--- a/Nominal/Nominal2.thy Wed Dec 22 22:30:43 2010 +0000
+++ b/Nominal/Nominal2.thy Wed Dec 22 23:12:51 2010 +0000
@@ -44,23 +44,14 @@
| mk_union_env tys (t1, @{term "set ([]::atom list)"}) = t1
| mk_union_env tys (@{term "set ([]::atom list)"}, t2) = t2
| mk_union_env tys (t1, t2) = mk_binop_env tys @{const_name "sup"} (t1, t2)
-*}
-ML {*
fun fold_left f [] z = z
| fold_left f [x] z = x
| fold_left f (x :: y :: xs) z = fold_left f (f (x, y) :: xs) z
-*}
-ML {*
fun fold_union_env tys trms = fold_left (mk_union_env tys) trms @{term "{}::atom set"}
*}
-ML {*
-fold_union_env [] [@{term "t1::atom set"}, @{term "t2::atom set"}, @{term "t3::atom set"}]
-|> Syntax.string_of_term @{context}
-|> writeln
-*}
ML {*
@@ -139,6 +130,7 @@
[] => []
| _ =>
let
+ val flag = is_recursive_binder bclause
val binder_trm = comb_binders ctxt bmode parms binders
val body_trm = foldl1 HOLogic.mk_prod (map (nth parms) bodies)
val body_ty = fastype_of body_trm
@@ -153,39 +145,34 @@
| Res => mk_abs @{const_name "Abs_res"} @{typ "atom set"} @{type_name abs_res}
val abs_lhs = abs_const $ binder_trm $ body_trm
- val abs_rhs = abs_const $ mk_perm p binder_trm $ mk_perm (Bound 0) body_trm
- val abs_rhs' = abs_const $ mk_perm (Bound 0) binder_trm $ mk_perm (Bound 0) body_trm
+ val abs_rhs =
+ if flag
+ then abs_const $ mk_perm p binder_trm $ mk_perm (Bound 0) body_trm
+ else abs_const $ mk_perm (Bound 0) binder_trm $ mk_perm (Bound 0) body_trm
+
val abs_eq = HOLogic.mk_eq (abs_lhs, abs_rhs)
- val abs_eq' = HOLogic.mk_eq (abs_lhs, abs_rhs')
- val eq = HOLogic.mk_eq (mk_perm (Bound 0) binder_trm, mk_perm p binder_trm)
+ val peq = HOLogic.mk_eq (mk_perm (Bound 0) binder_trm, mk_perm p binder_trm)
- val goal = HOLogic.mk_conj (abs_eq, eq)
+ val goal = HOLogic.mk_conj (abs_eq, peq)
|> (fn t => HOLogic.mk_exists ("q", @{typ "perm"}, t))
|> HOLogic.mk_Trueprop
-
- val goal' = HOLogic.mk_conj (abs_eq', eq)
- |> (fn t => HOLogic.mk_exists ("q", @{typ "perm"}, t))
- |> HOLogic.mk_Trueprop
val ss = fprops @ bn_finite_thms @ @{thms set.simps set_append union_eqvt}
@ @{thms fresh_star_Un fresh_star_Pair fresh_star_list fresh_star_singleton fresh_star_fset
fresh_star_set} @ @{thms finite.intros finite_fset}
+
+ val tac1 =
+ if flag
+ then resolve_tac @{thms Abs_rename_set' Abs_rename_res' Abs_rename_lst'}
+ else resolve_tac @{thms Abs_rename_set Abs_rename_res Abs_rename_lst}
+
+ val tac2 = EVERY' [simp_tac (HOL_basic_ss addsimps ss), TRY o simp_tac HOL_ss]
in
- if is_recursive_binder bclause
- then
- (tracing "recursive";
- [ Goal.prove ctxt [] [] goal'
- (K (HEADGOAL (resolve_tac @{thms Abs_rename_set' Abs_rename_res' Abs_rename_lst'}
- THEN_ALL_NEW (simp_tac (HOL_basic_ss addsimps ss) THEN' TRY o simp_tac HOL_ss))))
- |> Nominal_Permeq.eqvt_strict_rule ctxt bn_eqvt []
- ])
- else
- (tracing "non-recursive";
- [ Goal.prove ctxt [] [] goal
- (K (HEADGOAL (resolve_tac @{thms Abs_rename_set Abs_rename_res Abs_rename_lst}
- THEN_ALL_NEW (simp_tac (HOL_basic_ss addsimps ss) THEN' TRY o simp_tac HOL_ss))))
- |> Nominal_Permeq.eqvt_strict_rule ctxt permute_bns []
- ])
+ [ Goal.prove ctxt [] [] goal (K (HEADGOAL (tac1 THEN_ALL_NEW tac2)))
+ |> (if flag
+ then Nominal_Permeq.eqvt_strict_rule ctxt bn_eqvt []
+ else Nominal_Permeq.eqvt_strict_rule ctxt permute_bns [])
+ ]
end
*}