--- a/Nominal/FSet.thy Fri Oct 15 15:58:48 2010 +0100
+++ b/Nominal/FSet.thy Fri Oct 15 16:01:03 2010 +0100
@@ -57,9 +57,9 @@
definition
- fminus_raw :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list"
+ diff_list :: "'a list \<Rightarrow> 'a list \<Rightarrow> 'a list"
where
- "fminus_raw xs ys \<equiv> [x \<leftarrow> xs. x\<notin>set ys]"
+ "diff_list xs ys \<equiv> [x \<leftarrow> xs. x\<notin>set ys]"
definition
@@ -83,9 +83,9 @@
shows "set (finter_raw xs ys) = set xs \<inter> set ys"
by (induct xs) (auto simp add: memb_def)
-lemma set_fminus_raw[simp]:
- shows "set (fminus_raw xs ys) = (set xs - set ys)"
- by (auto simp add: fminus_raw_def)
+lemma set_diff_list[simp]:
+ shows "set (diff_list xs ys) = (set xs - set ys)"
+ by (auto simp add: diff_list_def)
section {* Quotient composition lemmas *}
@@ -208,8 +208,8 @@
shows "(op = ===> op \<approx> ===> op \<approx>) removeAll removeAll"
by simp
-lemma fminus_raw_rsp[quot_respect]:
- shows "(op \<approx> ===> op \<approx> ===> op \<approx>) fminus_raw fminus_raw"
+lemma diff_list_rsp[quot_respect]:
+ shows "(op \<approx> ===> op \<approx> ===> op \<approx>) diff_list diff_list"
by simp
lemma card_list_rsp[quot_respect]:
@@ -346,7 +346,7 @@
quotient_definition
"minus :: 'a fset \<Rightarrow> 'a fset \<Rightarrow> 'a fset"
is
- "fminus_raw :: 'a list \<Rightarrow> 'a list \<Rightarrow> 'a list"
+ "diff_list :: 'a list \<Rightarrow> 'a list \<Rightarrow> 'a list"
lemma append_finter_raw_distrib:
"x @ (finter_raw y z) \<approx> finter_raw (x @ y) (x @ z)"
@@ -720,7 +720,7 @@
(* FIXME: is this in any case a useful lemma *)
lemma fin_mdef:
shows "x |\<in>| F \<longleftrightarrow> x |\<notin>| (F - {|x|}) \<and> F = finsert x (F - {|x|})"
- by (descending) (auto simp add: memb_def fminus_raw_def)
+ by (descending) (auto simp add: memb_def diff_list_def)
subsection {* fset *}
@@ -756,7 +756,7 @@
lemma fminus_set [simp]:
shows "fset (xs - ys) = fset xs - fset ys"
- by (lifting set_fminus_raw)
+ by (lifting set_diff_list)
subsection {* funion *}