Solved one of the strong-induction goals.
--- a/Nominal/ExCoreHaskell.thy Wed Mar 24 14:49:51 2010 +0100
+++ b/Nominal/ExCoreHaskell.thy Wed Mar 24 16:06:31 2010 +0100
@@ -87,6 +87,11 @@
lemmas fv_supp=tkind_ckind_ty_ty_lst_co_co_lst_trm_assoc_lst_pat_vt_lst_tvtk_lst_tvck_lst.supp(1-9,11,13,15)
lemmas supp=tkind_ckind_ty_ty_lst_co_co_lst_trm_assoc_lst_pat_vt_lst_tvtk_lst_tvck_lst.fv[simplified fv_supp]
+lemmas perm=tkind_ckind_ty_ty_lst_co_co_lst_trm_assoc_lst_pat_vt_lst_tvtk_lst_tvck_lst.perm
+
+lemma fresh_star_minus_perm: "as \<sharp>* - p = as \<sharp>* (p :: perm)"
+ unfolding fresh_star_def Ball_def
+ by auto (simp_all add: fresh_minus_perm)
lemma
assumes a01: "\<And>b. P1 b KStar"
@@ -145,7 +150,7 @@
\<Longrightarrow> P12 b (TVCKCons tvar ckind tvck_lst)"
shows "P1 (a :: 'a :: pt) tkind \<and>
P2 (b :: 'b :: pt) ckind \<and>
- P3 (c :: 'c :: pt) ty \<and>
+ P3 (c :: 'c :: {pt,fs}) ty \<and>
P4 (d :: 'd :: pt) ty_lst \<and>
P5 (e :: 'e :: pt) co \<and>
P6 (f :: 'f :: pt) co_lst \<and>
@@ -160,7 +165,53 @@
apply (rule tkind_ckind_ty_ty_lst_co_co_lst_trm_assoc_lst_pat_vt_lst_tvtk_lst_tvck_lst.induct)
apply (tactic {* ALLGOALS (REPEAT o rtac allI) *})
apply (tactic {* ALLGOALS (TRY o SOLVED' (simp_tac @{simpset} THEN_ALL_NEW resolve_tac @{thms assms} THEN_ALL_NEW asm_full_simp_tac @{simpset})) *})
+ apply(subgoal_tac "\<exists>pa. ((pa \<bullet> (atom (p \<bullet> tvar))) \<sharp> c \<and> supp (Abs (p \<bullet> {atom tvar}) (p \<bullet> ty)) \<sharp>* pa)")
+ prefer 2
+ apply (rule at_set_avoiding2_atom)
+ apply (simp add: finite_supp)
+ apply (simp add: finite_supp)
+ apply (simp add: fresh_def)
+ apply (simp only: supp_Abs eqvts)
+ apply blast
+ apply clarify
+ apply (simp only: perm)
+ apply(rule_tac t="TAll (p \<bullet> tvar) (p \<bullet> tkind) (p \<bullet> ty)" and s="TAll (pa \<bullet> p \<bullet> tvar) (p \<bullet> tkind) (pa \<bullet> p \<bullet> ty)" in subst)
+ apply (simp only: tkind_ckind_ty_ty_lst_co_co_lst_trm_assoc_lst_pat_vt_lst_tvtk_lst_tvck_lst.eq_iff)
+ apply (rule_tac x="-pa" in exI)
+ apply (simp add: alphas)
+ prefer 2
+ apply (rule a08)
+ apply simp
+ apply(rotate_tac 1)
+ apply(erule_tac x="(pa + p)" in allE)
+ apply simp
+ apply (simp add: eqvts eqvts_raw)
+ apply (simp add: eqvts eqvts_raw supp_Abs)
+ apply (rule conjI)
+ apply (simp add: eqvts[symmetric])
+ apply (simp add: fv_supp)
+ apply (rule_tac t="pa \<bullet> p \<bullet> supp ty - {pa \<bullet> p \<bullet> atom tvar}"
+ and s="pa \<bullet> (p \<bullet> supp ty - {p \<bullet> atom tvar})" in subst)
+ apply (simp add: eqvts)
+ apply (rule supp_perm_eq)
+ apply (simp add: eqvts)
+ apply (subst supp_finite_atom_set)
+ apply (simp add: eqvts[symmetric] finite_eqvt[symmetric] finite_supp)
+ apply (simp add: eqvts)
+ apply (simp add: eqvts)
+ apply (simp add: fv_supp)
+ apply (simp add: eqvts[symmetric])
+ apply (rule_tac t="pa \<bullet> p \<bullet> supp ty - {pa \<bullet> p \<bullet> atom tvar}"
+ and s="pa \<bullet> (p \<bullet> supp ty - {p \<bullet> atom tvar})" in subst)
+ apply (simp add: eqvts)
+ apply (subst supp_perm_eq)
+ apply (subst supp_finite_atom_set)
+ apply (simp add: eqvts[symmetric] finite_eqvt[symmetric] finite_supp)
+ apply (simp add: eqvts)
+ apply assumption
+ apply (simp add: fresh_star_minus_perm)
sorry
+
have g1: "P1 a (0 \<bullet> tkind)" using a[THEN conjunct1] by blast
have g2: "P2 b (0 \<bullet> ckind)" using a[THEN conjunct2,THEN conjunct1] by blast
have g3: "P3 c (0 \<bullet> ty) \<and>