--- a/Attic/Quot/Examples/LamEx.thy Thu Apr 29 17:03:59 2010 +0200
+++ b/Attic/Quot/Examples/LamEx.thy Thu Apr 29 17:16:35 2010 +0200
@@ -55,16 +55,16 @@
lemma rfv_eqvt[eqvt]:
fixes pi::"name prm"
shows "(pi\<bullet>rfv t) = rfv (pi\<bullet>t)"
-apply(induct t)
-apply(simp_all)
-apply(simp add: perm_set_eq)
-apply(simp add: union_eqvt)
-apply(simp add: set_diff_eqvt)
-apply(simp add: perm_set_eq)
-done
+ apply(induct t)
+ apply(simp_all)
+ apply(simp add: perm_set_eq)
+ apply(simp add: union_eqvt)
+ apply(simp add: set_diff_eqvt)
+ apply(simp add: perm_set_eq)
+ done
inductive
- alpha :: "rlam \<Rightarrow> rlam \<Rightarrow> bool" ("_ \<approx> _" [100, 100] 100)
+ alpha :: "rlam \<Rightarrow> rlam \<Rightarrow> bool" ("_ \<approx> _" [100, 100] 100)
where
a1: "a = b \<Longrightarrow> (rVar a) \<approx> (rVar b)"
| a2: "\<lbrakk>t1 \<approx> t2; s1 \<approx> s2\<rbrakk> \<Longrightarrow> rApp t1 s1 \<approx> rApp t2 s2"
@@ -76,101 +76,101 @@
lemma alpha_eqvt:
fixes pi::"name prm"
shows "t \<approx> s \<Longrightarrow> (pi \<bullet> t) \<approx> (pi \<bullet> s)"
-apply(induct rule: alpha.induct)
-apply(simp add: a1)
-apply(simp add: a2)
-apply(simp)
-apply(rule a3)
-apply(erule conjE)
-apply(erule exE)
-apply(erule conjE)
-apply(rule_tac x="pi \<bullet> pia" in exI)
-apply(rule conjI)
-apply(rule_tac pi1="rev pi" in perm_bij[THEN iffD1])
-apply(perm_simp add: eqvts)
-apply(rule conjI)
-apply(rule_tac pi1="rev pi" in pt_fresh_star_bij(1)[OF pt_name_inst at_name_inst, THEN iffD1])
-apply(perm_simp add: eqvts)
-apply(rule conjI)
-apply(subst perm_compose[symmetric])
-apply(simp)
-apply(subst perm_compose[symmetric])
-apply(simp)
-done
+ apply(induct rule: alpha.induct)
+ apply(simp add: a1)
+ apply(simp add: a2)
+ apply(simp)
+ apply(rule a3)
+ apply(erule conjE)
+ apply(erule exE)
+ apply(erule conjE)
+ apply(rule_tac x="pi \<bullet> pia" in exI)
+ apply(rule conjI)
+ apply(rule_tac pi1="rev pi" in perm_bij[THEN iffD1])
+ apply(perm_simp add: eqvts)
+ apply(rule conjI)
+ apply(rule_tac pi1="rev pi" in pt_fresh_star_bij(1)[OF pt_name_inst at_name_inst, THEN iffD1])
+ apply(perm_simp add: eqvts)
+ apply(rule conjI)
+ apply(subst perm_compose[symmetric])
+ apply(simp)
+ apply(subst perm_compose[symmetric])
+ apply(simp)
+ done
lemma alpha_refl:
shows "t \<approx> t"
-apply(induct t rule: rlam.induct)
-apply(simp add: a1)
-apply(simp add: a2)
-apply(rule a3)
-apply(rule_tac x="[]" in exI)
-apply(simp_all add: fresh_star_def fresh_list_nil)
-done
+ apply(induct t rule: rlam.induct)
+ apply(simp add: a1)
+ apply(simp add: a2)
+ apply(rule a3)
+ apply(rule_tac x="[]" in exI)
+ apply(simp_all add: fresh_star_def fresh_list_nil)
+ done
lemma alpha_sym:
shows "t \<approx> s \<Longrightarrow> s \<approx> t"
-apply(induct rule: alpha.induct)
-apply(simp add: a1)
-apply(simp add: a2)
-apply(rule a3)
-apply(erule exE)
-apply(rule_tac x="rev pi" in exI)
-apply(simp)
-apply(simp add: fresh_star_def fresh_list_rev)
-apply(rule conjI)
-apply(erule conjE)+
-apply(rotate_tac 3)
-apply(drule_tac pi="rev pi" in alpha_eqvt)
-apply(perm_simp)
-apply(rule pt_bij2[OF pt_name_inst at_name_inst])
-apply(simp)
-done
+ apply(induct rule: alpha.induct)
+ apply(simp add: a1)
+ apply(simp add: a2)
+ apply(rule a3)
+ apply(erule exE)
+ apply(rule_tac x="rev pi" in exI)
+ apply(simp)
+ apply(simp add: fresh_star_def fresh_list_rev)
+ apply(rule conjI)
+ apply(erule conjE)+
+ apply(rotate_tac 3)
+ apply(drule_tac pi="rev pi" in alpha_eqvt)
+ apply(perm_simp)
+ apply(rule pt_bij2[OF pt_name_inst at_name_inst])
+ apply(simp)
+ done
lemma alpha_trans:
shows "t1 \<approx> t2 \<Longrightarrow> t2 \<approx> t3 \<Longrightarrow> t1 \<approx> t3"
-apply(induct arbitrary: t3 rule: alpha.induct)
-apply(erule alpha.cases)
-apply(simp_all)
-apply(simp add: a1)
-apply(rotate_tac 4)
-apply(erule alpha.cases)
-apply(simp_all)
-apply(simp add: a2)
-apply(rotate_tac 1)
-apply(erule alpha.cases)
-apply(simp_all)
-apply(erule conjE)+
-apply(erule exE)+
-apply(erule conjE)+
-apply(rule a3)
-apply(rule_tac x="pia @ pi" in exI)
-apply(simp add: fresh_star_def fresh_list_append)
-apply(simp add: pt_name2)
-apply(drule_tac x="rev pia \<bullet> sa" in spec)
-apply(drule mp)
-apply(rotate_tac 8)
-apply(drule_tac pi="rev pia" in alpha_eqvt)
-apply(perm_simp)
-apply(rotate_tac 11)
-apply(drule_tac pi="pia" in alpha_eqvt)
-apply(perm_simp)
-done
+ apply(induct arbitrary: t3 rule: alpha.induct)
+ apply(erule alpha.cases)
+ apply(simp_all)
+ apply(simp add: a1)
+ apply(rotate_tac 4)
+ apply(erule alpha.cases)
+ apply(simp_all)
+ apply(simp add: a2)
+ apply(rotate_tac 1)
+ apply(erule alpha.cases)
+ apply(simp_all)
+ apply(erule conjE)+
+ apply(erule exE)+
+ apply(erule conjE)+
+ apply(rule a3)
+ apply(rule_tac x="pia @ pi" in exI)
+ apply(simp add: fresh_star_def fresh_list_append)
+ apply(simp add: pt_name2)
+ apply(drule_tac x="rev pia \<bullet> sa" in spec)
+ apply(drule mp)
+ apply(rotate_tac 8)
+ apply(drule_tac pi="rev pia" in alpha_eqvt)
+ apply(perm_simp)
+ apply(rotate_tac 11)
+ apply(drule_tac pi="pia" in alpha_eqvt)
+ apply(perm_simp)
+ done
lemma alpha_equivp:
shows "equivp alpha"
-apply(rule equivpI)
-unfolding reflp_def symp_def transp_def
-apply(auto intro: alpha_refl alpha_sym alpha_trans)
-done
+ apply(rule equivpI)
+ unfolding reflp_def symp_def transp_def
+ apply(auto intro: alpha_refl alpha_sym alpha_trans)
+ done
lemma alpha_rfv:
shows "t \<approx> s \<Longrightarrow> rfv t = rfv s"
-apply(induct rule: alpha.induct)
-apply(simp)
-apply(simp)
-apply(simp)
-done
+ apply(induct rule: alpha.induct)
+ apply(simp)
+ apply(simp)
+ apply(simp)
+ done
quotient_type lam = rlam / alpha
by (rule alpha_equivp)
@@ -210,16 +210,10 @@
end
lemma perm_rsp[quot_respect]:
- "(op = ===> alpha ===> alpha) op \<bullet> op \<bullet>"
- apply(auto)
- (* this is propably true if some type conditions are imposed ;o) *)
- sorry
-
-lemma fresh_rsp:
- "(op = ===> alpha ===> op =) fresh fresh"
- apply(auto)
- (* this is probably only true if some type conditions are imposed *)
- sorry
+ "(op = ===> alpha ===> alpha) op \<bullet> (op \<bullet> :: (name \<times> name) list \<Rightarrow> rlam \<Rightarrow> rlam)"
+ apply auto
+ apply(erule alpha_eqvt)
+ done
lemma rVar_rsp[quot_respect]:
"(op = ===> alpha) rVar rVar"
@@ -239,8 +233,8 @@
lemma rfv_rsp[quot_respect]:
"(alpha ===> op =) rfv rfv"
-apply(simp add: alpha_rfv)
-done
+ apply(simp add: alpha_rfv)
+ done
section {* lifted theorems *}
@@ -251,56 +245,47 @@
\<Longrightarrow> P lam"
by (lifting rlam.induct)
-ML {* show_all_types := true *}
-
lemma perm_lam [simp]:
- fixes pi::"'a prm"
+ fixes pi::"name prm"
shows "pi \<bullet> Var a = Var (pi \<bullet> a)"
and "pi \<bullet> App t1 t2 = App (pi \<bullet> t1) (pi \<bullet> t2)"
and "pi \<bullet> Lam a t = Lam (pi \<bullet> a) (pi \<bullet> t)"
-apply(lifting perm_rlam.simps)
-ML_prf {*
- List.last (map (symmetric o #def) (Quotient_Info.qconsts_dest @{context}));
- List.last (map (Thm.varifyT o symmetric o #def) (Quotient_Info.qconsts_dest @{context}))
-*}
-done
+ by (lifting perm_rlam.simps[where 'a="name"])
instance lam::pt_name
-apply(default)
-apply(induct_tac [!] x rule: lam_induct)
-apply(simp_all add: pt_name2 pt_name3)
-done
+ apply(default)
+ apply(induct_tac [!] x rule: lam_induct)
+ apply(simp_all add: pt_name2 pt_name3)
+ done
lemma fv_lam [simp]:
shows "fv (Var a) = {a}"
and "fv (App t1 t2) = fv t1 \<union> fv t2"
and "fv (Lam a t) = fv t - {a}"
-apply(lifting rfv_var rfv_app rfv_lam)
-done
+ by(lifting rfv_var rfv_app rfv_lam)
-
-lemma a1:
+lemma a1:
"a = b \<Longrightarrow> Var a = Var b"
by (lifting a1)
-lemma a2:
+lemma a2:
"\<lbrakk>x = xa; xb = xc\<rbrakk> \<Longrightarrow> App x xb = App xa xc"
by (lifting a2)
-lemma a3:
+lemma a3:
"\<lbrakk>\<exists>pi::name prm. (fv t - {a} = fv s - {b} \<and> (fv t - {a})\<sharp>* pi \<and> (pi \<bullet> t) = s \<and> (pi \<bullet> a) = b)\<rbrakk>
\<Longrightarrow> Lam a t = Lam b s"
by (lifting a3)
-lemma alpha_cases:
+lemma alpha_cases:
"\<lbrakk>a1 = a2; \<And>a b. \<lbrakk>a1 = Var a; a2 = Var b; a = b\<rbrakk> \<Longrightarrow> P;
\<And>x xa xb xc. \<lbrakk>a1 = App x xb; a2 = App xa xc; x = xa; xb = xc\<rbrakk> \<Longrightarrow> P;
- \<And>t a s b. \<lbrakk>a1 = Lam a t; a2 = Lam b s;
+ \<And>t a s b. \<lbrakk>a1 = Lam a t; a2 = Lam b s;
\<exists>pi::name prm. fv t - {a} = fv s - {b} \<and> (fv t - {a}) \<sharp>* pi \<and> (pi \<bullet> t) = s \<and> pi \<bullet> a = b\<rbrakk> \<Longrightarrow> P\<rbrakk>
\<Longrightarrow> P"
by (lifting alpha.cases)
-lemma alpha_induct:
+lemma alpha_induct:
"\<lbrakk>qx = qxa; \<And>a b. a = b \<Longrightarrow> qxb (Var a) (Var b);
\<And>x xa xb xc. \<lbrakk>x = xa; qxb x xa; xb = xc; qxb xb xc\<rbrakk> \<Longrightarrow> qxb (App x xb) (App xa xc);
\<And>t a s b.
@@ -312,18 +297,18 @@
lemma lam_inject [simp]:
shows "(Var a = Var b) = (a = b)"
and "(App t1 t2 = App s1 s2) = (t1 = s1 \<and> t2 = s2)"
-apply(lifting rlam.inject(1) rlam.inject(2))
-apply(auto)
-apply(drule alpha.cases)
-apply(simp_all)
-apply(simp add: alpha.a1)
-apply(drule alpha.cases)
-apply(simp_all)
-apply(drule alpha.cases)
-apply(simp_all)
-apply(rule alpha.a2)
-apply(simp_all)
-done
+ apply(lifting rlam.inject(1) rlam.inject(2))
+ apply(auto)
+ apply(drule alpha.cases)
+ apply(simp_all)
+ apply(simp add: alpha.a1)
+ apply(drule alpha.cases)
+ apply(simp_all)
+ apply(drule alpha.cases)
+ apply(simp_all)
+ apply(rule alpha.a2)
+ apply(simp_all)
+ done
lemma rlam_distinct:
shows "\<not>(rVar nam \<approx> rApp rlam1' rlam2')"
@@ -332,20 +317,20 @@
and "\<not>(rLam nam' rlam' \<approx> rVar nam)"
and "\<not>(rApp rlam1 rlam2 \<approx> rLam nam' rlam')"
and "\<not>(rLam nam' rlam' \<approx> rApp rlam1 rlam2)"
-apply auto
-apply(erule alpha.cases)
-apply simp_all
-apply(erule alpha.cases)
-apply simp_all
-apply(erule alpha.cases)
-apply simp_all
-apply(erule alpha.cases)
-apply simp_all
-apply(erule alpha.cases)
-apply simp_all
-apply(erule alpha.cases)
-apply simp_all
-done
+ apply auto
+ apply(erule alpha.cases)
+ apply simp_all
+ apply(erule alpha.cases)
+ apply simp_all
+ apply(erule alpha.cases)
+ apply simp_all
+ apply(erule alpha.cases)
+ apply simp_all
+ apply(erule alpha.cases)
+ apply simp_all
+ apply(erule alpha.cases)
+ apply simp_all
+ done
lemma lam_distinct[simp]:
shows "Var nam \<noteq> App lam1' lam2'"
@@ -354,8 +339,7 @@
and "Lam nam' lam' \<noteq> Var nam"
and "App lam1 lam2 \<noteq> Lam nam' lam'"
and "Lam nam' lam' \<noteq> App lam1 lam2"
-apply(lifting rlam_distinct(1) rlam_distinct(2) rlam_distinct(3) rlam_distinct(4) rlam_distinct(5) rlam_distinct(6))
-done
+ by(lifting rlam_distinct(1) rlam_distinct(2) rlam_distinct(3) rlam_distinct(4) rlam_distinct(5) rlam_distinct(6))
lemma var_supp1:
shows "(supp (Var a)) = ((supp a)::name set)"
@@ -367,31 +351,30 @@
lemma app_supp:
shows "supp (App t1 t2) = (supp t1) \<union> ((supp t2)::name set)"
-apply(simp only: perm_lam supp_def lam_inject)
-apply(simp add: Collect_imp_eq Collect_neg_eq)
-done
+ apply(simp only: perm_lam supp_def lam_inject)
+ apply(simp add: Collect_imp_eq Collect_neg_eq)
+ done
lemma lam_supp:
shows "supp (Lam x t) = ((supp ([x].t))::name set)"
-apply(simp add: supp_def)
-apply(simp add: abs_perm)
-sorry
-
+ apply(simp add: supp_def)
+ apply(simp add: abs_perm)
+ sorry
instance lam::fs_name
-apply(default)
-apply(induct_tac x rule: lam_induct)
-apply(simp add: var_supp)
-apply(simp add: app_supp)
-apply(simp add: lam_supp abs_supp)
-done
+ apply(default)
+ apply(induct_tac x rule: lam_induct)
+ apply(simp add: var_supp)
+ apply(simp add: app_supp)
+ apply(simp add: lam_supp abs_supp)
+ done
lemma fresh_lam:
"(a \<sharp> Lam b t) \<longleftrightarrow> (a = b) \<or> (a \<noteq> b \<and> a \<sharp> t)"
-apply(simp add: fresh_def)
-apply(simp add: lam_supp abs_supp)
-apply(auto)
-done
+ apply(simp add: fresh_def)
+ apply(simp add: lam_supp abs_supp)
+ apply(auto)
+ done
lemma lam_induct_strong:
fixes a::"'a::fs_name"