--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Tutorial/Tutorial4s.thy Sat Jan 22 16:37:00 2011 -0600
@@ -0,0 +1,244 @@
+theory Tutorial4
+imports Tutorial1
+begin
+
+section {* The CBV Reduction Relation (Small-Step Semantics) *}
+
+text {*
+ In order to help establishing the property that the CK Machine
+ calculates a nomrmalform that corresponds to the evaluation
+ relation, we introduce the call-by-value small-step semantics.
+*}
+
+inductive
+ cbv :: "lam \<Rightarrow> lam \<Rightarrow> bool" ("_ \<longrightarrow>cbv _" [60, 60] 60)
+where
+ cbv1: "\<lbrakk>val v; atom x \<sharp> v\<rbrakk> \<Longrightarrow> App (Lam [x].t) v \<longrightarrow>cbv t[x ::= v]"
+| cbv2[intro]: "t \<longrightarrow>cbv t' \<Longrightarrow> App t t2 \<longrightarrow>cbv App t' t2"
+| cbv3[intro]: "t \<longrightarrow>cbv t' \<Longrightarrow> App t2 t \<longrightarrow>cbv App t2 t'"
+
+equivariance val
+equivariance cbv
+nominal_inductive cbv
+ avoids cbv1: "x"
+ unfolding fresh_star_def
+ by (simp_all add: lam.fresh Abs_fresh_iff fresh_Pair fresh_fact)
+
+text {*
+ In order to satisfy the vc-condition we have to formulate
+ this relation with the additional freshness constraint
+ atom x \<sharp> v. Although this makes the definition vc-ompatible, it
+ makes the definition less useful. We can with a little bit of
+ pain show that the more restricted rule is equivalent to the
+ usual rule.
+*}
+
+lemma subst_rename:
+ assumes a: "atom y \<sharp> t"
+ shows "t[x ::= s] = ((y \<leftrightarrow> x) \<bullet> t)[y ::= s]"
+using a
+by (nominal_induct t avoiding: x y s rule: lam.strong_induct)
+ (auto simp add: lam.fresh fresh_at_base)
+
+
+lemma better_cbv1 [intro]:
+ assumes a: "val v"
+ shows "App (Lam [x].t) v \<longrightarrow>cbv t[x::=v]"
+proof -
+ obtain y::"name" where fs: "atom y \<sharp> (x, t, v)" by (rule obtain_fresh)
+ have "App (Lam [x].t) v = App (Lam [y].((y \<leftrightarrow> x) \<bullet> t)) v" using fs
+ by (auto simp add: lam.eq_iff Abs1_eq_iff' flip_def fresh_Pair fresh_at_base)
+ also have "\<dots> \<longrightarrow>cbv ((y \<leftrightarrow> x) \<bullet> t)[y ::= v]" using fs a cbv1 by auto
+ also have "\<dots> = t[x ::= v]" using fs subst_rename[symmetric] by simp
+ finally show "App (Lam [x].t) v \<longrightarrow>cbv t[x ::= v]" by simp
+qed
+
+text {*
+ The transitive closure of the cbv-reduction relation:
+*}
+
+inductive
+ "cbvs" :: "lam \<Rightarrow> lam \<Rightarrow> bool" (" _ \<longrightarrow>cbv* _" [60, 60] 60)
+where
+ cbvs1[intro]: "e \<longrightarrow>cbv* e"
+| cbvs2[intro]: "\<lbrakk>e1\<longrightarrow>cbv e2; e2 \<longrightarrow>cbv* e3\<rbrakk> \<Longrightarrow> e1 \<longrightarrow>cbv* e3"
+
+lemma cbvs3 [intro]:
+ assumes a: "e1 \<longrightarrow>cbv* e2" "e2 \<longrightarrow>cbv* e3"
+ shows "e1 \<longrightarrow>cbv* e3"
+using a by (induct) (auto)
+
+
+subsection {* EXERCISE 8 *}
+
+text {*
+ If more simple exercises are needed, then complete the following proof.
+*}
+
+lemma cbv_in_ctx:
+ assumes a: "t \<longrightarrow>cbv t'"
+ shows "E\<lbrakk>t\<rbrakk> \<longrightarrow>cbv E\<lbrakk>t'\<rbrakk>"
+using a
+proof (induct E)
+ case Hole
+ have "t \<longrightarrow>cbv t'" by fact
+ then show "\<box>\<lbrakk>t\<rbrakk> \<longrightarrow>cbv \<box>\<lbrakk>t'\<rbrakk>" by simp
+next
+ case (CAppL E s)
+ have ih: "t \<longrightarrow>cbv t' \<Longrightarrow> E\<lbrakk>t\<rbrakk> \<longrightarrow>cbv E\<lbrakk>t'\<rbrakk>" by fact
+ moreover
+ have "t \<longrightarrow>cbv t'" by fact
+ ultimately
+ have "E\<lbrakk>t\<rbrakk> \<longrightarrow>cbv E\<lbrakk>t'\<rbrakk>" by simp
+ then show "(CAppL E s)\<lbrakk>t\<rbrakk> \<longrightarrow>cbv (CAppL E s)\<lbrakk>t'\<rbrakk>" by auto
+next
+ case (CAppR s E)
+ have ih: "t \<longrightarrow>cbv t' \<Longrightarrow> E\<lbrakk>t\<rbrakk> \<longrightarrow>cbv E\<lbrakk>t'\<rbrakk>" by fact
+ moreover
+ have a: "t \<longrightarrow>cbv t'" by fact
+ ultimately
+ have "E\<lbrakk>t\<rbrakk> \<longrightarrow>cbv E\<lbrakk>t'\<rbrakk>" by simp
+ then show "(CAppR s E)\<lbrakk>t\<rbrakk> \<longrightarrow>cbv (CAppR s E)\<lbrakk>t'\<rbrakk>" by auto
+qed
+
+section {* EXERCISE 9 *}
+
+text {*
+ The point of the cbv-reduction was that we can easily relatively
+ establish the follwoing property:
+*}
+
+lemma machine_implies_cbvs_ctx:
+ assumes a: "<e, Es> \<mapsto> <e', Es'>"
+ shows "(Es\<down>)\<lbrakk>e\<rbrakk> \<longrightarrow>cbv* (Es'\<down>)\<lbrakk>e'\<rbrakk>"
+using a
+proof (induct)
+ case (m1 t1 t2 Es)
+thm machine.intros thm cbv2
+ have "Es\<down>\<lbrakk>App t1 t2\<rbrakk> = (Es\<down> \<odot> CAppL \<box> t2)\<lbrakk>t1\<rbrakk>" using ctx_compose ctx_composes.simps filling.simps by simp
+ then show "Es\<down>\<lbrakk>App t1 t2\<rbrakk> \<longrightarrow>cbv* ((CAppL \<box> t2) # Es)\<down>\<lbrakk>t1\<rbrakk>" using cbvs.intros by simp
+next
+ case (m2 v t2 Es)
+ have "val v" by fact
+ have "((CAppL \<box> t2) # Es)\<down>\<lbrakk>v\<rbrakk> = (CAppR v \<box> # Es)\<down>\<lbrakk>t2\<rbrakk>" using ctx_compose ctx_composes.simps filling.simps by simp
+ then show "((CAppL \<box> t2) # Es)\<down>\<lbrakk>v\<rbrakk> \<longrightarrow>cbv* (CAppR v \<box> # Es)\<down>\<lbrakk>t2\<rbrakk>" using cbvs.intros by simp
+next
+ case (m3 v x t Es)
+ have aa: "val v" by fact
+ have "(((CAppR (Lam [x].t) \<box>) # Es)\<down>)\<lbrakk>v\<rbrakk> = Es\<down>\<lbrakk>App (Lam [x]. t) v\<rbrakk>" using ctx_compose ctx_composes.simps filling.simps by simp
+ then have "(((CAppR (Lam [x].t) \<box>) # Es)\<down>)\<lbrakk>v\<rbrakk> \<longrightarrow>cbv (Es\<down>)\<lbrakk>(t[x ::= v])\<rbrakk>" using better_cbv1[OF aa] cbv_in_ctx by simp
+ then show "(((CAppR (Lam [x].t) \<box>) # Es)\<down>)\<lbrakk>v\<rbrakk> \<longrightarrow>cbv* (Es\<down>)\<lbrakk>(t[x ::= v])\<rbrakk>" using cbvs.intros by blast
+qed
+
+text {*
+ It is not difficult to extend the lemma above to
+ arbitrary reductions sequences of the CK machine. *}
+
+lemma machines_implies_cbvs_ctx:
+ assumes a: "<e, Es> \<mapsto>* <e', Es'>"
+ shows "(Es\<down>)\<lbrakk>e\<rbrakk> \<longrightarrow>cbv* (Es'\<down>)\<lbrakk>e'\<rbrakk>"
+using a machine_implies_cbvs_ctx
+by (induct) (blast)+
+
+text {*
+ So whenever we let the CL machine start in an initial
+ state and it arrives at a final state, then there exists
+ a corresponding cbv-reduction sequence.
+*}
+
+corollary machines_implies_cbvs:
+ assumes a: "<e, []> \<mapsto>* <e', []>"
+ shows "e \<longrightarrow>cbv* e'"
+proof -
+ have "[]\<down>\<lbrakk>e\<rbrakk> \<longrightarrow>cbv* []\<down>\<lbrakk>e'\<rbrakk>"
+ using a machines_implies_cbvs_ctx by blast
+ then show "e \<longrightarrow>cbv* e'" by simp
+qed
+
+text {*
+ We now want to relate the cbv-reduction to the evaluation
+ relation. For this we need two auxiliary lemmas.
+*}
+
+lemma eval_val:
+ assumes a: "val t"
+ shows "t \<Down> t"
+using a by (induct) (auto)
+
+
+lemma e_App_elim:
+ assumes a: "App t1 t2 \<Down> v"
+ obtains x t v' where "t1 \<Down> Lam [x].t" "t2 \<Down> v'" "t[x::=v'] \<Down> v"
+using a by (cases) (auto simp add: lam.eq_iff lam.distinct)
+
+
+subsection {* EXERCISE *}
+
+text {*
+ Complete the first and second case in the
+ proof below.
+*}
+
+lemma cbv_eval:
+ assumes a: "t1 \<longrightarrow>cbv t2" "t2 \<Down> t3"
+ shows "t1 \<Down> t3"
+using a
+proof(induct arbitrary: t3)
+ case (cbv1 v x t t3)
+ have a1: "val v" by fact
+ have a2: "t[x ::= v] \<Down> t3" by fact
+ have a3: "Lam [x].t \<Down> Lam [x].t" by auto
+ have a4: "v \<Down> v" using a1 eval_val by auto
+ show "App (Lam [x].t) v \<Down> t3" using a3 a4 a2 by auto
+next
+ case (cbv2 t t' t2 t3)
+ have ih: "\<And>t3. t' \<Down> t3 \<Longrightarrow> t \<Down> t3" by fact
+ have "App t' t2 \<Down> t3" by fact
+ then obtain x t'' v'
+ where a1: "t' \<Down> Lam [x].t''"
+ and a2: "t2 \<Down> v'"
+ and a3: "t''[x ::= v'] \<Down> t3" by (rule e_App_elim)
+ have "t \<Down> Lam [x].t''" using ih a1 by auto
+ then show "App t t2 \<Down> t3" using a2 a3 by auto
+qed (auto elim!: e_App_elim)
+
+
+text {*
+ Next we extend the lemma above to arbitray initial
+ sequences of cbv-reductions. *}
+
+lemma cbvs_eval:
+ assumes a: "t1 \<longrightarrow>cbv* t2" "t2 \<Down> t3"
+ shows "t1 \<Down> t3"
+using a by (induct) (auto intro: cbv_eval)
+
+text {*
+ Finally, we can show that if from a term t we reach a value
+ by a cbv-reduction sequence, then t evaluates to this value.
+*}
+
+lemma cbvs_implies_eval:
+ assumes a: "t \<longrightarrow>cbv* v" "val v"
+ shows "t \<Down> v"
+using a
+by (induct) (auto intro: eval_val cbvs_eval)
+
+text {*
+ All facts tied together give us the desired property about
+ machines.
+*}
+
+theorem machines_implies_eval:
+ assumes a: "<t1, []> \<mapsto>* <t2, []>"
+ and b: "val t2"
+ shows "t1 \<Down> t2"
+proof -
+ have "t1 \<longrightarrow>cbv* t2" using a machines_implies_cbvs by simp
+ then show "t1 \<Down> t2" using b cbvs_implies_eval by simp
+qed
+
+
+
+
+end
+
--- a/Tutorial/Tutorial5.thy Sat Jan 22 16:36:21 2011 -0600
+++ b/Tutorial/Tutorial5.thy Sat Jan 22 16:37:00 2011 -0600
@@ -132,7 +132,7 @@
shows "(\<exists>t'. t \<longrightarrow>cbv t') \<or> (val t)"
using a
by (induct \<Gamma>\<equiv>"[]::ty_ctx" t T)
- (auto elim: canonical_tArr)
+ (auto elim: canonical_tArr simp add: val.simps)
text {*
Done! Congratulations!