Cleaning/review of QuotScript.
--- a/QuotMain.thy Fri Dec 04 17:15:55 2009 +0100
+++ b/QuotMain.thy Fri Dec 04 17:36:45 2009 +0100
@@ -260,7 +260,6 @@
let
val qty_name = fst (dest_Type qty)
val SOME quotdata = quotdata_lookup lthy qty_name
- (* cu: Changed the lookup\<dots>not sure whether this works *)
(* TODO: Should no longer be needed *)
val rty = Logic.unvarifyT (#rtyp quotdata)
val rel = #rel quotdata
--- a/QuotScript.thy Fri Dec 04 17:15:55 2009 +0100
+++ b/QuotScript.thy Fri Dec 04 17:36:45 2009 +0100
@@ -2,13 +2,13 @@
imports Plain ATP_Linkup
begin
-definition
- "equivp E \<equiv> \<forall>x y. E x y = (E x = E y)"
+definition
+ "equivp E \<equiv> \<forall>x y. E x y = (E x = E y)"
definition
"reflp E \<equiv> \<forall>x. E x x"
-definition
+definition
"symp E \<equiv> \<forall>x y. E x y \<longrightarrow> E y x"
definition
@@ -16,8 +16,8 @@
lemma equivp_reflp_symp_transp:
shows "equivp E = (reflp E \<and> symp E \<and> transp E)"
-unfolding equivp_def reflp_def symp_def transp_def expand_fun_eq
-by (blast)
+ unfolding equivp_def reflp_def symp_def transp_def expand_fun_eq
+ by (blast)
lemma equivp_refl:
shows "equivp R \<Longrightarrow> (\<And>x. R x x)"
@@ -33,66 +33,66 @@
lemma equivp_IMP_part_equivp:
assumes a: "equivp E"
shows "part_equivp E"
-using a unfolding equivp_def part_equivp_def
-by auto
+ using a unfolding equivp_def part_equivp_def
+ by auto
definition
- "Quotient E Abs Rep \<equiv> (\<forall>a. Abs (Rep a) = a) \<and>
- (\<forall>a. E (Rep a) (Rep a)) \<and>
+ "Quotient E Abs Rep \<equiv> (\<forall>a. Abs (Rep a) = a) \<and>
+ (\<forall>a. E (Rep a) (Rep a)) \<and>
(\<forall>r s. E r s = (E r r \<and> E s s \<and> (Abs r = Abs s)))"
lemma Quotient_abs_rep:
assumes a: "Quotient E Abs Rep"
- shows "Abs (Rep a) = a"
-using a unfolding Quotient_def
-by simp
+ shows "Abs (Rep a) = a"
+ using a unfolding Quotient_def
+ by simp
lemma Quotient_rep_reflp:
assumes a: "Quotient E Abs Rep"
shows "E (Rep a) (Rep a)"
-using a unfolding Quotient_def
-by blast
+ using a unfolding Quotient_def
+ by blast
lemma Quotient_rel:
assumes a: "Quotient E Abs Rep"
shows " E r s = (E r r \<and> E s s \<and> (Abs r = Abs s))"
-using a unfolding Quotient_def
-by blast
+ using a unfolding Quotient_def
+ by blast
lemma Quotient_rel_rep:
assumes a: "Quotient R Abs Rep"
shows "R (Rep a) (Rep b) \<equiv> (a = b)"
-apply (rule eq_reflection)
-using a unfolding Quotient_def
-by metis
+ apply (rule eq_reflection)
+ using a unfolding Quotient_def
+ by metis
lemma Quotient_rep_abs:
assumes a: "Quotient R Abs Rep"
shows "R r r \<Longrightarrow> R (Rep (Abs r)) r"
-using a unfolding Quotient_def
-by blast
+ using a unfolding Quotient_def
+ by blast
lemma identity_equivp:
shows "equivp (op =)"
-unfolding equivp_def
-by auto
+ unfolding equivp_def
+ by auto
lemma identity_quotient:
shows "Quotient (op =) id id"
-unfolding Quotient_def id_def
-by blast
+ unfolding Quotient_def id_def
+ by blast
lemma Quotient_symp:
assumes a: "Quotient E Abs Rep"
shows "symp E"
-using a unfolding Quotient_def symp_def
-by metis
+ using a unfolding Quotient_def symp_def
+ by metis
lemma Quotient_transp:
assumes a: "Quotient E Abs Rep"
shows "transp E"
-using a unfolding Quotient_def transp_def
-by metis
+ using a unfolding Quotient_def transp_def
+ by metis
fun
prod_rel
@@ -104,7 +104,6 @@
where
"fun_map f g h x = g (h (f x))"
-
abbreviation
fun_map_syn (infixr "--->" 55)
where
@@ -112,7 +111,7 @@
lemma fun_map_id:
shows "(id ---> id) = id"
-by (simp add: expand_fun_eq id_def)
+ by (simp add: expand_fun_eq id_def)
fun
fun_rel
@@ -169,155 +168,55 @@
lemma in_respects:
shows "(x \<in> Respects R) = R x x"
-unfolding mem_def Respects_def by simp
-
-(* TODO: it is the same as APPLY_RSP *)
-(* q1 and q2 not used; see next lemma *)
-lemma fun_rel_MP:
- assumes q1: "Quotient R1 Abs1 Rep1"
- and q2: "Quotient R2 Abs2 Rep2"
- shows "(R1 ===> R2) f g \<Longrightarrow> R1 x y \<Longrightarrow> R2 (f x) (g y)"
-by simp
-
-lemma fun_rel_IMP:
- shows "(R1 ===> R2) f g \<Longrightarrow> R1 x y \<Longrightarrow> R2 (f x) (g y)"
-by simp
-
+ unfolding mem_def Respects_def by simp
lemma equals_rsp:
assumes q: "Quotient R Abs Rep"
and a: "R xa xb" "R ya yb"
shows "R xa ya = R xb yb"
-using Quotient_symp[OF q] Quotient_transp[OF q] unfolding symp_def transp_def
-using a by blast
+ using Quotient_symp[OF q] Quotient_transp[OF q] unfolding symp_def transp_def
+ using a by blast
lemma lambda_prs:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
shows "(Rep1 ---> Abs2) (\<lambda>x. Rep2 (f (Abs1 x))) = (\<lambda>x. f x)"
-unfolding expand_fun_eq
-using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]
-by simp
+ unfolding expand_fun_eq
+ using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]
+ by simp
lemma lambda_prs1:
assumes q1: "Quotient R1 Abs1 Rep1"
and q2: "Quotient R2 Abs2 Rep2"
shows "(Rep1 ---> Abs2) (\<lambda>x. (Abs1 ---> Rep2) f x) = (\<lambda>x. f x)"
-unfolding expand_fun_eq
-using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]
-by simp
+ unfolding expand_fun_eq
+ using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2]
+ by simp
lemma rep_abs_rsp:
assumes q: "Quotient R Abs Rep"
and a: "R x1 x2"
shows "R x1 (Rep (Abs x2))"
-using q a by (metis Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q])
-
-(* ----------------------------------------------------- *)
-(* Quantifiers: FORALL, EXISTS, EXISTS_UNIQUE, *)
-(* Ball, Bex, RES_EXISTS_EQUIV *)
-(* ----------------------------------------------------- *)
-
-(* bool theory: COND, LET *)
-
-lemma IF_PRS:
- assumes q: "Quotient R Abs Rep"
- shows "If a b c = Abs (If a (Rep b) (Rep c))"
-using Quotient_abs_rep[OF q] by auto
-
-(* ask peter: no use of q *)
-lemma IF_RSP:
- assumes q: "Quotient R Abs Rep"
- and a: "a1 = a2" "R b1 b2" "R c1 c2"
- shows "R (If a1 b1 c1) (If a2 b2 c2)"
-using a by auto
-
-lemma LET_PRS:
- assumes q1: "Quotient R1 Abs1 Rep1"
- and q2: "Quotient R2 Abs2 Rep2"
- shows "Let x f = Abs2 (Let (Rep1 x) ((Abs1 ---> Rep2) f))"
-using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] by auto
-
-lemma LET_RSP:
- assumes q1: "Quotient R1 Abs1 Rep1"
- and q2: "Quotient R2 Abs2 Rep2"
- and a1: "(R1 ===> R2) f g"
- and a2: "R1 x y"
- shows "R2 (Let x f) (Let y g)"
-using fun_rel_MP[OF q1 q2 a1] a2
-by auto
-
-
-(* ask peter what are literal_case *)
-(* literal_case_PRS *)
-(* literal_case_RSP *)
-
-
-(* FUNCTION APPLICATION *)
+ using q a by (metis Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q])
(* In the following theorem R1 can be instantiated with anything,
but we know some of the types of the Rep and Abs functions;
- so by solving Quotient assumptions we can get a unique R2 that
- will be provable; which is why we need to use APPLY_RSP *)
+ so by solving Quotient assumptions we can get a unique R1 that
+ will be provable; which is why we need to use apply_rsp and
+ not the primed version *)
lemma apply_rsp:
assumes q: "Quotient R1 Abs1 Rep1"
and a: "(R1 ===> R2) f g" "R1 x y"
shows "R2 ((f::'a\<Rightarrow>'c) x) ((g::'a\<Rightarrow>'c) y)"
-using a by (rule fun_rel_IMP)
+ using a by simp
lemma apply_rsp':
assumes a: "(R1 ===> R2) f g" "R1 x y"
shows "R2 (f x) (g y)"
-using a by (rule fun_rel_IMP)
-
-
-(* combinators: I, K, o, C, W *)
-
-(* We use id_simps which includes id_apply; so these 2 theorems can be removed *)
-lemma I_PRS:
- assumes q: "Quotient R Abs Rep"
- shows "id e = Abs (id (Rep e))"
-using Quotient_abs_rep[OF q] by auto
-
-lemma I_RSP:
- assumes q: "Quotient R Abs Rep"
- and a: "R e1 e2"
- shows "R (id e1) (id e2)"
-using a by auto
-
-lemma o_PRS:
- assumes q1: "Quotient R1 Abs1 Rep1"
- and q2: "Quotient R2 Abs2 Rep2"
- and q3: "Quotient R3 Abs3 Rep3"
- shows "f o g = (Rep1 ---> Abs3) (((Abs2 ---> Rep3) f) o ((Abs1 ---> Rep2) g))"
-using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] Quotient_abs_rep[OF q3]
-unfolding o_def expand_fun_eq
-by simp
-
-lemma o_RSP:
- assumes q1: "Quotient R1 Abs1 Rep1"
- and q2: "Quotient R2 Abs2 Rep2"
- and q3: "Quotient R3 Abs3 Rep3"
- and a1: "(R2 ===> R3) f1 f2"
- and a2: "(R1 ===> R2) g1 g2"
- shows "(R1 ===> R3) (f1 o g1) (f2 o g2)"
-using a1 a2 unfolding o_def expand_fun_eq
-by (auto)
-
-
-
-
-
-lemma COND_PRS:
- assumes a: "Quotient R absf repf"
- shows "(if a then b else c) = absf (if a then repf b else repf c)"
- using a unfolding Quotient_def by auto
-
-
-
-
+ using a by simp
(* Set of lemmas for regularisation of ball and bex *)
+
lemma ball_reg_eqv:
fixes P :: "'a \<Rightarrow> bool"
assumes a: "equivp R"
@@ -437,7 +336,13 @@
by (metis COMBC_def Collect_def Collect_mem_eq in_respects fun_map.simps id_apply)
-(* UNUSED *)
+
+
+
+
+(******************************************)
+(* REST OF THE FILE IS UNUSED (until now) *)
+(******************************************)
lemma Quotient_rel_abs:
assumes a: "Quotient E Abs Rep"
shows "E r s \<Longrightarrow> Abs r = Abs s"
@@ -522,7 +427,7 @@
shows "((Rep1 ---> Abs2) f = (Rep1 ---> Abs2) g) = (\<forall>x y. R1 x y \<longrightarrow> R2 (f x) (g y))"
apply(rule_tac iffI)
using fun_quotient[OF q1 q2] r1 r2 unfolding Quotient_def Respects_def
-apply(metis fun_rel_IMP)
+apply(metis apply_rsp')
using r1 unfolding Respects_def expand_fun_eq
apply(simp (no_asm_use))
apply(metis Quotient_rel[OF q2] Quotient_rel_rep[OF q1])
@@ -553,5 +458,83 @@
using q a by (metis Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q])
+
+(* bool theory: COND, LET *)
+lemma IF_PRS:
+ assumes q: "Quotient R Abs Rep"
+ shows "If a b c = Abs (If a (Rep b) (Rep c))"
+using Quotient_abs_rep[OF q] by auto
+
+(* ask peter: no use of q *)
+lemma IF_RSP:
+ assumes q: "Quotient R Abs Rep"
+ and a: "a1 = a2" "R b1 b2" "R c1 c2"
+ shows "R (If a1 b1 c1) (If a2 b2 c2)"
+using a by auto
+
+lemma LET_PRS:
+ assumes q1: "Quotient R1 Abs1 Rep1"
+ and q2: "Quotient R2 Abs2 Rep2"
+ shows "Let x f = Abs2 (Let (Rep1 x) ((Abs1 ---> Rep2) f))"
+using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] by auto
+
+lemma LET_RSP:
+ assumes q1: "Quotient R1 Abs1 Rep1"
+ and a1: "(R1 ===> R2) f g"
+ and a2: "R1 x y"
+ shows "R2 ((Let x f)::'c) ((Let y g)::'c)"
+using apply_rsp[OF q1 a1] a2
+by auto
+
+
+
+(* ask peter what are literal_case *)
+(* literal_case_PRS *)
+(* literal_case_RSP *)
+
+
+
+
+
+(* combinators: I, K, o, C, W *)
+
+(* We use id_simps which includes id_apply; so these 2 theorems can be removed *)
+
+lemma I_PRS:
+ assumes q: "Quotient R Abs Rep"
+ shows "id e = Abs (id (Rep e))"
+using Quotient_abs_rep[OF q] by auto
+
+lemma I_RSP:
+ assumes q: "Quotient R Abs Rep"
+ and a: "R e1 e2"
+ shows "R (id e1) (id e2)"
+using a by auto
+
+lemma o_PRS:
+ assumes q1: "Quotient R1 Abs1 Rep1"
+ and q2: "Quotient R2 Abs2 Rep2"
+ and q3: "Quotient R3 Abs3 Rep3"
+ shows "f o g = (Rep1 ---> Abs3) (((Abs2 ---> Rep3) f) o ((Abs1 ---> Rep2) g))"
+using Quotient_abs_rep[OF q1] Quotient_abs_rep[OF q2] Quotient_abs_rep[OF q3]
+unfolding o_def expand_fun_eq
+by simp
+
+lemma o_RSP:
+ assumes q1: "Quotient R1 Abs1 Rep1"
+ and q2: "Quotient R2 Abs2 Rep2"
+ and q3: "Quotient R3 Abs3 Rep3"
+ and a1: "(R2 ===> R3) f1 f2"
+ and a2: "(R1 ===> R2) g1 g2"
+ shows "(R1 ===> R3) (f1 o g1) (f2 o g2)"
+using a1 a2 unfolding o_def expand_fun_eq
+by (auto)
+
+lemma COND_PRS:
+ assumes a: "Quotient R absf repf"
+ shows "(if a then b else c) = absf (if a then repf b else repf c)"
+ using a unfolding Quotient_def by auto
+
+
end