--- a/Nominal/Ex/Let.thy Wed Jun 15 09:50:53 2011 +0900
+++ b/Nominal/Ex/Let.thy Wed Jun 15 11:06:31 2011 +0900
@@ -90,6 +90,69 @@
lemmas alpha_bn_inducts = alpha_bn_inducts_raw[quot_lifted]
+lemma Abs_lst_fcb:
+ fixes xs ys :: "'a :: fs"
+ and S T :: "'b :: fs"
+ assumes e: "(Abs_lst (ba xs) T) = (Abs_lst (ba ys) S)"
+ and f1: "\<And>x. x \<in> set (ba xs) \<Longrightarrow> x \<sharp> f xs T"
+ and f2: "\<And>x. supp T - set (ba xs) = supp S - set (ba ys) \<Longrightarrow> x \<in> set (ba ys) \<Longrightarrow> x \<sharp> f xs T"
+ and eqv: "\<And>p. p \<bullet> T = S \<Longrightarrow> p \<bullet> ba xs = ba ys \<Longrightarrow> supp p \<subseteq> set (ba xs) \<union> set (ba ys) \<Longrightarrow> p \<bullet> (f xs T) = f ys S"
+ shows "f xs T = f ys S"
+ using e apply -
+ apply(subst (asm) Abs_eq_iff2)
+ apply(simp add: alphas)
+ apply(elim exE conjE)
+ apply(rule trans)
+ apply(rule_tac p="p" in supp_perm_eq[symmetric])
+ apply(rule fresh_star_supp_conv)
+ apply(drule fresh_star_perm_set_conv)
+ apply(rule finite_Diff)
+ apply(rule finite_supp)
+ apply(subgoal_tac "(set (ba xs) \<union> set (ba ys)) \<sharp>* f xs T")
+ apply(metis Un_absorb2 fresh_star_Un)
+ apply(subst fresh_star_Un)
+ apply(rule conjI)
+ apply(simp add: fresh_star_def f1)
+ apply(simp add: fresh_star_def f2)
+ apply(simp add: eqv)
+ done
+
+lemma max_eqvt[eqvt]: "p \<bullet> (max (a :: _ :: pure) b) = max (p \<bullet> a) (p \<bullet> b)"
+ by (simp add: permute_pure)
+
+(* TODO: should be provided by nominal *)
+lemma [eqvt]: "p \<bullet> bn a = bn (p \<bullet> a)"
+ by descending (rule eqvts)
+
+(* PROBLEM: the proof needs induction on alpha_bn inside which is not possible... *)
+nominal_primrec
+ height_trm :: "trm \<Rightarrow> nat"
+and height_assn :: "assn \<Rightarrow> nat"
+where
+ "height_trm (Var x) = 1"
+| "height_trm (App l r) = max (height_trm l) (height_trm r)"
+| "height_trm (Lam v b) = 1 + (height_trm b)"
+| "height_trm (Let as b) = max (height_assn as) (height_trm b)"
+| "height_assn ANil = 0"
+| "height_assn (ACons v t as) = max (height_trm t) (height_assn as)"
+ apply (simp only: eqvt_def height_trm_height_assn_graph_def)
+ apply (rule, perm_simp, rule, rule TrueI)
+ apply (case_tac x)
+ apply (case_tac a rule: trm_assn.exhaust(1))
+ apply (auto)[4]
+ apply (drule_tac x="assn" in meta_spec)
+ apply (drule_tac x="trm" in meta_spec)
+ apply (simp add: alpha_bn_refl)
+ apply (case_tac b rule: trm_assn.exhaust(2))
+ apply (auto)
+ apply (erule Abs_lst1_fcb)
+ apply (simp_all add: pure_fresh)
+ apply (simp add: eqvt_at_def)
+ apply (erule Abs_lst_fcb)
+ apply (simp_all add: pure_fresh)
+ apply (simp_all add: eqvt_at_def eqvts)
+ oops
+
nominal_primrec
subst :: "name \<Rightarrow> trm \<Rightarrow> trm \<Rightarrow> trm"
and substa :: "name \<Rightarrow> trm \<Rightarrow> assn \<Rightarrow> assn"
@@ -118,6 +181,7 @@
apply auto
apply (simp_all add: meta_eq_to_obj_eq[OF subst_def, symmetric, unfolded fun_eq_iff])
apply (simp_all add: meta_eq_to_obj_eq[OF substa_def, symmetric, unfolded fun_eq_iff])
+ (*apply (erule Abs_lst1_fcb)*)
prefer 3
apply (erule alpha_bn_inducts)
apply (simp add: alpha_bn_refl)