Fixed LF for one quantifier over 2 premises.
--- a/Nominal/LFex.thy Fri Mar 05 09:41:22 2010 +0100
+++ b/Nominal/LFex.thy Fri Mar 05 10:23:40 2010 +0100
@@ -50,11 +50,9 @@
(t3 \<approx>tr s3 \<longrightarrow> (p \<bullet> t3) \<approx>tr (p \<bullet> s3))"
apply(rule alpha_rkind_alpha_rty_alpha_rtrm.induct)
apply (simp_all add: alpha_rkind_alpha_rty_alpha_rtrm_inj)
-apply (erule alpha_gen_compose_eqvt)
-apply (simp_all add: rfv_eqvt eqvts atom_eqvt)
-apply (erule alpha_gen_compose_eqvt)
-apply (simp_all add: rfv_eqvt eqvts atom_eqvt)
-apply (erule alpha_gen_compose_eqvt)
+apply (erule_tac [!] conjE)+
+apply (erule_tac [!] exi[of _ _ "p"])
+apply (erule_tac [!] alpha_gen_compose_eqvt)
apply (simp_all add: rfv_eqvt eqvts atom_eqvt)
done
@@ -160,6 +158,14 @@
apply(simp_all only: kind_ty_trm_fs)
done
+lemma ex_out:
+ "(\<exists>x. Z x \<and> Q) = (Q \<and> (\<exists>x. Z x))"
+ "(\<exists>x. Q \<and> Z x) = (Q \<and> (\<exists>x. Z x))"
+ "(\<exists>x. P x \<and> Q \<and> Z x) = (Q \<and> (\<exists>x. P x \<and> Z x))"
+ "(\<exists>x. Q \<and> P x \<and> Z x) = (Q \<and> (\<exists>x. P x \<and> Z x))"
+apply (blast)+
+done
+
lemma supp_eqs:
"supp TYP = {}"
"supp rkind = fv_kind rkind \<Longrightarrow> supp (KPI rty name rkind) = supp rty \<union> supp (Abs {atom name} rkind)"
@@ -170,13 +176,15 @@
"supp (VAR x) = {atom x}"
"supp (APP M N) = supp M \<union> supp N"
"supp rtrm = fv_trm rtrm \<Longrightarrow> supp (LAM rty name rtrm) = supp rty \<union> supp (Abs {atom name} rtrm)"
- apply(simp_all (no_asm) add: supp_def)
+ apply(simp_all (no_asm) add: supp_def permute_set_eq atom_eqvt)
apply(simp_all only: kind_ty_trm_inj Abs_eq_iff alpha_gen)
- apply(simp_all only: insert_eqvt empty_eqvt atom_eqvt supp_eqvt[symmetric] fv_eqvt[symmetric])
- apply(simp_all add: Collect_imp_eq Collect_neg_eq[symmetric] Set.Un_commute)
- apply(simp_all add: supp_at_base[simplified supp_def])
+ apply(simp_all only:ex_out)
+ apply(simp_all only: supp_eqvt[symmetric] fv_eqvt[symmetric] eqvts[symmetric])
+ apply(simp_all add: Collect_imp_eq Collect_neg_eq[symmetric])
+ apply(simp_all add: supp_at_base[simplified supp_def] Un_commute)
done
+
lemma supp_fv:
"supp t1 = fv_kind t1"
"supp t2 = fv_ty t2"