tuned comments; renamed QUOT_TRUE to Quot_True; atomize_eqv seems to not be neccessary (has it been added to Isabelle)...it is now comented out and everything still works
authorChristian Urban <urbanc@in.tum.de>
Tue, 22 Dec 2009 20:51:37 +0100
changeset 773 d6acae26d027
parent 772 a95f6bb081cf
child 774 b4ffb8826105
tuned comments; renamed QUOT_TRUE to Quot_True; atomize_eqv seems to not be neccessary (has it been added to Isabelle)...it is now comented out and everything still works
Quot/QuotMain.thy
Quot/quotient_tacs.ML
--- a/Quot/QuotMain.thy	Tue Dec 22 07:42:16 2009 +0100
+++ b/Quot/QuotMain.thy	Tue Dec 22 20:51:37 2009 +0100
@@ -74,14 +74,13 @@
 unfolding abs_def
 by (simp only: equivp[simplified equivp_def] lem7)
 
-
 lemma rep_abs_rsp:
   shows "R f (rep (abs g)) = R f g"
   and   "R (rep (abs g)) f = R g f"
 by (simp_all add: thm10 thm11)
 
 lemma Quotient:
-  "Quotient R abs rep"
+  shows "Quotient R abs rep"
 apply(unfold Quotient_def)
 apply(simp add: thm10)
 apply(simp add: rep_refl)
@@ -91,56 +90,65 @@
 
 end
 
-section {* type definition for the quotient type *}
 
-(* auxiliary data for the quotient package *)
+section {* ML setup *}
+
+(* Auxiliary data for the quotient package *)
 use "quotient_info.ML"
 
 declare [[map "fun" = (fun_map, fun_rel)]]
 
 lemmas [quot_thm] = fun_quotient 
 lemmas [quot_respect] = quot_rel_rsp
-
-(* fun_map is not here since equivp is not true *)
 lemmas [quot_equiv] = identity_equivp
 
-(* definition of the quotient types *)
+(* Lemmas about simplifying id's. *)
+lemmas [id_simps] =
+  fun_map_id[THEN eq_reflection]
+  id_apply[THEN eq_reflection]
+  id_def[THEN eq_reflection, symmetric]
+  id_o[THEN eq_reflection]
+  o_id[THEN eq_reflection] 
+
+(* Definition of the quotient types *)
 use "quotient_typ.ML"
 
-(* lifting of constants *)
+
+(* Definitions for quotient constants *)
 use "quotient_def.ML"
 
-(* the translation functions for the lifting process *)
+
+(* The translation functions for the lifting process. *)
 use "quotient_term.ML" 
 
-(* tactics for proving the theorems *)
+
+(* Tactics for proving the lifted theorems *)
 
 lemma eq_imp_rel:  
-  "equivp R ==> a = b \<longrightarrow> R a b" 
+  "equivp R \<Longrightarrow> a = b \<longrightarrow> R a b" 
 by (simp add: equivp_reflp)
 
-(* an auxiliar constant that records some information *) 
-(* about the lifted theorem                           *)
+(* An auxiliar constant for recording some information *) 
+(* about the lifted theorem in a tactic.               *)
 definition
-  "QUOT_TRUE x \<equiv> True"
+  "Quot_True x \<equiv> True"
 
-lemma quot_true_dests:
-  shows QT_all: "QUOT_TRUE (All P) \<Longrightarrow> QUOT_TRUE P"
-  and   QT_ex:  "QUOT_TRUE (Ex P) \<Longrightarrow> QUOT_TRUE P"
-  and   QT_lam: "QUOT_TRUE (\<lambda>x. P x) \<Longrightarrow> (\<And>x. QUOT_TRUE  (P x))"
-  and   QT_ext: "(\<And>x. QUOT_TRUE (a x) \<Longrightarrow> f x = g x) \<Longrightarrow> (QUOT_TRUE a \<Longrightarrow> f = g)"
-by (simp_all add: QUOT_TRUE_def ext)
+lemma 
+  shows QT_all: "Quot_True (All P) \<Longrightarrow> Quot_True P"
+  and   QT_ex:  "Quot_True (Ex P) \<Longrightarrow> Quot_True P"
+  and   QT_lam: "Quot_True (\<lambda>x. P x) \<Longrightarrow> (\<And>x. Quot_True  (P x))"
+  and   QT_ext: "(\<And>x. Quot_True (a x) \<Longrightarrow> f x = g x) \<Longrightarrow> (Quot_True a \<Longrightarrow> f = g)"
+by (simp_all add: Quot_True_def ext)
 
-lemma QUOT_TRUE_imp: "QUOT_TRUE a \<equiv> QUOT_TRUE b"
-by (simp add: QUOT_TRUE_def)
-
-lemma regularize_to_injection: 
-  shows "(QUOT_TRUE l \<Longrightarrow> y) \<Longrightarrow> (l = r) \<longrightarrow> y"
-by(auto simp add: QUOT_TRUE_def)
+lemma QT_imp: "Quot_True a \<equiv> Quot_True b"
+by (simp add: Quot_True_def)
 
 use "quotient_tacs.ML"
 
-(* atomize infrastructure *)
+
+(* Atomize infrastructure *)
+(* FIXME/TODO: is this really needed? *)
+(*
 lemma atomize_eqv[atomize]:
   shows "(Trueprop A \<equiv> Trueprop B) \<equiv> (A \<equiv> B)"
 proof
@@ -160,15 +168,7 @@
   qed
   then show "A \<equiv> B" by (rule eq_reflection)
 qed
-
-(* lemmas about simplifying id *)
-lemmas [id_simps] =
-  fun_map_id[THEN eq_reflection]
-  id_apply[THEN eq_reflection]
-  id_def[THEN eq_reflection, symmetric]
-  id_o[THEN eq_reflection]
-  o_id[THEN eq_reflection] 
-
+*)
 
 section {* Methods / Interface *}
 
@@ -193,7 +193,7 @@
   {* Proves automatically the regularization goals from the lifting procedure. *}
 
 method_setup injection =
-  {* Scan.succeed (mk_method2 Quotient_Tacs.all_inj_repabs_tac) *}
+  {* Scan.succeed (mk_method2 Quotient_Tacs.all_injection_tac) *}
   {* Proves automatically the rep/abs injection goals from the lifting procedure. *}
 
 method_setup cleaning =
--- a/Quot/quotient_tacs.ML	Tue Dec 22 07:42:16 2009 +0100
+++ b/Quot/quotient_tacs.ML	Tue Dec 22 20:51:37 2009 +0100
@@ -1,10 +1,10 @@
 signature QUOTIENT_TACS =
 sig
     val regularize_tac: Proof.context -> int -> tactic
-    val all_inj_repabs_tac: Proof.context -> int -> tactic
+    val all_injection_tac: Proof.context -> int -> tactic
     val clean_tac: Proof.context -> int -> tactic
     val procedure_tac: Proof.context -> thm -> int -> tactic
-    val lift_tac: Proof.context ->thm -> int -> tactic
+    val lift_tac: Proof.context -> thm -> int -> tactic
     val quotient_tac: Proof.context -> int -> tactic
 end;
 
@@ -48,14 +48,32 @@
 end
 
 
+(*********************)
 (* Regularize Tactic *)
+(*********************)
 
+(* solvers for equivp and quotient assumptions *)
 fun equiv_tac ctxt =
   REPEAT_ALL_NEW (resolve_tac (equiv_rules_get ctxt))
 
 fun equiv_solver_tac ss = equiv_tac (Simplifier.the_context ss)
 val equiv_solver = Simplifier.mk_solver' "Equivalence goal solver" equiv_solver_tac
 
+(* test whether DETERM makes any difference *)
+fun quotient_tac ctxt = SOLVES'  
+  (REPEAT_ALL_NEW (FIRST'
+    [rtac @{thm identity_quotient},
+     resolve_tac (quotient_rules_get ctxt)]))
+
+fun quotient_solver_tac ss = quotient_tac (Simplifier.the_context ss)
+val quotient_solver = Simplifier.mk_solver' "Quotient goal solver" quotient_solver_tac
+
+fun solve_quotient_assm ctxt thm =
+  case Seq.pull (quotient_tac ctxt 1 thm) of
+    SOME (t, _) => t
+  | _ => error "solve_quotient_assm failed. Maybe a quotient_thm is missing"
+
+
 fun prep_trm thy (x, (T, t)) =
   (cterm_of thy (Var (x, T)), cterm_of thy t)
 
@@ -74,7 +92,7 @@
 
 (* calculates the instantiations for te lemmas *)
 (* ball_reg_eqv_range and bex_reg_eqv_range    *)
-fun calculate_instance ctxt ball_bex_thm redex R1 R2 =
+fun calculate_inst ctxt ball_bex_thm redex R1 R2 =
 let
   fun get_lhs thm = fst (Logic.dest_equals (Thm.concl_of thm))
   val thy = ProofContext.theory_of ctxt
@@ -93,7 +111,6 @@
 (* FIXME/TODO: Can one not find out from the types of R1 or R2,  *)
 (* FIXME/TODO: or from their form, when NONE should be returned? *)
 
-
 fun ball_bex_range_simproc ss redex =
 let
   val ctxt = Simplifier.the_context ss
@@ -101,29 +118,15 @@
   case redex of
     (Const (@{const_name "Ball"}, _) $ (Const (@{const_name "Respects"}, _) $ 
       (Const (@{const_name "fun_rel"}, _) $ R1 $ R2)) $ _) =>
-        calculate_instance ctxt @{thm ball_reg_eqv_range[THEN eq_reflection]} redex R1 R2
+        calculate_inst ctxt @{thm ball_reg_eqv_range[THEN eq_reflection]} redex R1 R2
 
   | (Const (@{const_name "Bex"}, _) $ (Const (@{const_name "Respects"}, _) $ 
       (Const (@{const_name "fun_rel"}, _) $ R1 $ R2)) $ _) =>  
-        calculate_instance ctxt @{thm bex_reg_eqv_range[THEN eq_reflection]} redex R1 R2
+        calculate_inst ctxt @{thm bex_reg_eqv_range[THEN eq_reflection]} redex R1 R2
+
   | _ => NONE
 end
 
-(* test whether DETERM makes any difference *)
-fun quotient_tac ctxt = SOLVES'  
-  (REPEAT_ALL_NEW (FIRST'
-    [rtac @{thm identity_quotient},
-     resolve_tac (quotient_rules_get ctxt)]))
-
-fun quotient_solver_tac ss = quotient_tac (Simplifier.the_context ss)
-val quotient_solver = Simplifier.mk_solver' "Quotient goal solver" quotient_solver_tac
-
-fun solve_quotient_assm ctxt thm =
-  case Seq.pull (quotient_tac ctxt 1 thm) of
-    SOME (t, _) => t
-  | _ => error "solve_quotient_assm failed. Maybe a quotient_thm is missing"
-
-
 (* 0. preliminary simplification step according to *)
 (*    thm ball_reg_eqv bex_reg_eqv babs_reg_eqv    *)
 (*        ball_reg_eqv_range bex_reg_eqv_range     *)
@@ -132,11 +135,13 @@
 (*    thm ball_reg_right bex_reg_left              *)
 (*                                                 *)
 (* 2. monos                                        *)
+(*                                                 *)
 (* 3. commutation rules for ball and bex           *)
 (*    thm ball_all_comm bex_ex_comm                *)
 (*                                                 *)
-(* 4. then rel-equality (which need to be          *)
-(*    instantiated to avoid loops)                 *)
+(* 4. then rel-equalities, which need to be        *)
+(*    instantiated with the followig theorem       *)
+(*    to avoid loops:                              *)
 (*    thm eq_imp_rel                               *)
 (*                                                 *)
 (* 5. then simplification like 0                   *)
@@ -156,25 +161,26 @@
   val eq_eqvs = map (OF1 @{thm eq_imp_rel}) (equiv_rules_get ctxt)
 in
   simp_tac simpset THEN'
-  REPEAT_ALL_NEW (CHANGED o FIRST' [
-    resolve_tac @{thms ball_reg_right bex_reg_left},
-    resolve_tac (Inductive.get_monos ctxt),
-    resolve_tac @{thms ball_all_comm bex_ex_comm},
-    resolve_tac eq_eqvs,  
-    simp_tac simpset])
+  REPEAT_ALL_NEW (CHANGED o FIRST' 
+    [resolve_tac @{thms ball_reg_right bex_reg_left},
+     resolve_tac (Inductive.get_monos ctxt),
+     resolve_tac @{thms ball_all_comm bex_ex_comm},
+     resolve_tac eq_eqvs,  
+     simp_tac simpset])
 end
 
 
-
+(********************)
 (* Injection Tactic *)
+(********************)
 
-(* looks for QUOT_TRUE assumtions, and in case its parameter   *)
-(* is an application, it returns the function and the argument *)
+(* Looks for Quot_True assumtions, and in case its parameter    *)
+(* is an application, it returns the function and the argument. *)
 fun find_qt_asm asms =
 let
   fun find_fun trm =
     case trm of
-      (Const(@{const_name Trueprop}, _) $ (Const (@{const_name QUOT_TRUE}, _) $ _)) => true
+      (Const(@{const_name Trueprop}, _) $ (Const (@{const_name Quot_True}, _) $ _)) => true
     | _ => false
 in
  case find_first find_fun asms of
@@ -184,7 +190,7 @@
 
 fun quot_true_simple_conv ctxt fnctn ctrm =
   case (term_of ctrm) of
-    (Const (@{const_name QUOT_TRUE}, _) $ x) =>
+    (Const (@{const_name Quot_True}, _) $ x) =>
     let
       val fx = fnctn x;
       val thy = ProofContext.theory_of ctxt;
@@ -192,14 +198,14 @@
       val cfx = cterm_of thy fx;
       val cxt = ctyp_of thy (fastype_of x);
       val cfxt = ctyp_of thy (fastype_of fx);
-      val thm = Drule.instantiate' [SOME cxt, SOME cfxt] [SOME cx, SOME cfx] @{thm QUOT_TRUE_imp}
+      val thm = Drule.instantiate' [SOME cxt, SOME cfxt] [SOME cx, SOME cfx] @{thm QT_imp}
     in
       Conv.rewr_conv thm ctrm
     end
 
 fun quot_true_conv ctxt fnctn ctrm =
   case (term_of ctrm) of
-    (Const (@{const_name QUOT_TRUE}, _) $ _) =>
+    (Const (@{const_name Quot_True}, _) $ _) =>
       quot_true_simple_conv ctxt fnctn ctrm
   | _ $ _ => Conv.comb_conv (quot_true_conv ctxt fnctn) ctrm
   | Abs _ => Conv.abs_conv (fn (_, ctxt) => quot_true_conv ctxt fnctn) ctxt ctrm
@@ -225,8 +231,8 @@
 val bare_concl = HOLogic.dest_Trueprop o Logic.strip_assums_concl
 
 
-(* we apply apply_rsp only in case if the type needs lifting,      *)
-(* which is the case if the type of the data in the QUOT_TRUE      *)
+(* We apply apply_rsp only in case if the type needs lifting.      *)
+(* This is the case if the type of the data in the Quot_True       *)
 (* assumption is different from the corresponding type in the goal *)
 val apply_rsp_tac =
   Subgoal.FOCUS (fn {concl, asms, context,...} =>
@@ -262,7 +268,7 @@
 in
   rtac thm THEN' quotient_tac ctxt
 end
-(* raised by instantiate' *)
+(* Are they raised by instantiate'? *)
 handle THM _  => K no_tac  
      | TYPE _ => K no_tac    
      | TERM _ => K no_tac
@@ -309,7 +315,7 @@
 *)
 
 
-fun inj_repabs_tac_match ctxt = SUBGOAL (fn (goal, i) =>
+fun injection_match_tac ctxt = SUBGOAL (fn (goal, i) =>
 (case (bare_concl goal) of
     (* (R1 ===> R2) (%x...) (%x...) ----> [|R1 x y|] ==> R2 (...x) (...y) *)
   (Const (@{const_name fun_rel}, _) $ _ $ _) $ (Abs _) $ (Abs _)
@@ -365,11 +371,11 @@
 | _ => K no_tac
 ) i)
 
-fun inj_repabs_step_tac ctxt rel_refl =
+fun injection_step_tac ctxt rel_refl =
  FIRST' [
-    inj_repabs_tac_match ctxt,
-    (* R (t $ ...) (t' $ ...) ----> apply_rsp   provided type of t needs lifting *)
-    
+    injection_match_tac ctxt,
+
+    (* R (t $ ...) (t' $ ...) ----> apply_rsp   provided type of t needs lifting *)    
     apply_rsp_tac ctxt THEN'
                  RANGE [quot_true_tac ctxt (fst o dest_comb), quot_true_tac ctxt (snd o dest_comb)],
 
@@ -388,20 +394,21 @@
     (* R ... ... *)
     resolve_tac rel_refl]
 
-fun inj_repabs_tac ctxt =
+fun injection_tac ctxt =
 let
   val rel_refl = map (OF1 @{thm equivp_reflp}) (equiv_rules_get ctxt)
 in
   simp_tac ((mk_minimal_ss ctxt) addsimps (id_simps_get ctxt)) (* HACK? *) 
-  THEN' inj_repabs_step_tac ctxt rel_refl
+  THEN' injection_step_tac ctxt rel_refl
 end
 
-fun all_inj_repabs_tac ctxt =
-  REPEAT_ALL_NEW (inj_repabs_tac ctxt)
+fun all_injection_tac ctxt =
+  REPEAT_ALL_NEW (injection_tac ctxt)
 
 
+(***************************)
 (* Cleaning of the Theorem *)
-
+(***************************)
 
 (* expands all fun_maps, except in front of bound variables *)
 fun fun_map_simple_conv xs ctrm =
@@ -472,9 +479,8 @@
      handle _ => Conv.all_conv ctrm)
   | _ => Conv.all_conv ctrm
 
-val lambda_prs_conv =
-  More_Conv.top_conv lambda_prs_simple_conv
 
+fun lambda_prs_conv ctxt = More_Conv.top_conv lambda_prs_simple_conv ctxt
 fun lambda_prs_tac ctxt = CONVERSION (lambda_prs_conv ctxt)
 
 
@@ -484,7 +490,7 @@
 (*                                                     *) 
 (* 2. unfolding of ---> in front of everything, except *)
 (*    bound variables (this prevents lambda_prs from   *)
-(*    becoming stuck                                   *)
+(*    becoming stuck)                                  *)
 (*    thm fun_map.simps                                *)
 (*                                                     *)
 (* 3. simplification with                              *)
@@ -493,7 +499,7 @@
 (* 4. simplification with                              *)
 (*    thm Quotient_abs_rep Quotient_rel_rep id_simps   *) 
 (*                                                     *)
-(* 5. Test for refl                                    *)
+(* 5. test for refl                                    *)
 
 fun clean_tac_aux lthy =
   let
@@ -514,7 +520,10 @@
 
 fun clean_tac lthy = REPEAT o CHANGED o (clean_tac_aux lthy) (* HACK?? *)
 
+
+(********************************************************)
 (* Tactic for Genralisation of Free Variables in a Goal *)
+(********************************************************)
 
 fun inst_spec ctrm =
    Drule.instantiate' [SOME (ctyp_of_term ctrm)] [NONE, SOME ctrm] @{thm spec}
@@ -542,8 +551,9 @@
     rtac rule i
   end)  
 
-
+(**********************************************)
 (* The General Shape of the Lifting Procedure *)
+(**********************************************)
 
 (* - A is the original raw theorem                       *)
 (* - B is the regularized theorem                        *)
@@ -554,20 +564,20 @@
 (* - 2nd prem is the rep/abs injection step              *)
 (* - 3rd prem is the cleaning part                       *)
 (*                                                       *)
-(* the QUOT_TRUE premise in 2 records the lifted theorem *)
+(* the Quot_True premise in 2 records the lifted theorem *)
 
 val lifting_procedure = 
    @{lemma  "[|A; 
                A --> B; 
-               QUOT_TRUE D ==> B = C; 
+               Quot_True D ==> B = C; 
                C = D|] ==> D" 
-      by (simp add: QUOT_TRUE_def)}
+      by (simp add: Quot_True_def)}
 
-fun lift_match_error ctxt fun_str rtrm qtrm =
+fun lift_match_error ctxt str rtrm qtrm =
 let
   val rtrm_str = Syntax.string_of_term ctxt rtrm
   val qtrm_str = Syntax.string_of_term ctxt qtrm
-  val msg = cat_lines [enclose "[" "]" fun_str, "The quotient theorem", qtrm_str, 
+  val msg = cat_lines [enclose "[" "]" str, "The quotient theorem", qtrm_str, 
              "", "does not match with original theorem", rtrm_str]
 in
   error msg
@@ -580,10 +590,10 @@
   val qtrm' = HOLogic.dest_Trueprop qtrm
   val reg_goal = 
         Syntax.check_term ctxt (regularize_trm ctxt rtrm' qtrm')
-        handle (LIFT_MATCH s) => lift_match_error ctxt s rtrm qtrm
+        handle (LIFT_MATCH str) => lift_match_error ctxt str rtrm qtrm
   val inj_goal = 
         Syntax.check_term ctxt (inj_repabs_trm ctxt (reg_goal, qtrm'))
-        handle (LIFT_MATCH s) => lift_match_error ctxt s rtrm qtrm
+        handle (LIFT_MATCH str) => lift_match_error ctxt str rtrm qtrm
 in
   Drule.instantiate' []
     [SOME (cterm_of thy rtrm'),
@@ -619,7 +629,7 @@
   procedure_tac ctxt rthm
   THEN' RANGE_WARN 
      [(regularize_tac ctxt, msg1),
-      (all_inj_repabs_tac ctxt, msg2),
+      (all_injection_tac ctxt, msg2),
       (clean_tac ctxt, msg3)]
 
 end; (* structure *)
\ No newline at end of file