fcb for multible (list) binders; at the moment all of them have to have the same sort (at-class); this should also work for set binders, but not yet for restriction.
--- a/Nominal/Ex/Classical.thy Mon Jun 27 19:13:55 2011 +0100
+++ b/Nominal/Ex/Classical.thy Mon Jun 27 19:15:18 2011 +0100
@@ -145,7 +145,6 @@
finally show ?thesis by simp
qed
-(*
lemma Abs_lst_fcb2:
fixes as bs :: "atom list"
and x y :: "'b :: fs"
@@ -158,7 +157,91 @@
and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f as x c) = f (p \<bullet> as) (p \<bullet> x) c"
and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f bs y c) = f (p \<bullet> bs) (p \<bullet> y) c"
shows "f as x c = f bs y c"
-*)
+proof -
+ have fin1: "finite (supp (f as x c))"
+ apply(rule_tac S="supp (as, x, c)" in supports_finite)
+ apply(simp add: supports_def)
+ apply(simp add: fresh_def[symmetric])
+ apply(clarify)
+ apply(subst perm1)
+ apply(simp add: supp_swap fresh_star_def)
+ apply(simp add: swap_fresh_fresh fresh_Pair)
+ apply(simp add: finite_supp)
+ done
+ have fin2: "finite (supp (f bs y c))"
+ apply(rule_tac S="supp (bs, y, c)" in supports_finite)
+ apply(simp add: supports_def)
+ apply(simp add: fresh_def[symmetric])
+ apply(clarify)
+ apply(subst perm2)
+ apply(simp add: supp_swap fresh_star_def)
+ apply(simp add: swap_fresh_fresh fresh_Pair)
+ apply(simp add: finite_supp)
+ done
+ obtain q::"perm" where
+ fr1: "(q \<bullet> (set as)) \<sharp>* (as, bs, x, y, c, f as x c, f bs y c)" and
+ fr2: "supp q \<sharp>* Abs_lst as x" and
+ inc: "supp q \<subseteq> (set as) \<union> q \<bullet> (set as)"
+ using at_set_avoiding3[where xs="set as" and c="(as, bs, x, y, c, f as x c, f bs y c)"
+ and x="Abs_lst as x"]
+ apply(simp add: supp_Pair finite_supp fin1 fin2 Abs_fresh_star)
+ apply(erule exE)
+ apply(erule conjE)+
+ apply(drule fresh_star_supp_conv)
+ apply(blast)
+ done
+ have "Abs_lst (q \<bullet> as) (q \<bullet> x) = q \<bullet> Abs_lst as x" by simp
+ also have "\<dots> = Abs_lst as x"
+ apply(rule perm_supp_eq)
+ apply(simp add: fr2)
+ done
+ finally have "Abs_lst (q \<bullet> as) (q \<bullet> x) = Abs_lst bs y" using e by simp
+ then obtain r::perm where
+ qq1: "q \<bullet> x = r \<bullet> y" and
+ qq2: "q \<bullet> as = r \<bullet> bs" and
+ qq3: "supp r \<subseteq> (set (q \<bullet> as) \<union> set bs)"
+ apply -
+ apply(drule_tac sym)
+ apply(simp only: Abs_eq_iff2 alphas)
+ apply(erule exE)
+ apply(erule conjE)+
+ apply(drule_tac x="p" in meta_spec)
+ apply(simp)
+ apply(blast)
+ done
+ have "f as x c = q \<bullet> (f as x c)"
+ apply(rule sym)
+ apply(rule perm_supp_eq)
+ using inc fcb1 fr1
+ apply(simp add: set_eqvt)
+ apply(simp add: fresh_star_Pair)
+ apply(auto simp add: fresh_star_def)
+ done
+ also have "\<dots> = f (q \<bullet> as) (q \<bullet> x) c"
+ apply(subst perm1)
+ using inc fresh1 fr1
+ apply(simp add: set_eqvt)
+ apply(simp add: fresh_star_Pair)
+ apply(auto simp add: fresh_star_def)
+ done
+ also have "\<dots> = f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 by simp
+ also have "\<dots> = r \<bullet> (f bs y c)"
+ apply(rule sym)
+ apply(subst perm2)
+ using qq3 fresh2 fr1
+ apply(simp add: set_eqvt)
+ apply(simp add: fresh_star_Pair)
+ apply(auto simp add: fresh_star_def)
+ done
+ also have "... = f bs y c"
+ apply(rule perm_supp_eq)
+ using qq3 fr1 fcb2
+ apply(simp add: set_eqvt)
+ apply(simp add: fresh_star_Pair)
+ apply(auto simp add: fresh_star_def)
+ done
+ finally show ?thesis by simp
+qed
lemma supp_zero_perm_zero:
shows "supp (p :: perm) = {} \<longleftrightarrow> p = 0"
--- a/Nominal/Nominal2_Abs.thy Mon Jun 27 19:13:55 2011 +0100
+++ b/Nominal/Nominal2_Abs.thy Mon Jun 27 19:15:18 2011 +0100
@@ -786,7 +786,6 @@
apply(blast)+
done
-
lemma Abs1_eq_iff:
fixes x::"'a::fs"
assumes "sort_of a = sort_of b"