT o (eetac @{thm exi_sum} ctxt) THEN_ALL_NEW split_conj_tac
-  THEN_ALL_NEW (asm_full_simp_tac (HOL_ss addsimps (term_inj @ distinct)))
-  THEN_ALL_NEW split_conj_tac THEN_ALL_NEW
-  TRY o (eresolve_tac @{thms alphas_compose_trans2} ORELSE' eresolve_tac @{thms alphas_compose_trans}) THEN_ALL_NEW
-  (asm_full_simp_tac (HOL_ss addsimps (all_eqvts ctxt @ eqvt @ term_inj @ distinct)))
-*}
-
-lemma transpI:
-  "(\<And>xa ya. R xa ya \<longrightarrow> (\<forall>z. R ya z \<longrightarrow> R xa z)) \<Longrightarrow> transp R"
-  unfolding transp_def
-  by blast
-
-ML {*
-fun equivp_tac reflps symps transps =
-  (*let val _ = tracing (PolyML.makestring (reflps, symps, transps)) in *)
-  simp_tac (HOL_ss addsimps @{thms equivp_reflp_symp_transp reflp_def symp_def})
-  THEN' rtac conjI THEN' rtac allI THEN'
-  resolve_tac reflps THEN'
-  rtac conjI THEN' rtac allI THEN' rtac allI THEN'
-  resolve_tac symps THEN'
-  rtac @{thm transpI} THEN' resolve_tac transps
-*}
-
-ML {*
-fun build_equivps alphas reflps alpha_induct term_inj alpha_inj distinct cases eqvt ctxt =
-let
-  val ([x, y, z], ctxt') = Variable.variant_fixes ["x","y","z"] ctxt;
-  val (symg, transg) = build_alpha_sym_trans_gl alphas (x, y, z)
-  fun symp_tac' _ = symp_tac alpha_induct alpha_inj eqvt ctxt 1;
-  fun transp_tac' _ = transp_tac ctxt alpha_induct alpha_inj term_inj distinct cases eqvt 1;
-  val symp_loc = Goal.prove ctxt' [] [] symg symp_tac';
-  val transp_loc = Goal.prove ctxt' [] [] transg transp_tac';
-  val [symp, transp] = Variable.export ctxt' ctxt [symp_loc, transp_loc]
-  val symps = HOLogic.conj_elims symp
-  val transps = HOLogic.conj_elims transp
-  fun equivp alpha =
-    let
-      val equivp = Const (@{const_name equivp}, fastype_of alpha --> @{typ bool})
-      val goal = @{term Trueprop} $ (equivp $ alpha)
-      fun tac _ = equivp_tac reflps symps transps 1
-    in
-      Goal.prove ctxt [] [] goal tac
-    end
+     (add_binds (alpha_eqs @ flat alpha_bn_eqs)) [] lthy)
 in
-  map equivp alphas
-end
-*}
-
-lemma not_in_union: "c \<notin> a \<union> b \<equiv> (c \<notin> a \<and> c \<notin> b)"
-by auto
-
-ML {*
-fun supports_tac perm =
-  simp_tac (HOL_ss addsimps @{thms supports_def not_in_union} @ perm) THEN_ALL_NEW (
-    REPEAT o rtac allI THEN' REPEAT o rtac impI THEN' split_conj_tac THEN'
-    asm_full_simp_tac (HOL_ss addsimps @{thms fresh_def[symmetric]
-      swap_fresh_fresh fresh_atom swap_at_base_simps(3) swap_atom_image_fresh
-      supp_fset_to_set supp_fmap_atom}))
-*}
-
-ML {*
-fun mk_supp ty x =
-  Const (@{const_name supp}, ty --> @{typ "atom set"}) $ x
-*}
-
-ML {*
-fun mk_supports_eq thy cnstr =
-let
-  val (tys, ty) = (strip_type o fastype_of) cnstr
-  val names = Datatype_Prop.make_tnames tys
-  val frees = map Free (names ~~ tys)
-  val rhs = list_comb (cnstr, frees)
-
-  fun mk_supp_arg (x, ty) =
-    if is_atom thy ty then mk_supp @{typ atom} (mk_atom ty $ x) else
-    if is_atom_set thy ty then mk_supp @{typ "atom set"} (mk_atom_set x) else
-    if is_atom_fset thy ty then mk_supp @{typ "atom set"} (mk_atom_fset x)
-    else mk_supp ty x
-  val lhss = map mk_supp_arg (frees ~~ tys)
-  val supports = Const(@{const_name "supports"}, @{typ "atom set"} --> ty --> @{typ bool})
-  val eq = HOLogic.mk_Trueprop (supports $ mk_union lhss $ rhs)
-in
-  (names, eq)
-end
-*}
-
-ML {*
-fun prove_supports ctxt perms cnst =
-let
-  val (names, eq) = mk_supports_eq (ProofContext.theory_of ctxt) cnst
-in
-  Goal.prove ctxt names [] eq (fn _ => supports_tac perms 1)
-end
-*}
-
-ML {*
-fun mk_fs tys =
-let
-  val names = Datatype_Prop.make_tnames tys
-  val frees = map Free (names ~~ tys)
-  val supps = map2 mk_supp tys frees
-  val fin_supps = map (fn x => @{term "finite :: atom set \<Rightarrow> bool"} $ x) supps
-in
-  (names, HOLogic.mk_Trueprop (mk_conjl fin_supps))
-end
-*}
-
-ML {*
-fun fs_tac induct supports = rel_indtac induct THEN_ALL_NEW (
-  rtac @{thm supports_finite} THEN' resolve_tac supports) THEN_ALL_NEW
-  asm_full_simp_tac (HOL_ss addsimps @{thms supp_atom supp_atom_image supp_fset_to_set
-    supp_fmap_atom finite_insert finite.emptyI finite_Un finite_supp})
-*}
-
-ML {*
-fun prove_fs ctxt induct supports tys =
-let
-  val (names, eq) = mk_fs tys
-in
-  Goal.prove ctxt names [] eq (fn _ => fs_tac induct supports 1)
-end
-*}
-
-ML {*
-fun mk_supp x = Const (@{const_name supp}, fastype_of x --> @{typ "atom set"}) $ x;
-
-fun mk_supp_neq arg (fv, alpha) =
-let
-  val collect = Const ("Collect", @{typ "(atom \<Rightarrow> bool) \<Rightarrow> atom \<Rightarrow> bool"});
-  val ty = fastype_of arg;
-  val perm = Const ("Nominal2_Base.pt_class.permute", @{typ perm} --> ty --> ty);
-  val finite = @{term "finite :: atom set \<Rightarrow> bool"}
-  val rhs = collect $ Abs ("a", @{typ atom},
-    HOLogic.mk_not (finite $
-      (collect $ Abs ("b", @{typ atom},
-        HOLogic.mk_not (alpha $ (perm $ (@{term swap} $ Bound 1 $ Bound 0) $ arg) $ arg)))))
-in
-  HOLogic.mk_eq (fv $ arg, rhs)
-end;
-
-fun supp_eq fv_alphas_lst =
-let
-  val (fvs_alphas, ls) = split_list fv_alphas_lst;
-  val (fv_ts, _) = split_list fvs_alphas;
-  val tys = map (domain_type o fastype_of) fv_ts;
-  val names = Datatype_Prop.make_tnames tys;
-  val args = map Free (names ~~ tys);
-  fun supp_eq_arg ((fv, arg), l) =
-    mk_conjl
-      ((HOLogic.mk_eq (fv $ arg, mk_supp arg)) ::
-       (map (mk_supp_neq arg) l))
-  val eqs = mk_conjl (map supp_eq_arg ((fv_ts ~~ args) ~~ ls))
-in
-  (names, HOLogic.mk_Trueprop eqs)
-end
-*}
-
-ML {*
-fun combine_fv_alpha_bns (fv_ts_nobn, fv_ts_bn) (alpha_ts_nobn, alpha_ts_bn) bn_nos =
-if length fv_ts_bn < length alpha_ts_bn then
-  (fv_ts_nobn ~~ alpha_ts_nobn) ~~ (replicate (length fv_ts_nobn) [])
-else let
-  val fv_alpha_nos = 0 upto (length fv_ts_nobn - 1);
-  fun filter_fn i (x, j) = if j = i then SOME x else NONE;
-  val fv_alpha_bn_nos = (fv_ts_bn ~~ alpha_ts_bn) ~~ bn_nos;
-  val fv_alpha_bn_all = map (fn i => map_filter (filter_fn i) fv_alpha_bn_nos) fv_alpha_nos;
-in
-  (fv_ts_nobn ~~ alpha_ts_nobn) ~~ fv_alpha_bn_all
-end
-*}
-
-(* TODO: this is a hack, it assumes that only one type of Abs's is present
-   in the type and chooses this supp_abs. Additionally single atoms are
-   treated properly. *)
-ML {*
-fun choose_alpha_abs eqiff =
-let
-  fun exists_subterms f ts = true mem (map (exists_subterm f) ts);
-  val terms = map prop_of eqiff;
-  fun check cname = exists_subterms (fn x => fst(dest_Const x) = cname handle _ => false) terms
-  val no =
-    if check @{const_name alpha_lst} then 2 else
-    if check @{const_name alpha_res} then 1 else
-    if check @{const_name alpha_gen} then 0 else
-    error "Failure choosing supp_abs"
-in
-  nth @{thms supp_abs[symmetric]} no
-end
-*}
-lemma supp_abs_atom: "supp (Abs {atom a} (x :: 'a :: fs)) = supp x - {atom a}"
-by (rule supp_abs(1))
-
-lemma supp_abs_sum:
-  "supp (Abs x (a :: 'a :: fs)) \<union> supp (Abs x (b :: 'b :: fs)) = supp (Abs x (a, b))"
-  "supp (Abs_res x (a :: 'a :: fs)) \<union> supp (Abs_res x (b :: 'b :: fs)) = supp (Abs_res x (a, b))"
-  "supp (Abs_lst y (a :: 'a :: fs)) \<union> supp (Abs_lst y (b :: 'b :: fs)) = supp (Abs_lst y (a, b))"
-  apply (simp_all add: supp_abs supp_Pair)
-  apply blast+
-  done
-
-
-ML {*
-fun supp_eq_tac ind fv perm eqiff ctxt =
-  rel_indtac ind THEN_ALL_NEW
-  asm_full_simp_tac (HOL_basic_ss addsimps fv) THEN_ALL_NEW
-  asm_full_simp_tac (HOL_basic_ss addsimps @{thms supp_abs_atom[symmetric]}) THEN_ALL_NEW
-  asm_full_simp_tac (HOL_basic_ss addsimps [choose_alpha_abs eqiff]) THEN_ALL_NEW
-  simp_tac (HOL_basic_ss addsimps @{thms supp_abs_sum}) THEN_ALL_NEW
-  simp_tac (HOL_basic_ss addsimps @{thms supp_def}) THEN_ALL_NEW
-  simp_tac (HOL_basic_ss addsimps (@{thms permute_abs} @ perm)) THEN_ALL_NEW
-  simp_tac (HOL_basic_ss addsimps (@{thms Abs_eq_iff} @ eqiff)) THEN_ALL_NEW
-  simp_tac (HOL_basic_ss addsimps @{thms alphas3 alphas2}) THEN_ALL_NEW
-  simp_tac (HOL_basic_ss addsimps @{thms alphas}) THEN_ALL_NEW
-  asm_full_simp_tac (HOL_basic_ss addsimps (@{thm supp_Pair} :: sym_eqvts ctxt)) THEN_ALL_NEW
-  asm_full_simp_tac (HOL_basic_ss addsimps (@{thm Pair_eq} :: all_eqvts ctxt)) THEN_ALL_NEW
-  simp_tac (HOL_basic_ss addsimps @{thms supp_at_base[symmetric,simplified supp_def]}) THEN_ALL_NEW
-  simp_tac (HOL_basic_ss addsimps @{thms Collect_disj_eq[symmetric]}) THEN_ALL_NEW
-  simp_tac (HOL_basic_ss addsimps @{thms infinite_Un[symmetric]}) THEN_ALL_NEW
-  simp_tac (HOL_basic_ss addsimps @{thms Collect_disj_eq[symmetric]}) THEN_ALL_NEW
-  simp_tac (HOL_basic_ss addsimps @{thms de_Morgan_conj[symmetric]}) THEN_ALL_NEW
-  simp_tac (HOL_basic_ss addsimps @{thms ex_simps(1,2)[symmetric]}) THEN_ALL_NEW
-  simp_tac (HOL_ss addsimps @{thms Collect_const finite.emptyI})
-*}
-
-
-
-ML {*
-fun build_eqvt_gl pi frees fnctn ctxt =
-let
-  val typ = domain_type (fastype_of fnctn);
-  val arg = the (AList.lookup (op=) frees typ);
-in
-  ([HOLogic.mk_eq ((perm_arg (fnctn $ arg) $ pi $ (fnctn $ arg)), (fnctn $ (perm_arg arg $ pi $ arg)))], ctxt)
-end
-*}
-
-ML {*
-fun prove_eqvt tys ind simps funs ctxt =
-let
-  val ([pi], ctxt') = Variable.variant_fixes ["p"] ctxt;
-  val pi = Free (pi, @{typ perm});
-  val tac = asm_full_simp_tac (HOL_ss addsimps (@{thms atom_eqvt permute_list.simps} @ simps @ all_eqvts ctxt'))
-  val ths_loc = prove_by_induct tys (build_eqvt_gl pi) ind tac funs ctxt'
-  val ths = Variable.export ctxt' ctxt ths_loc
-  val add_eqvt = Attrib.internal (fn _ => Nominal_ThmDecls.eqvt_add)
-in
-  (ths, snd (Local_Theory.note ((Binding.empty, [add_eqvt]), ths) ctxt))
+  (alphas, lthy')
 end
 *}
 
--- a/Nominal/Lift.thy	Wed Apr 14 11:07:42 2010 +0200
+++ b/Nominal/Lift.thy	Wed Apr 14 16:10:44 2010 +0200
@@ -2,7 +2,7 @@
 imports "../Nominal-General/Nominal2_Atoms" 
         "../Nominal-General/Nominal2_Eqvt" 
         "../Nominal-General/Nominal2_Supp" 
-        "Abs" "Perm" "Fv" "Rsp"
+        "Abs" "Perm" "Equivp" "Rsp"
 begin
 
 
@@ -69,13 +69,16 @@
 ML {*
 fun define_fv_alpha_export dt binds bns ctxt =
 let
-  val ((((fv_ts_loc, fv_def_loc), ord_fv_ts_loc), alpha), ctxt') =
-    define_fv_alpha dt binds bns ctxt;
+  val (((fv_ts_loc, fv_def_loc), ord_fv_ts_loc), ctxt') =
+    define_fv dt binds bns ctxt;
+  val fv_ts_nobn = take (length bns) fv_ts_loc
+  val (alpha, ctxt'') =
+    define_alpha dt binds bns fv_ts_nobn ctxt';
   val alpha_ts_loc = #preds alpha
   val alpha_induct_loc = #induct alpha
   val alpha_intros_loc = #intrs alpha;
   val alpha_cases_loc = #elims alpha
-  val morphism = ProofContext.export_morphism ctxt' ctxt;
+  val morphism = ProofContext.export_morphism ctxt'' ctxt;
   val fv_ts = map (Morphism.term morphism) fv_ts_loc;
   val ord_fv_ts = map (Morphism.term morphism) ord_fv_ts_loc;
   val fv_def = Morphism.fact morphism fv_def_loc;
@@ -84,7 +87,7 @@
   val alpha_intros = Morphism.fact morphism alpha_intros_loc
   val alpha_cases = Morphism.fact morphism alpha_cases_loc
 in
-  ((((fv_ts, ord_fv_ts), fv_def), ((alpha_ts, alpha_intros), (alpha_cases, alpha_induct))), ctxt')
+  ((((fv_ts, ord_fv_ts), fv_def), ((alpha_ts, alpha_intros), (alpha_cases, alpha_induct))), ctxt'')
 end;
 *}
 
--- a/Nominal/Parser.thy	Wed Apr 14 11:07:42 2010 +0200
+++ b/Nominal/Parser.thy	Wed Apr 14 16:10:44 2010 +0200
@@ -2,7 +2,7 @@
 imports "../Nominal-General/Nominal2_Atoms" 
         "../Nominal-General/Nominal2_Eqvt" 
         "../Nominal-General/Nominal2_Supp" 
-        "Perm" "Fv" "Rsp" "Lift"
+        "Perm" "Equivp" "Rsp" "Lift"
 begin
 
 section{* Interface for nominal_datatype *}