--- a/Attic/Quot/Examples/FSet3.thy Wed Apr 21 10:34:10 2010 +0200
+++ b/Attic/Quot/Examples/FSet3.thy Wed Apr 21 13:38:37 2010 +0200
@@ -2,6 +2,8 @@
imports "../../../Nominal/FSet"
begin
+(*sledgehammer[overlord,isar_proof,sorts]*)
+
notation
list_eq (infix "\<approx>" 50)
@@ -25,39 +27,47 @@
qed
lemma concat_rsp_pre:
- "\<lbrakk>list_rel op \<approx> x x'; x' \<approx> y'; list_rel op \<approx> y' y; \<exists>x\<in>set x. xa \<in> set x\<rbrakk> \<Longrightarrow>
- \<exists>x\<in>set y. xa \<in> set x"
- apply clarify
- apply (frule list_rel_find_element[of _ "x"])
- apply assumption
- apply clarify
- apply (subgoal_tac "ya \<in> set y'")
- prefer 2
- apply simp
- apply (frule list_rel_find_element[of _ "y'"])
- apply assumption
- apply auto
- done
+ assumes a: "list_rel op \<approx> x x'"
+ and b: "x' \<approx> y'"
+ and c: "list_rel op \<approx> y' y"
+ and d: "\<exists>x\<in>set x. xa \<in> set x"
+ shows "\<exists>x\<in>set y. xa \<in> set x"
+proof -
+ obtain xb where e: "xb \<in> set x" and f: "xa \<in> set xb" using d by auto
+ have "\<exists>y. y \<in> set x' \<and> xb \<approx> y" by (rule list_rel_find_element[OF e a])
+ then obtain ya where h: "ya \<in> set x'" and i: "xb \<approx> ya" by auto
+ have j: "ya \<in> set y'" using b h by simp
+ have "\<exists>yb. yb \<in> set y \<and> ya \<approx> yb" by (rule list_rel_find_element[OF j c])
+ then show ?thesis using f i by auto
+qed
+
+lemma fun_relI [intro]:
+ assumes "\<And>a b. P a b \<Longrightarrow> Q (x a) (y b)"
+ shows "(P ===> Q) x y"
+ using assms by (simp add: fun_rel_def)
lemma [quot_respect]:
shows "(list_rel op \<approx> OOO op \<approx> ===> op \<approx>) concat concat"
- apply (simp only: fun_rel_def)
- apply clarify
- apply (simp (no_asm))
- apply rule
- apply rule
- apply (erule concat_rsp_pre)
- apply assumption+
- apply (rule concat_rsp_pre)
- prefer 4
- apply assumption
- apply (rule list_rel_symp[OF list_eq_equivp])
- apply assumption
- apply (rule equivp_symp[OF list_eq_equivp])
- apply assumption
- apply (rule list_rel_symp[OF list_eq_equivp])
- apply assumption
- done
+proof (rule fun_relI, (erule pred_compE, erule pred_compE))
+ fix a b ba bb
+ assume a: "list_rel op \<approx> a ba"
+ assume b: "ba \<approx> bb"
+ assume c: "list_rel op \<approx> bb b"
+ have "\<forall>x. (\<exists>xa\<in>set a. x \<in> set xa) = (\<exists>xa\<in>set b. x \<in> set xa)" proof
+ fix x
+ show "(\<exists>xa\<in>set a. x \<in> set xa) = (\<exists>xa\<in>set b. x \<in> set xa)" proof
+ assume d: "\<exists>xa\<in>set a. x \<in> set xa"
+ show "\<exists>xa\<in>set b. x \<in> set xa" by (rule concat_rsp_pre[OF a b c d])
+ next
+ assume e: "\<exists>xa\<in>set b. x \<in> set xa"
+ have a': "list_rel op \<approx> ba a" by (rule list_rel_symp[OF list_eq_equivp, OF a])
+ have b': "bb \<approx> ba" by (rule equivp_symp[OF list_eq_equivp, OF b])
+ have c': "list_rel op \<approx> b bb" by (rule list_rel_symp[OF list_eq_equivp, OF c])
+ show "\<exists>xa\<in>set a. x \<in> set xa" by (rule concat_rsp_pre[OF c' b' a' e])
+ qed
+ qed
+ then show "concat a \<approx> concat b" by simp
+qed
lemma nil_rsp2[quot_respect]: "(list_rel op \<approx> OOO op \<approx>) [] []"
by (metis nil_rsp list_rel.simps(1) pred_compI)
@@ -82,7 +92,7 @@
apply (rule equivp_reflp[OF fset_equivp])
apply (rule list_rel_refl)
apply (metis equivp_def fset_equivp)
- apply(rule)
+ apply (rule)
apply rule
apply (rule list_rel_refl)
apply (metis equivp_def fset_equivp)
@@ -94,29 +104,27 @@
apply (metis Quotient_rel[OF Quotient_fset])
apply (auto simp only:)[1]
apply (subgoal_tac "map abs_fset r = map abs_fset b")
- prefer 2
+ apply (subgoal_tac "map abs_fset s = map abs_fset ba")
+ apply (simp only: map_rel_cong)
apply (metis Quotient_rel[OF list_quotient[OF Quotient_fset]])
- apply (subgoal_tac "map abs_fset s = map abs_fset ba")
- prefer 2
apply (metis Quotient_rel[OF list_quotient[OF Quotient_fset]])
- apply (simp only: map_rel_cong)
apply rule
apply (rule rep_abs_rsp[of "list_rel op \<approx>" "map abs_fset"])
apply (tactic {* Quotient_Tacs.quotient_tac @{context} 1 *})
apply (rule list_rel_refl)
apply (metis equivp_def fset_equivp)
apply rule
+ apply (erule conjE)+
prefer 2
apply (rule rep_abs_rsp_left[of "list_rel op \<approx>" "map abs_fset"])
apply (tactic {* Quotient_Tacs.quotient_tac @{context} 1 *})
apply (rule list_rel_refl)
apply (metis equivp_def fset_equivp)
- apply (erule conjE)+
apply (subgoal_tac "map abs_fset r \<approx> map abs_fset s")
- prefer 2
- apply (metis Quotient_def Quotient_fset equivp_reflp fset_equivp)
apply (rule map_rel_cong)
apply (assumption)
+ apply (subst Quotient_rel[OF Quotient_fset])
+ apply simp
done
lemma quotient_compose_list[quot_thm]:
@@ -139,12 +147,12 @@
apply (rule quotient_compose_list_pre)
done
+lemma nil_prs2[quot_preserve]: "(abs_fset \<circ> map f) [] = abs_fset []"
+ by simp
+
lemma fconcat_empty:
shows "fconcat {||} = {||}"
- apply(lifting concat.simps(1))
- apply(cleaning)
- apply(simp add: comp_def bot_fset_def)
- done
+ by (lifting concat.simps(1))
lemma insert_rsp2[quot_respect]:
"(op \<approx> ===> list_rel op \<approx> OOO op \<approx> ===> list_rel op \<approx> OOO op \<approx>) op # op #"
@@ -160,16 +168,32 @@
"(op \<approx> ===> op \<approx> ===> op \<approx>) op @ op @"
by (auto)
+lemma insert_prs2[quot_preserve]:
+ "(rep_fset ---> (map rep_fset \<circ> rep_fset) ---> (abs_fset \<circ> map abs_fset)) op # = finsert"
+ by (simp add: expand_fun_eq Quotient_abs_rep[OF Quotient_fset]
+ abs_o_rep[OF Quotient_fset] map_id finsert_def)
+
lemma fconcat_insert:
shows "fconcat (finsert x S) = x |\<union>| fconcat S"
- apply (lifting concat.simps(2))
- apply (cleaning)
- apply (simp add: finsert_def fconcat_def comp_def)
- apply (cleaning)
- done
+ by (lifting concat.simps(2))
+
+lemma append_prs2[quot_preserve]:
+ "((map rep_fset \<circ> rep_fset) ---> (map rep_fset \<circ> rep_fset) ---> abs_fset \<circ> map abs_fset) op @ = funion"
+ by (simp add: expand_fun_eq Quotient_abs_rep[OF Quotient_fset]
+ abs_o_rep[OF Quotient_fset] map_id sup_fset_def)
+
+lemma append_rsp2[quot_respect]:
+ "(list_rel op \<approx> OOO op \<approx> ===> list_rel op \<approx> OOO op \<approx> ===> list_rel op \<approx> OOO op \<approx>) op @ op @"
+ sorry
+
+lemma "fconcat (xs |\<union>| ys) = fconcat xs |\<union>| fconcat ys"
+ by (lifting concat_append)
(* TBD *)
+
+find_theorems concat
+
text {* syntax for fset comprehensions (adapted from lists) *}
nonterminals fsc_qual fsc_quals