merge
authorCezary Kaliszyk <kaliszyk@in.tum.de>
Sun, 19 Jun 2011 13:14:37 +0900
changeset 2870 b9a16d627bfd
parent 2869 9c0df9901acf (current diff)
parent 2868 2b8e387d2dfc (diff)
child 2871 b58073719b06
child 2877 3e82c1ced5e4
merge
--- a/Nominal/Ex/Datatypes.thy	Sun Jun 19 13:10:15 2011 +0900
+++ b/Nominal/Ex/Datatypes.thy	Sun Jun 19 13:14:37 2011 +0900
@@ -56,6 +56,7 @@
   Baz x::name t::foo bind x in t
 
 
+
 thm baz.distinct
 thm baz.induct
 thm baz.exhaust
@@ -78,7 +79,7 @@
 | Fun "nat \<Rightarrow> nat"
 | Var "name"
 | Lam x::"name" t::"set_ty" bind x in t
-
+thm meta_eq_to_obj_eq
 thm set_ty.distinct
 thm set_ty.induct
 thm set_ty.exhaust
--- a/Nominal/Ex/Lambda.thy	Sun Jun 19 13:10:15 2011 +0900
+++ b/Nominal/Ex/Lambda.thy	Sun Jun 19 13:14:37 2011 +0900
@@ -10,7 +10,8 @@
 | App "lam" "lam"
 | Lam x::"name" l::"lam"  bind x in l ("Lam [_]. _" [100, 100] 100)
 
-text {* free name function *}
+
+section {* free name function *}
 
 text {* first returns an atom list *}
 
@@ -20,7 +21,8 @@
   "frees_lst (Var x) = [atom x]"
 | "frees_lst (App t1 t2) = frees_lst t1 @ frees_lst t2"
 | "frees_lst (Lam [x]. t) = removeAll (atom x) (frees_lst t)"
-  unfolding eqvt_def frees_lst_graph_def
+  unfolding eqvt_def
+  unfolding frees_lst_graph_def
   apply (rule, perm_simp, rule)
 apply(rule TrueI)
 apply(rule_tac y="x" in lam.exhaust)
@@ -74,7 +76,9 @@
   by (metis fresh_fun_app)
 
 
-text {* A test with a locale and an interpretation. *}
+section {* A test with a locale and an interpretation. *}
+
+text {* conclusion: it is no necessary *}
 
 locale test =
    fixes f1::"name \<Rightarrow> ('a::pt)"
@@ -126,7 +130,7 @@
   apply (simp_all add: eqvt_def permute_fun_def permute_pure)
   done
 
-text {* height function *}
+section {* height function *}
 
 nominal_primrec
   height :: "lam \<Rightarrow> int"
@@ -149,7 +153,7 @@
 thm height.simps
 
   
-text {* capture - avoiding substitution *}
+section {* capture-avoiding substitution *}
 
 nominal_primrec
   subst :: "lam \<Rightarrow> name \<Rightarrow> lam \<Rightarrow> lam"  ("_ [_ ::= _]" [90, 90, 90] 90)
--- a/Nominal/Nominal2.thy	Sun Jun 19 13:10:15 2011 +0900
+++ b/Nominal/Nominal2.thy	Sun Jun 19 13:14:37 2011 +0900
@@ -261,43 +261,45 @@
      
   val lthy5 = snd (Local_Theory.note ((Binding.empty, [eqvt_attr]), raw_fv_eqvt) lthy_tmp)
 
-  val (alpha_eqvt, lthy6) =
-    Nominal_Eqvt.raw_equivariance true (alpha_trms @ alpha_bn_trms) alpha_induct alpha_intros lthy5
+  val alpha_eqvt =
+    Nominal_Eqvt.raw_equivariance (alpha_trms @ alpha_bn_trms) alpha_induct alpha_intros lthy5
+
+  val alpha_eqvt_norm = map (Nominal_ThmDecls.eqvt_transform lthy5) alpha_eqvt
 
   val _ = trace_msg (K "Proving equivalence of alpha...")
   val alpha_refl_thms = 
-    raw_prove_refl alpha_trms alpha_bn_trms alpha_intros raw_induct_thm lthy6 
+    raw_prove_refl alpha_trms alpha_bn_trms alpha_intros raw_induct_thm lthy5 
 
   val alpha_sym_thms = 
-    raw_prove_sym (alpha_trms @ alpha_bn_trms) alpha_intros alpha_induct lthy6 
+    raw_prove_sym (alpha_trms @ alpha_bn_trms) alpha_intros alpha_induct alpha_eqvt_norm lthy5 
 
   val alpha_trans_thms = 
     raw_prove_trans (alpha_trms @ alpha_bn_trms) (raw_distinct_thms @ raw_inject_thms) 
-      alpha_intros alpha_induct alpha_cases lthy6
+      alpha_intros alpha_induct alpha_cases alpha_eqvt_norm lthy5
 
   val (alpha_equivp_thms, alpha_bn_equivp_thms) = 
     raw_prove_equivp alpha_trms alpha_bn_trms alpha_refl_thms alpha_sym_thms 
-      alpha_trans_thms lthy6
+      alpha_trans_thms lthy5
 
   val _ = trace_msg (K "Proving alpha implies bn...")
   val alpha_bn_imp_thms = 
-    raw_prove_bn_imp alpha_trms alpha_bn_trms alpha_intros alpha_induct lthy6 
+    raw_prove_bn_imp alpha_trms alpha_bn_trms alpha_intros alpha_induct lthy5 
   
   val _ = trace_msg (K "Proving respectfulness...")
   val raw_funs_rsp_aux = 
     raw_fv_bn_rsp_aux alpha_trms alpha_bn_trms raw_fvs 
-      raw_bns raw_fv_bns alpha_induct (raw_bn_defs @ raw_fv_defs) lthy6
+      raw_bns raw_fv_bns alpha_induct (raw_bn_defs @ raw_fv_defs) lthy5
   
   val raw_funs_rsp = map mk_funs_rsp raw_funs_rsp_aux
 
   val raw_size_rsp = 
     raw_size_rsp_aux (alpha_trms @ alpha_bn_trms) alpha_induct 
-      (raw_size_thms @ raw_size_eqvt) lthy6
+      (raw_size_thms @ raw_size_eqvt) lthy5
       |> map mk_funs_rsp
 
   val raw_constrs_rsp = 
     raw_constrs_rsp (flat raw_constrs) alpha_trms alpha_intros
-      (alpha_bn_imp_thms @ raw_funs_rsp_aux) lthy6 
+      (alpha_bn_imp_thms @ raw_funs_rsp_aux) lthy5 
     
   val alpha_permute_rsp = map mk_alpha_permute_rsp alpha_eqvt
 
@@ -306,19 +308,19 @@
 
   val raw_perm_bn_rsp =
     raw_perm_bn_rsp (alpha_trms @ alpha_bn_trms) raw_perm_bns alpha_induct 
-      alpha_intros raw_perm_bn_simps lthy6
+      alpha_intros raw_perm_bn_simps lthy5
 
   (* noting the quot_respects lemmas *)
-  val (_, lthy6a) = 
+  val (_, lthy6) = 
     Local_Theory.note ((Binding.empty, [rsp_attr]),
       raw_constrs_rsp @ raw_funs_rsp @ raw_size_rsp @ alpha_permute_rsp @ 
-      alpha_bn_rsp @ raw_perm_bn_rsp) lthy6
+      alpha_bn_rsp @ raw_perm_bn_rsp) lthy5
 
   val _ = trace_msg (K "Defining the quotient types...")
   val qty_descr = map (fn (vs, bind, mx, _) => (vs, bind, mx)) dts
      
   val (qty_infos, lthy7) = 
-    define_qtypes qty_descr alpha_tys alpha_trms alpha_equivp_thms lthy6a
+    define_qtypes qty_descr alpha_tys alpha_trms alpha_equivp_thms lthy6
 
   val qtys = map #qtyp qty_infos
   val qty_full_names = map (fst o dest_Type) qtys
--- a/Nominal/Nominal2_Base.thy	Sun Jun 19 13:10:15 2011 +0900
+++ b/Nominal/Nominal2_Base.thy	Sun Jun 19 13:14:37 2011 +0900
@@ -1626,6 +1626,12 @@
 definition
   "eqvt f \<equiv> \<forall>p. p \<bullet> f = f"
 
+lemma eqvt_boolI:
+  fixes f::"bool"
+  shows "eqvt f"
+unfolding eqvt_def by (simp add: permute_bool_def)
+
+
 text {* equivariance of a function at a given argument *}
 
 definition
--- a/Nominal/nominal_dt_alpha.ML	Sun Jun 19 13:10:15 2011 +0900
+++ b/Nominal/nominal_dt_alpha.ML	Sun Jun 19 13:14:37 2011 +0900
@@ -26,8 +26,9 @@
     (Proof.context -> int -> tactic) -> Proof.context -> thm list
 
   val raw_prove_refl: term list -> term list -> thm list -> thm -> Proof.context -> thm list
-  val raw_prove_sym: term list -> thm list -> thm -> Proof.context -> thm list
-  val raw_prove_trans: term list -> thm list -> thm list -> thm -> thm list -> Proof.context -> thm list
+  val raw_prove_sym: term list -> thm list -> thm -> thm list -> Proof.context -> thm list
+  val raw_prove_trans: term list -> thm list -> thm list -> thm -> thm list -> thm list -> 
+    Proof.context -> thm list
   val raw_prove_equivp: term list -> term list -> thm list -> thm list -> thm list -> 
     Proof.context -> thm list * thm list
 
@@ -492,7 +493,7 @@
   by (erule exE, rule_tac x="-p" in exI, auto)}
 
 (* for premises that contain binders *)
-fun prem_bound_tac pred_names ctxt = 
+fun prem_bound_tac pred_names alpha_eqvt ctxt = 
   let
     fun trans_prem_tac pred_names ctxt = 
       SUBPROOF (fn {prems, context, ...} => 
@@ -507,20 +508,20 @@
       [ etac exi_neg,
         resolve_tac @{thms alpha_sym_eqvt},
         asm_full_simp_tac (HOL_ss addsimps prod_simps),
-        eqvt_tac ctxt eqvt_relaxed_config THEN' rtac @{thm refl},
-        trans_prem_tac pred_names ctxt ] 
+        eqvt_tac ctxt (eqvt_relaxed_config addpres alpha_eqvt) THEN' rtac @{thm refl},
+        trans_prem_tac pred_names ctxt] 
   end
 
-fun raw_prove_sym alpha_trms alpha_intros alpha_induct ctxt =
+fun raw_prove_sym alpha_trms alpha_intros alpha_induct alpha_eqvt ctxt =
   let
     val props = map (fn t => fn (x, y) => t $ y $ x) alpha_trms
-  
+
     fun tac ctxt = 
       let
         val alpha_names =  map (fst o dest_Const) alpha_trms   
       in
         resolve_tac alpha_intros THEN_ALL_NEW 
-        FIRST' [atac, rtac @{thm sym} THEN' atac, prem_bound_tac alpha_names ctxt]
+        FIRST' [atac, rtac @{thm sym} THEN' atac, prem_bound_tac alpha_names alpha_eqvt ctxt]
     end
   in
     alpha_prove alpha_trms (alpha_trms ~~ props) alpha_induct tac ctxt 
@@ -549,7 +550,7 @@
       HEADGOAL (rtac exi_inst)
     end)
 
-fun non_trivial_cases_tac pred_names intros ctxt = 
+fun non_trivial_cases_tac pred_names intros alpha_eqvt ctxt = 
   let
     val prod_simps = @{thms split_conv alphas permute_prod.simps prod_alpha_def prod_rel_def}
   in
@@ -562,15 +563,15 @@
           resolve_tac @{thms alpha_trans_eqvt}, 
           atac,
           aatac pred_names ctxt, 
-          eqvt_tac ctxt eqvt_relaxed_config THEN' rtac @{thm refl},
+          eqvt_tac ctxt (eqvt_relaxed_config addpres alpha_eqvt) THEN' rtac @{thm refl},
           asm_full_simp_tac (HOL_ss addsimps prod_simps) ])
   end
 			  
-fun prove_trans_tac pred_names raw_dt_thms intros cases ctxt =
+fun prove_trans_tac pred_names raw_dt_thms intros cases alpha_eqvt ctxt =
   let
     fun all_cases ctxt = 
       asm_full_simp_tac (HOL_basic_ss addsimps raw_dt_thms) 
-      THEN' TRY o non_trivial_cases_tac pred_names intros ctxt
+      THEN' TRY o non_trivial_cases_tac pred_names intros alpha_eqvt ctxt
   in
     EVERY' [ rtac @{thm allI}, rtac @{thm impI}, 
              ecases_tac cases ctxt THEN_ALL_NEW all_cases ctxt ]
@@ -585,13 +586,13 @@
     HOLogic.all_const arg_ty $ Abs ("z", arg_ty, HOLogic.mk_imp (mid, rhs))
   end
 
-fun raw_prove_trans alpha_trms raw_dt_thms alpha_intros alpha_induct alpha_cases ctxt =
+fun raw_prove_trans alpha_trms raw_dt_thms alpha_intros alpha_induct alpha_cases alpha_eqvt ctxt =
   let
     val alpha_names =  map (fst o dest_Const) alpha_trms 
     val props = map prep_trans_goal alpha_trms
   in
     alpha_prove alpha_trms (alpha_trms ~~ props) alpha_induct
-      (prove_trans_tac alpha_names raw_dt_thms alpha_intros alpha_cases) ctxt
+      (prove_trans_tac alpha_names raw_dt_thms alpha_intros alpha_cases alpha_eqvt) ctxt
   end
 
 
--- a/Nominal/nominal_eqvt.ML	Sun Jun 19 13:10:15 2011 +0900
+++ b/Nominal/nominal_eqvt.ML	Sun Jun 19 13:14:37 2011 +0900
@@ -8,8 +8,7 @@
 
 signature NOMINAL_EQVT =
 sig
-  val raw_equivariance: bool -> term list -> thm -> thm list -> Proof.context -> thm list * local_theory
-  val equivariance: string -> Proof.context -> (thm list * local_theory)
+  val raw_equivariance: term list -> thm -> thm list -> Proof.context -> thm list
   val equivariance_cmd: string -> Proof.context -> local_theory
 end
 
@@ -75,20 +74,10 @@
 
 (* stores thm under name.eqvt and adds [eqvt]-attribute *)
 
-fun note_named_thm (name, thm) ctxt = 
-  let
-    val thm_name = Binding.qualified_name 
-      (Long_Name.qualify (Long_Name.base_name name) "eqvt")
-    val attr = Attrib.internal (K eqvt_add)
-    val ((_, [thm']), ctxt') =  Local_Theory.note ((thm_name, [attr]), [thm]) ctxt
-  in
-    (thm', ctxt')
-  end
-
 fun get_name (Const (a, _)) = a
   | get_name (Free  (a, _)) = a
 
-fun raw_equivariance note_flag pred_trms raw_induct intrs ctxt = 
+fun raw_equivariance pred_trms raw_induct intrs ctxt = 
   let
     val is_already_eqvt = 
       filter (is_eqvt ctxt) pred_trms
@@ -110,36 +99,34 @@
       (HOLogic.dest_conj (HOLogic.dest_Trueprop raw_concl));
   
     val goal = HOLogic.mk_Trueprop 
-      (foldr1 HOLogic.mk_conj (map (prepare_goal pi) preds))
-  
-    val thms = Goal.prove ctxt' [] [] goal 
+      (foldr1 HOLogic.mk_conj (map (prepare_goal pi) preds)) 
+  in 
+    Goal.prove ctxt' [] [] goal 
       (fn {context,...} => eqvt_rel_tac context pred_names pi raw_induct' intrs' 1)
       |> Datatype_Aux.split_conj_thm 
       |> ProofContext.export ctxt' ctxt
       |> map (fn th => th RS mp)
       |> map zero_var_indexes
-  in
-    if note_flag
-    then fold_map note_named_thm (pred_names ~~ thms) ctxt 
-    else (thms, ctxt) 
   end
 
-fun equivariance pred_name ctxt =
+fun note_named_thm (name, thm) ctxt = 
   let
-    val thy = ProofContext.theory_of ctxt
-    val (_, {preds, raw_induct, intrs, ...}) =
-      Inductive.the_inductive ctxt (Sign.intern_const thy pred_name)
+    val thm_name = Binding.qualified_name 
+      (Long_Name.qualify (Long_Name.base_name name) "eqvt")
+    val attr = Attrib.internal (K eqvt_add)
+    val ((_, [thm']), ctxt') =  Local_Theory.note ((thm_name, [attr]), [thm]) ctxt
   in
-    raw_equivariance false preds raw_induct intrs ctxt 
+    (thm', ctxt')
   end
 
 fun equivariance_cmd pred_name ctxt =
   let
     val thy = ProofContext.theory_of ctxt
-    val (_, {preds, raw_induct, intrs, ...}) =
+    val ({names, ...}, {preds, raw_induct, intrs, ...}) =
       Inductive.the_inductive ctxt (Sign.intern_const thy pred_name)
+     val thms = raw_equivariance preds raw_induct intrs ctxt 
   in
-    raw_equivariance true preds raw_induct intrs ctxt |> snd
+    fold_map note_named_thm (names ~~ thms) ctxt |> snd
   end
 
 local structure P = Parse and K = Keyword in
--- a/Nominal/nominal_library.ML	Sun Jun 19 13:10:15 2011 +0900
+++ b/Nominal/nominal_library.ML	Sun Jun 19 13:14:37 2011 +0900
@@ -479,8 +479,10 @@
 
 (*
  inductive premises can be of the form
- R ... /\ P ...; split_conj_i picks out
- the part R or P part
+
+     R ... /\ P ...; 
+ 
+ split_conj_i picks out the part R or P part
 *)
 fun split_conj1 names (Const (@{const_name "conj"}, _) $ f1 $ _) = 
   (case head_of f1 of