--- a/Nominal/Ex/Lambda.thy Thu Apr 28 11:44:36 2011 +0800
+++ b/Nominal/Ex/Lambda.thy Thu Apr 28 11:51:01 2011 +0800
@@ -16,10 +16,40 @@
Var: "triv (Var x) n"
equivariance triv
-nominal_inductive triv avoids Var : "{}::name set"
-apply(auto simp add: fresh_star_def)
-done
+nominal_inductive triv avoids Var: "{}::name set"
+apply(auto simp add: fresh_star_def)
+done
+
+inductive
+ triv2 :: "lam \<Rightarrow> nat \<Rightarrow> bool"
+where
+ Var1: "triv2 (Var x) 0"
+| Var2: "triv2 (Var x) (n + n)"
+| Var3: "triv2 (Var x) n"
+
+equivariance triv2
+nominal_inductive triv2 .
+lemma Abs1_eq_fdest:
+ fixes x y :: "'a :: at_base"
+ and S T :: "'b :: fs"
+ assumes "(Abs_lst [atom x] T) = (Abs_lst [atom y] S)"
+ and "x \<noteq> y \<Longrightarrow> atom y \<sharp> T \<Longrightarrow> atom x \<sharp> f x T"
+ and "x \<noteq> y \<Longrightarrow> atom y \<sharp> T \<Longrightarrow> atom y \<sharp> f x T"
+ and "x \<noteq> y \<Longrightarrow> atom y \<sharp> T \<Longrightarrow> (atom x \<rightleftharpoons> atom y) \<bullet> T = S \<Longrightarrow> (atom x \<rightleftharpoons> atom y) \<bullet> (f x T) = f y S"
+ and "sort_of (atom x) = sort_of (atom y)"
+ shows "f x T = f y S"
+using assms apply -
+apply (subst (asm) Abs1_eq_iff')
+apply simp_all
+apply (elim conjE disjE)
+apply simp
+apply(rule trans)
+apply (rule_tac p="(atom x \<rightleftharpoons> atom y)" in supp_perm_eq[symmetric])
+apply(rule fresh_star_supp_conv)
+apply(simp add: supp_swap fresh_star_def)
+apply(simp add: swap_commute)
+done
text {* height function *}
@@ -32,11 +62,8 @@
defer
apply(rule_tac y="x" in lam.exhaust)
apply(auto simp add: lam.distinct lam.eq_iff)
-apply(simp add: Abs_eq_iff alphas)
-apply(clarify)
-apply(subst (4) supp_perm_eq[where p="p", symmetric])
-apply(simp add: pure_supp fresh_star_def)
-apply(simp add: eqvt_at_def)
+apply (erule Abs1_eq_fdest)
+apply(simp_all add: fresh_def pure_supp eqvt_at_def)
apply(subgoal_tac "\<And>p x r. height_graph x r \<Longrightarrow> height_graph (p \<bullet> x) (p \<bullet> r)")
unfolding eqvt_def
apply(rule allI)
@@ -82,23 +109,12 @@
defer
apply(rule_tac y="x" in lam.exhaust)
apply(simp_all)[3]
-apply(simp_all only: lam.distinct)
-apply(simp add: lam.eq_iff)
-apply(simp add: lam.eq_iff)
-apply(simp add: lam.eq_iff)
-apply(simp add: Abs_eq_iff)
-apply(erule exE)
-apply(simp add: alphas)
-apply(simp add: atom_eqvt)
-apply(clarify)
-apply(rule trans)
-apply(rule_tac p="p" in supp_perm_eq[symmetric])
-apply(simp (no_asm) add: supp_removeAll)
+apply(simp_all add: lam.distinct lam.eq_iff)
+apply (erule Abs1_eq_fdest)
+apply(simp add: supp_removeAll fresh_def)
apply(drule supp_eqvt_at)
apply(simp add: finite_supp)
-apply(auto simp add: fresh_star_def)[1]
-unfolding eqvt_at_def
-apply(simp only: removeAll_eqvt atom_eqvt)
+apply(auto simp add: fresh_def supp_removeAll eqvts eqvt_at_def)
apply(subgoal_tac "\<And>p x r. frees_lst_graph x r \<Longrightarrow> frees_lst_graph (p \<bullet> x) (p \<bullet> r)")
unfolding eqvt_def
apply(rule allI)
@@ -151,36 +167,15 @@
apply(auto simp add: lam.distinct lam.eq_iff)
apply(rule_tac y="a" and c="(aa, b)" in lam.strong_exhaust)
apply(blast)+
-apply(simp add: fresh_star_def)
-apply(subgoal_tac "atom xa \<sharp> [[atom x]]lst. t")
-apply(subst (asm) Abs_eq_iff2)
-apply(simp add: alphas atom_eqvt)
-apply(clarify)
-apply(rule trans)
-apply(rule_tac p="p" in supp_perm_eq[symmetric])
-apply(rule fresh_star_supp_conv)
-apply(drule fresh_star_perm_set_conv)
-apply(simp add: finite_supp)
-apply(subgoal_tac "{atom (p \<bullet> x), atom x} \<sharp>* ([[atom x]]lst. subst_sumC (t, ya, sa))")
-apply(auto simp add: fresh_star_def)[1]
-apply(simp (no_asm) add: fresh_star_def)
-apply(rule conjI)
-apply(simp (no_asm) add: Abs_fresh_iff)
-apply(clarify)
-apply(drule_tac a="atom (p \<bullet> x)" in fresh_eqvt_at)
-apply(simp add: finite_supp)
-apply(simp (no_asm_use) add: fresh_Pair)
-apply(simp add: Abs_fresh_iff)
-apply(simp)
-apply(simp add: Abs_fresh_iff)
-apply(subgoal_tac "p \<bullet> ya = ya")
-apply(subgoal_tac "p \<bullet> sa = sa")
-apply(simp add: atom_eqvt eqvt_at_def)
-apply(rule perm_supp_eq)
-apply(auto simp add: fresh_star_def fresh_Pair)[1]
-apply(rule perm_supp_eq)
-apply(auto simp add: fresh_star_def fresh_Pair)[1]
-apply(simp add: Abs_fresh_iff)
+apply(simp_all add: fresh_star_def fresh_Pair_elim)
+apply (erule Abs1_eq_fdest)
+apply(simp_all add: Abs_fresh_iff)
+apply(drule_tac a="atom (xa)" in fresh_eqvt_at)
+apply(simp_all add: finite_supp fresh_Pair)
+apply(subgoal_tac "(atom x \<rightleftharpoons> atom xa) \<bullet> sa = sa")
+apply(subgoal_tac "(atom x \<rightleftharpoons> atom xa) \<bullet> ya = ya")
+apply(simp add: eqvt_at_def)
+apply(rule perm_supp_eq,simp add: fresh_star_def fresh_Pair supp_swap)+
apply(subgoal_tac "\<And>p x r. subst_graph x r \<Longrightarrow> subst_graph (p \<bullet> x) (p \<bullet> r)")
unfolding eqvt_def
apply(rule allI)
@@ -256,6 +251,28 @@
apply (auto simp add: lam.fresh fresh_at_base)
done
+lemma height_ge_one:
+ shows "1 \<le> (height e)"
+by (induct e rule: lam.induct) (simp_all)
+
+theorem height_subst:
+ shows "height (e[x::=e']) \<le> ((height e) - 1) + (height e')"
+proof (nominal_induct e avoiding: x e' rule: lam.strong_induct)
+ case (Var y)
+ have "1 \<le> height e'" by (rule height_ge_one)
+ then show "height (Var y[x::=e']) \<le> height (Var y) - 1 + height e'" by simp
+next
+ case (Lam y e1)
+ hence ih: "height (e1[x::=e']) \<le> ((height e1) - 1) + (height e')" by simp
+ moreover
+ have vc: "atom y\<sharp>x" "atom y\<sharp>e'" by fact+ (* usual variable convention *)
+ ultimately show "height ((Lam [y]. e1)[x::=e']) \<le> height (Lam [y]. e1) - 1 + height e'" by simp
+next
+ case (App e1 e2)
+ hence ih1: "height (e1[x::=e']) \<le> ((height e1) - 1) + (height e')"
+ and ih2: "height (e2[x::=e']) \<le> ((height e2) - 1) + (height e')" by simp_all
+ then show "height ((App e1 e2)[x::=e']) \<le> height (App e1 e2) - 1 + height e'" by simp
+qed
subsection {* single-step beta-reduction *}
@@ -332,9 +349,7 @@
lemma [eqvt]:
shows "(p \<bullet> lookup xs n x) = lookup (p \<bullet> xs) (p \<bullet> n) (p \<bullet> x)"
- apply(induct xs arbitrary: n)
- apply(simp_all add: permute_pure)
- done
+ by (induct xs arbitrary: n) (simp_all add: permute_pure)
nominal_primrec
trans :: "lam \<Rightarrow> name list \<Rightarrow> ln"
@@ -349,50 +364,18 @@
apply(simp_all add: fresh_star_def)[3]
apply(blast)
apply(blast)
-apply(simp_all add: lam.distinct)
-apply(simp add: lam.eq_iff)
-apply(simp add: lam.eq_iff)
-apply(simp add: lam.eq_iff)
-apply(erule conjE)
-apply(subgoal_tac "atom xa \<sharp> [[atom x]]lst. t")
+apply(simp_all add: lam.distinct lam.eq_iff)
+apply(elim conjE)
+apply clarify
+apply (erule Abs1_eq_fdest)
+apply (simp_all add: ln.fresh)
prefer 2
-apply(simp add: Abs_fresh_iff)
-apply(subst (asm) Abs_eq_iff2)
-apply(auto)
-apply(simp add: alphas)
-apply(simp add: atom_eqvt)
-apply(clarify)
-apply(rule trans)
-apply(rule_tac p="p" in supp_perm_eq[symmetric])
+apply(drule supp_eqvt_at)
+apply (auto simp add: finite_supp supp_Pair fresh_def supp_Cons supp_at_base)[2]
prefer 2
-apply (subgoal_tac "p \<bullet> xsa = xsa")
+apply (subgoal_tac "(atom x \<rightleftharpoons> atom xa) \<bullet> xsa = xsa")
apply (simp add: eqvt_at_def)
-apply (rule supp_perm_eq)
-apply (rule fresh_star_supp_conv)
-apply (subgoal_tac "{atom (p \<bullet> x), atom x} \<sharp>* xsa")
-apply (simp add: fresh_star_def fresh_def)
-apply blast
-apply (simp add: fresh_star_def fresh_def)
-apply (simp add: ln.supp)
-apply(rule fresh_star_supp_conv)
-apply (subst (asm) supp_perm_pair)
-apply (elim disjE)
-apply (simp add: fresh_star_def supp_zero_perm)
-apply (simp add: flip_def[symmetric])
-apply(subgoal_tac "supp (x \<leftrightarrow> p \<bullet> x) \<sharp>* trans_sumC (t, x # xsa)")
-apply simp
-apply (subst flip_def)
-apply (simp add: supp_swap)
-apply (simp add: fresh_star_def)
-apply (rule)
-apply rule
-prefer 2
-apply(drule_tac a="atom (p \<bullet> x)" in fresh_eqvt_at)
-apply(simp add: finite_supp)
-apply(simp (no_asm_use) add: fresh_Pair)
-apply(simp add: Abs_fresh_iff fresh_Cons)[1]
-apply (metis Rep_name_inverse atom_name_def fresh_at_base)
-apply assumption
+apply (metis atom_name_def swap_fresh_fresh)
oops
(* lemma helpr: "atom x \<sharp> ta \<Longrightarrow> Lam [xa]. ta = Lam [x]. ((xa \<leftrightarrow> x) \<bullet> ta)"
--- a/Nominal/Nominal2.thy Thu Apr 28 11:44:36 2011 +0800
+++ b/Nominal/Nominal2.thy Thu Apr 28 11:51:01 2011 +0800
@@ -323,19 +323,19 @@
val _ = trace_msg (K "Defining the quotient constants...")
val qconstrs_descrs =
- (map2 o map2) (fn (b, _, mx) => fn t => (Name.of_binding b, t, mx)) (get_cnstrs dts) raw_constrs
+ (map2 o map2) (fn (b, _, mx) => fn t => (Variable.name b, t, mx)) (get_cnstrs dts) raw_constrs
val qbns_descr =
- map2 (fn (b, _, mx) => fn t => (Name.of_binding b, t, mx)) bn_funs raw_bns
+ map2 (fn (b, _, mx) => fn t => (Variable.name b, t, mx)) bn_funs raw_bns
val qfvs_descr =
map2 (fn n => fn t => ("fv_" ^ n, t, NoSyn)) qty_names raw_fvs
val qfv_bns_descr =
- map2 (fn (b, _, _) => fn t => ("fv_" ^ Name.of_binding b, t, NoSyn)) bn_funs raw_fv_bns
+ map2 (fn (b, _, _) => fn t => ("fv_" ^ Variable.name b, t, NoSyn)) bn_funs raw_fv_bns
val qalpha_bns_descr =
- map2 (fn (b, _, _) => fn t => ("alpha_" ^ Name.of_binding b, t, NoSyn)) bn_funs alpha_bn_trms
+ map2 (fn (b, _, _) => fn t => ("alpha_" ^ Variable.name b, t, NoSyn)) bn_funs alpha_bn_trms
val qperm_descr =
map2 (fn n => fn t => ("permute_" ^ n, Type.legacy_freeze t, NoSyn)) qty_names raw_perm_funs
@@ -344,7 +344,7 @@
map2 (fn n => fn t => ("size_" ^ n, t, NoSyn)) qty_names raw_size_trms
val qperm_bn_descr =
- map2 (fn (b, _, _) => fn t => ("permute_" ^ Name.of_binding b, t, NoSyn)) bn_funs raw_perm_bns
+ map2 (fn (b, _, _) => fn t => ("permute_" ^ Variable.name b, t, NoSyn)) bn_funs raw_perm_bns
val ((((((qconstrs_infos, qbns_info), qfvs_info), qfv_bns_info), qalpha_bns_info), qperm_bns_info),
lthy8) =
@@ -646,7 +646,7 @@
val (((dts, (bn_funs, bn_eqs)), bclauses), tmp_thy') =
tmp_thy
- |> Sign.add_types pre_typs
+ |> Sign.add_types_global pre_typs
|> prepare_dts dt_strs
||>> prepare_bn_funs bn_fun_strs bn_eq_strs
||>> prepare_bclauses dt_strs
--- a/Nominal/nominal_inductive.ML Thu Apr 28 11:44:36 2011 +0800
+++ b/Nominal/nominal_inductive.ML Thu Apr 28 11:51:01 2011 +0800
@@ -139,10 +139,10 @@
in
(* by default eqvt_strict_config contains unwanted @{thm permute_pure} *)
-val eqvt_sconfig = (delposts eqvt_strict_config) addpres @{thms permute_minus_cancel}
+val eqvt_sconfig = eqvt_strict_config addpres @{thms permute_minus_cancel}
fun eqvt_stac ctxt = eqvt_tac ctxt eqvt_sconfig
-fun eqvt_srule ctxt = eqvt_rule ctxt eqvt_sconfig
+fun eqvt_srule ctxt = eqvt_rule ctxt eqvt_sconfig
end
@@ -175,7 +175,9 @@
val prm_tys = map (fastype_of o term_of) prms
val cperms = map (cterm_of thy o perm_const) prm_tys
val p_prms = map2 (fn ct1 => fn ct2 => Thm.mk_binop ct1 p ct2) cperms prms
- val prem' = cterm_instantiate (intr_cvars ~~ p_prms) prem
+ val prem' = prem
+ |> cterm_instantiate (intr_cvars ~~ p_prms)
+ |> eqvt_srule ctxt
(* for inductive-premises*)
fun tac1 prm = helper_tac true prm p context
@@ -189,7 +191,9 @@
fun select prm (t, i) =
(if member same_name Ps (real_head_of t) then tac1 prm else tac2 prm) i
in
- EVERY1 [eqvt_stac ctxt, rtac prem', RANGE (map (SUBGOAL o select) prems) ]
+ EVERY1 [ eqvt_stac context,
+ rtac prem',
+ RANGE (map (SUBGOAL o select) prems) ]
end) ctxt
fun fresh_thm ctxt user_thm p c concl_args avoid_trm =
@@ -244,7 +248,9 @@
val cperms = map (cterm_of thy o perm_const) prm_tys
val qp_prms = map2 (fn ct1 => fn ct2 => Thm.mk_binop ct1 (mk_cplus q p) ct2) cperms prms
- val prem' = cterm_instantiate (intr_cvars ~~ qp_prms) prem
+ val prem' = prem
+ |> cterm_instantiate (intr_cvars ~~ qp_prms)
+ |> eqvt_srule ctxt
val fprop' = eqvt_srule ctxt' fprop
val tac_fresh = simp_tac (HOL_basic_ss addsimps [fprop'])
@@ -277,7 +283,8 @@
val tac1 = non_binder_tac prem intr_cvars Ps ctxt
val tac2 = binder_tac prem intr_cvars param_trms Ps user_thm avoid_trm concl_args ctxt
in
- EVERY' [ rtac @{thm allI}, rtac @{thm allI}, if null avoid then tac1 else tac2 ]
+ EVERY' [ rtac @{thm allI}, rtac @{thm allI},
+ if null avoid then tac1 else tac2 ]
end
fun prove_sinduct_tac raw_induct user_thms Ps avoids avoid_trms intr_cvars param_trms concl_args