Using "atomize" the versions with arbitrary Trueprops can be proven.
--- a/QuotMain.thy Tue Sep 22 17:39:52 2009 +0200
+++ b/QuotMain.thy Wed Sep 23 16:44:56 2009 +0200
@@ -886,7 +886,7 @@
val concl2 = Logic.list_implies (prems, concl)
(* val concl2 = fold (fn a => fn c => HOLogic.mk_imp (a, c)) prems concl*)
in
- HOLogic.mk_eq ((build_aux concl2), concl2)
+ Logic.mk_equals ( (build_aux concl2), concl2)
end *}
ML {* val emptyt = (symmetric (unlam_def @{context} @{thm EMPTY_def})) *}
@@ -965,8 +965,6 @@
])
*}
-thm m1
-
ML {*
val m1_novars = snd(no_vars ((Context.Theory @{theory}),@{thm m1}))
val goal = build_goal m1_novars consts @{typ "'a list"} mk_rep_abs
@@ -974,20 +972,19 @@
val cgoal2 = Thm.rhs_of (MetaSimplifier.rewrite false fset_defs_sym cgoal)
*}
-notation ( output) "prop" ("#_" [1000] 1000)
+(*notation ( output) "prop" ("#_" [1000] 1000) *)
+notation ( output) "Trueprop" ("#_" [1000] 1000)
-prove {* HOLogic.mk_Trueprop (Thm.term_of cgoal2) *}
+lemma tp:
+ shows "(a \<equiv> b) \<Longrightarrow> (Trueprop a \<equiv> Trueprop b)"
+ by auto
+
+prove {* (Thm.term_of cgoal2) *}
+ apply (rule tp)
+ apply (tactic {* ObjectLogic.full_atomize_tac 1 *})
apply (tactic {* LocalDefs.unfold_tac @{context} fset_defs *} )
- apply (tactic {* print_tac "" *})
- thm arg_cong2 [of "x memb REP_fset (ABS_fset (REP_fset (ABS_fset [])))" "x memb []" False False "op ="]
-(* apply (rule arg_cong2 [of "x memb REP_fset (ABS_fset (REP_fset (ABS_fset [])))" "x memb []" False False "op ="])*)
- apply (subst arg_cong2 [of "x memb REP_fset (ABS_fset (REP_fset (ABS_fset [])))" "x memb []" False False "op ="])
apply (tactic {* foo_tac' @{context} 1 *})
- apply (tactic {* foo_tac' @{context} 1 *})
- thm arg_cong2 [of "x memb []" "x memb []" False False "op ="]
- (*apply (rule arg_cong2 [of "x memb []" "x memb []" False False "op ="])
- done *)
- sorry
+ done
thm length_append (* Not true but worth checking that the goal is correct *)
ML {*
@@ -996,9 +993,11 @@
val cgoal = cterm_of @{theory} goal
val cgoal2 = Thm.rhs_of (MetaSimplifier.rewrite false fset_defs_sym cgoal)
*}
-prove {* HOLogic.mk_Trueprop (Thm.term_of cgoal2) *}
+prove {* Thm.term_of cgoal2 *}
+ apply (rule tp)
+ apply (tactic {* ObjectLogic.full_atomize_tac 1 *})
apply (tactic {* LocalDefs.unfold_tac @{context} fset_defs *} )
-(* apply (tactic {* foo_tac' @{context} 1 *})*)
+ apply (tactic {* foo_tac' @{context} 1 *})
sorry
thm m2
@@ -1008,10 +1007,12 @@
val cgoal = cterm_of @{theory} goal
val cgoal2 = Thm.rhs_of (MetaSimplifier.rewrite false fset_defs_sym cgoal)
*}
-prove {* HOLogic.mk_Trueprop (Thm.term_of cgoal2) *}
+prove {* Thm.term_of cgoal2 *}
+ apply (rule tp)
+ apply (tactic {* ObjectLogic.full_atomize_tac 1 *})
apply (tactic {* LocalDefs.unfold_tac @{context} fset_defs *} )
-(* apply (tactic {* foo_tac' @{context} 1 *})
- done *) sorry
+ apply (tactic {* foo_tac' @{context} 1 *})
+ done
thm list_eq.intros(4)
ML {*
@@ -1023,13 +1024,17 @@
*}
(* It is the same, but we need a name for it. *)
-prove {* HOLogic.mk_Trueprop (Thm.term_of cgoal3) *}
+prove {* Thm.term_of cgoal3 *}
+ apply (rule tp)
+ apply (tactic {* ObjectLogic.full_atomize_tac 1 *})
apply (tactic {* LocalDefs.unfold_tac @{context} fset_defs *} )
apply (tactic {* foo_tac' @{context} 1 *})
- sorry
+ done
lemma zzz :
- "(REP_fset (INSERT a (INSERT a (ABS_fset xs))) \<approx> REP_fset (INSERT a (ABS_fset xs)))
- = (a # a # xs \<approx> a # xs)"
+ "Trueprop (REP_fset (INSERT a (INSERT a (ABS_fset xs))) \<approx> REP_fset (INSERT a (ABS_fset xs)))
+ \<equiv> Trueprop (a # a # xs \<approx> a # xs)"
+ apply (rule tp)
+ apply (tactic {* ObjectLogic.full_atomize_tac 1 *})
apply (tactic {* LocalDefs.unfold_tac @{context} fset_defs *} )
apply (tactic {* foo_tac' @{context} 1 *})
done
@@ -1054,18 +1059,6 @@
)
*}
-thm sym
-ML {*
- val m1_novars = snd(no_vars ((Context.Theory @{theory}),@{thm sym}))
- val goal = build_goal m1_novars consts @{typ "'a list"} mk_rep_abs
-*}
-ML {*
- val cgoal =
- Toplevel.program (fn () =>
- cterm_of @{theory} goal
- )
-*}
-
thm list_eq.intros(5)
ML {*
@@ -1081,12 +1074,14 @@
ML {*
val cgoal2 = Thm.rhs_of (MetaSimplifier.rewrite false fset_defs_sym cgoal)
*}
-prove {* HOLogic.mk_Trueprop (Thm.term_of cgoal2) *}
+prove {* Thm.term_of cgoal2 *}
+ apply (tactic {* ObjectLogic.full_atomize_tac 1 *})
+ apply (rule tp)
+ apply (tactic {* ObjectLogic.full_atomize_tac 1 *})
apply (tactic {* LocalDefs.unfold_tac @{context} fset_defs *} )
apply (tactic {* foo_tac' @{context} 1 *})
done
-
thm list.induct
ML {* Logic.list_implies ((Thm.prems_of @{thm list.induct}), (Thm.concl_of @{thm list.induct})) *}