Finished COND_PRS proof.
--- a/QuotScript.thy Mon Oct 26 10:02:50 2009 +0100
+++ b/QuotScript.thy Mon Oct 26 10:20:20 2009 +0100
@@ -486,16 +486,7 @@
apply (simp add: FUN_REL.simps Bex_def IN_RESPECTS)
done
-(* TODO:
-- [FORALL_PRS, EXISTS_PRS, COND_PRS];
-> val it =
- [|- !R abs rep.
- QUOTIENT R abs rep ==>
- !f. $! f <=> RES_FORALL (respects R) ((abs --> I) f),
- |- !R abs rep.
- QUOTIENT R abs rep ==>
- !f. $? f <=> RES_EXISTS (respects R) ((abs --> I) f),
-*)
+
lemma FORALL_PRS:
assumes a: "QUOTIENT R absf repf"
shows "All f = Ball (Respects R) ((absf ---> id) f)"
@@ -513,9 +504,7 @@
lemma COND_PRS:
assumes a: "QUOTIENT R absf repf"
shows "(if a then b else c) = absf (if a then repf b else repf c)"
- using a
- unfolding QUOTIENT_def
- sorry
+ using a unfolding QUOTIENT_def by auto
(* These are the fixed versions, general ones need to be proved. *)
lemma ho_all_prs: