--- a/Nominal/Parser.thy Fri Mar 19 09:40:57 2010 +0100
+++ b/Nominal/Parser.thy Fri Mar 19 10:24:49 2010 +0100
@@ -2,8 +2,6 @@
imports "Nominal2_Atoms" "Nominal2_Eqvt" "Nominal2_Supp" "Perm" "Fv" "Rsp" "Lift"
begin
-atom_decl name
-
section{* Interface for nominal_datatype *}
text {*
--- a/Nominal/TySch.thy Fri Mar 19 09:40:57 2010 +0100
+++ b/Nominal/TySch.thy Fri Mar 19 10:24:49 2010 +0100
@@ -59,12 +59,32 @@
lemmas t_tyS_supp = t_tyS.fv[simplified supp_fv_t_tyS]
lemma induct:
-"\<lbrakk>\<And>name b. P b (Var name);
- \<And>t1 t2 b. \<lbrakk>\<And>c. P c t1; \<And>c. P c t2\<rbrakk> \<Longrightarrow> P b (Fun t1 t2);
- \<And>fset t. \<lbrakk>\<And>c. P c t; fset_to_set (fmap atom fset) \<sharp>* b\<rbrakk> \<Longrightarrow> P' b (All fset t)
- \<rbrakk> \<Longrightarrow> P a t"
- oops
-
+ assumes a1: "\<And>name b. P b (Var name)"
+ and a2: "\<And>t1 t2 b. \<lbrakk>\<And>c. P c t1; \<And>c. P c t2\<rbrakk> \<Longrightarrow> P b (Fun t1 t2)"
+ and a3: "\<And>fset t b. \<lbrakk>\<And>c. P c t; fset_to_set (fmap atom fset) \<sharp>* b\<rbrakk> \<Longrightarrow> P' b (All fset t)"
+ shows "P (a :: 'a :: pt) t \<and> P' d ts "
+proof -
+ have " (\<forall>p a. P a (p \<bullet> t)) \<and> (\<forall>p d. P' d (p \<bullet> ts))"
+ apply (rule t_tyS.induct)
+ apply (simp add: a1)
+ apply (simp)
+ apply (rule allI)+
+ apply (rule a2)
+ apply simp
+ apply simp
+ apply (rule allI)
+ apply (rule allI)
+ apply(subgoal_tac "\<exists>new::name fset. fset_to_set (fmap atom new) \<sharp>* (d, All (p \<bullet> fset) (p \<bullet> t))
+ \<and> fcard new = fcard fset")
+ apply clarify
+ (*apply(rule_tac t="p \<bullet> All fset t" and
+ s="(((p \<bullet> fset) \<leftrightarrow> new) + p) \<bullet> All fset t" in subst)
+ apply (rule a3)
+ apply simp_all*)
+ sorry
+ then have "P a (0 \<bullet> t) \<and> P' d (0 \<bullet> ts)" by blast
+ then show ?thesis by simp
+qed
lemma
shows "All {|a, b|} (Fun (Var a) (Var b)) = All {|b, a|} (Fun (Var a) (Var b))"