--- a/Nominal/Equivp.thy Wed May 12 13:43:48 2010 +0100
+++ b/Nominal/Equivp.thy Wed May 12 16:08:32 2010 +0200
@@ -76,7 +76,7 @@
ML {*
fun symp_tac induct inj eqvt ctxt =
- rel_indtac induct THEN_ALL_NEW
+ rtac induct THEN_ALL_NEW
simp_tac (HOL_basic_ss addsimps inj) THEN_ALL_NEW split_conj_tac
THEN_ALL_NEW
REPEAT o etac @{thm exi_neg}
@@ -111,7 +111,7 @@
ML {*
fun transp_tac ctxt induct alpha_inj term_inj distinct cases eqvt =
- rel_indtac induct THEN_ALL_NEW
+ rtac induct THEN_ALL_NEW
(TRY o rtac allI THEN' imp_elim_tac cases ctxt) THEN_ALL_NEW
asm_full_simp_tac (HOL_basic_ss addsimps alpha_inj) THEN_ALL_NEW
split_conj_tac THEN_ALL_NEW REPEAT o (eetac @{thm exi_sum} ctxt) THEN_ALL_NEW split_conj_tac
@@ -222,7 +222,7 @@
*}
ML {*
-fun fs_tac induct supports = rel_indtac induct THEN_ALL_NEW (
+fun fs_tac induct supports = rtac induct THEN_ALL_NEW (
rtac @{thm supports_finite} THEN' resolve_tac supports) THEN_ALL_NEW
asm_full_simp_tac (HOL_ss addsimps @{thms supp_atom supp_atom_image supp_fset_to_set
supp_fmap_atom finite_insert finite.emptyI finite_Un finite_supp})
@@ -317,7 +317,7 @@
ML {*
fun supp_eq_tac ind fv perm eqiff ctxt =
- rel_indtac ind THEN_ALL_NEW
+ rtac ind THEN_ALL_NEW
asm_full_simp_tac (HOL_basic_ss addsimps fv) THEN_ALL_NEW
asm_full_simp_tac (HOL_basic_ss addsimps @{thms supp_abs_atom[symmetric]}) THEN_ALL_NEW
asm_full_simp_tac (HOL_basic_ss addsimps [choose_alpha_abs eqiff]) THEN_ALL_NEW
--- a/Nominal/NewAlpha.thy Wed May 12 13:43:48 2010 +0100
+++ b/Nominal/NewAlpha.thy Wed May 12 16:08:32 2010 +0200
@@ -242,7 +242,7 @@
all_alpha_names [] all_alpha_eqs [] lthy
val alpha_ts_loc = #preds alphas;
- val alpha_induct_loc = #induct alphas;
+ val alpha_induct_loc = #raw_induct alphas;
val alpha_intros_loc = #intrs alphas;
val alpha_cases_loc = #elims alphas;
val morphism = ProofContext.export_morphism lthy' lthy;
--- a/Nominal/Rsp.thy Wed May 12 13:43:48 2010 +0100
+++ b/Nominal/Rsp.thy Wed May 12 16:08:32 2010 +0200
@@ -60,7 +60,7 @@
ML {*
fun fvbv_rsp_tac induct fvbv_simps ctxt =
- rel_indtac induct THEN_ALL_NEW
+ rtac induct THEN_ALL_NEW
(TRY o rtac @{thm TrueI}) THEN_ALL_NEW
asm_full_simp_tac (HOL_basic_ss addsimps @{thms alphas2}) THEN_ALL_NEW
asm_full_simp_tac (HOL_ss addsimps (@{thms alphas prod_rel.simps prod_fv.simps} @ fvbv_simps)) THEN_ALL_NEW
@@ -96,7 +96,7 @@
ML {*
fun alpha_eqvt_tac induct simps ctxt =
- rel_indtac induct THEN_ALL_NEW
+ rtac induct THEN_ALL_NEW
simp_tac (HOL_basic_ss addsimps simps) THEN_ALL_NEW split_conj_tac THEN_ALL_NEW
REPEAT o etac @{thm exi[of _ _ "p"]} THEN' split_conj_tac THEN_ALL_NEW
asm_full_simp_tac (HOL_ss addsimps (all_eqvts ctxt @ simps)) THEN_ALL_NEW
--- a/Nominal/Tacs.thy Wed May 12 13:43:48 2010 +0100
+++ b/Nominal/Tacs.thy Wed May 12 16:08:32 2010 +0200
@@ -56,12 +56,6 @@
end
*}
-(* An induction for a single relation is "R x y \<Longrightarrow> P x y"
- but for multiple relations is "(R1 x y \<longrightarrow> P x y) \<and> (R2 a b \<longrightarrow> P2 a b)" *)
-ML {*
-fun rel_indtac induct = (rtac impI THEN' etac induct) ORELSE' rtac induct
-*}
-
ML {*
fun prove_by_rel_induct alphas build_goal ind utac inputs ctxt =
let
@@ -80,7 +74,7 @@
(fn ((alpha, gl), (l, r)) => HOLogic.mk_imp (alpha $ l $ r, gl))
((alphas ~~ trm_gls) ~~ (freesl ~~ freesr))
val gl = HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj pgls);
- fun tac {context,...} = (rel_indtac ind THEN_ALL_NEW split_conj_tac THEN_ALL_NEW
+ fun tac {context,...} = (rtac ind THEN_ALL_NEW split_conj_tac THEN_ALL_NEW
TRY o rtac @{thm TrueI} THEN_ALL_NEW utac context) 1
val th_loc = Goal.prove ctxt'' [] [] gl tac
val ths_loc = HOLogic.conj_elims th_loc