merge
authorCezary Kaliszyk <kaliszyk@in.tum.de>
Mon, 20 Jun 2011 20:09:51 +0900
changeset 2879 ac42c37ffbde
parent 2877 3e82c1ced5e4 (current diff)
parent 2878 06d91b7b5756 (diff)
child 2881 3c981d009fe5
merge
--- a/Attic/FIXME-TODO	Mon Jun 20 20:09:30 2011 +0900
+++ b/Attic/FIXME-TODO	Mon Jun 20 20:09:51 2011 +0900
@@ -8,22 +8,14 @@
 Higher Priority
 ===============
 
-
-- Also, in the interest of making nicer generated documentation, you
-  might want to change all your "section" headings in Quotient.thy to
-  "subsection", and add a "header" statement to the top of the file.
-  Otherwise, each "section" gets its own chapter in the generated pdf,
-  when the rest of HOL has one chapter per theory file (the chapter
-  title comes from the "header" statement).
-
 - If the constant definition gives the wrong definition
   term, one gets a cryptic message about absrep_fun
 
-- Handle theorems that include Ball/Bex. For this, would 
-  it help if we introduced separate Bex and Ball constants 
-  for quotienting?
+- Handle theorems that include Ball/Bex.
+  Workaround: Unfolding Ball_def/Bex_def is enough to lift,
+    in some cases regularization is harder though.
 
-- The user should be able to give quotient_respects and 
+- The user should be able to give quotient_respects and
   preserves theorems in a more natural form.
 
 Lower Priority
@@ -32,8 +24,6 @@
 - the quot_lifted attribute should rename variables so they do not
   suggest that they talk about raw terms.
 
-- accept partial equivalence relations
-
 - think about what happens if things go wrong (like
   theorem cannot be lifted) / proper diagnostic 
   messages for the user
@@ -52,7 +42,7 @@
   [QuotList, QuotOption, QuotPair...] could be automatically
   proven?
 
-- Examples: Finite multiset.
+- Examples: Finite multiset, Dlist.
 
 - The current syntax of the quotient_definition is
 
--- a/Attic/Unused.thy	Mon Jun 20 20:09:30 2011 +0900
+++ b/Attic/Unused.thy	Mon Jun 20 20:09:51 2011 +0900
@@ -1,164 +1,11 @@
 (*notation ( output) "prop" ("#_" [1000] 1000) *)
 notation ( output) "Trueprop" ("#_" [1000] 1000)
 
-function(sequential)
-    akind :: "kind \<Rightarrow> kind \<Rightarrow> bool" ("_ \<approx>ki _" [100, 100] 100)
-and aty   :: "ty \<Rightarrow> ty \<Rightarrow> bool"     ("_ \<approx>ty _" [100, 100] 100)
-and atrm  :: "trm \<Rightarrow> trm \<Rightarrow> bool"   ("_ \<approx>tr _" [100, 100] 100)
-where
-  a1: "(Type) \<approx>ki (Type) = True"
-| a2: "(KPi A x K) \<approx>ki (KPi A' x' K') = (A \<approx>ty A' \<and> (\<exists>pi. (rfv_kind K - {atom x} = rfv_kind K' - {atom x'} \<and> (rfv_kind K - {atom x})\<sharp>* pi \<and> (pi \<bullet> K) \<approx>ki K' \<and> (pi \<bullet> x) = x')))"
-| "_ \<approx>ki _ = False"
-| a3: "(TConst i) \<approx>ty (TConst j) = (i = j)"
-| a4: "(TApp A M) \<approx>ty (TApp A' M') = (A \<approx>ty A' \<and> M \<approx>tr M')"
-| a5: "(TPi A x B) \<approx>ty (TPi A' x' B') = ((A \<approx>ty A') \<and> (\<exists>pi. rfv_ty B - {atom x} = rfv_ty B' - {atom x'} \<and> (rfv_ty B - {atom x})\<sharp>* pi \<and> (pi \<bullet> B) \<approx>ty B' \<and> (pi \<bullet> x) = x'))"
-| "_ \<approx>ty _ = False"
-| a6: "(Const i) \<approx>tr (Const j) = (i = j)"
-| a7: "(Var x) \<approx>tr (Var y) = (x = y)"
-| a8: "(App M N) \<approx>tr (App M' N') = (M \<approx>tr M' \<and> N \<approx>tr N')"
-| a9: "(Lam A x M) \<approx>tr (Lam A' x' M') = (A \<approx>ty A' \<and> (\<exists>pi. rfv_trm M - {atom x} = rfv_trm M' - {atom x'} \<and> (rfv_trm M - {atom x})\<sharp>* pi \<and> (pi \<bullet> M) \<approx>tr M' \<and> (pi \<bullet> x) = x'))"
-| "_ \<approx>tr _ = False"
-apply (pat_completeness)
-apply simp_all
-done
-termination
-by (size_change)
-
-
-
-lemma regularize_to_injection:
-  shows "(QUOT_TRUE l \<Longrightarrow> y) \<Longrightarrow> (l = r) \<longrightarrow> y"
-  by(auto simp add: QUOT_TRUE_def)
-
 syntax
   "Bex1_rel" :: "id \<Rightarrow> ('a \<Rightarrow> 'a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool" ("(3\<exists>!!_\<in>_./ _)" [0, 0, 10] 10)
 translations
   "\<exists>!!x\<in>A. P"  == "Bex1_rel A (%x. P)"
 
-
-(* Atomize infrastructure *)
-(* FIXME/TODO: is this really needed? *)
-(*
-lemma atomize_eqv:
-  shows "(Trueprop A \<equiv> Trueprop B) \<equiv> (A \<equiv> B)"
-proof
-  assume "A \<equiv> B"
-  then show "Trueprop A \<equiv> Trueprop B" by unfold
-next
-  assume *: "Trueprop A \<equiv> Trueprop B"
-  have "A = B"
-  proof (cases A)
-    case True
-    have "A" by fact
-    then show "A = B" using * by simp
-  next
-    case False
-    have "\<not>A" by fact
-    then show "A = B" using * by auto
-  qed
-  then show "A \<equiv> B" by (rule eq_reflection)
-qed
-*)
-
-
-ML {*
-  fun dest_cbinop t =
-    let
-      val (t2, rhs) = Thm.dest_comb t;
-      val (bop, lhs) = Thm.dest_comb t2;
-    in
-      (bop, (lhs, rhs))
-    end
-*}
-
-ML {*
-  fun dest_ceq t =
-    let
-      val (bop, pair) = dest_cbinop t;
-      val (bop_s, _) = Term.dest_Const (Thm.term_of bop);
-    in
-      if bop_s = "op =" then pair else (raise CTERM ("Not an equality", [t]))
-    end
-*}
-
-ML {*
-  fun split_binop_conv t =
-    let
-      val (lhs, rhs) = dest_ceq t;
-      val (bop, _) = dest_cbinop lhs;
-      val [clT, cr2] = bop |> Thm.ctyp_of_term |> Thm.dest_ctyp;
-      val [cmT, crT] = Thm.dest_ctyp cr2;
-    in
-      Drule.instantiate' [SOME clT, SOME cmT, SOME crT] [NONE, NONE, NONE, NONE, SOME bop] @{thm arg_cong2}
-    end
-*}
-
-
-ML {*
-  fun split_arg_conv t =
-    let
-      val (lhs, rhs) = dest_ceq t;
-      val (lop, larg) = Thm.dest_comb lhs;
-      val [caT, crT] = lop |> Thm.ctyp_of_term |> Thm.dest_ctyp;
-    in
-      Drule.instantiate' [SOME caT, SOME crT] [NONE, NONE, SOME lop] @{thm arg_cong}
-    end
-*}
-
-ML {*
-  fun split_binop_tac n thm =
-    let
-      val concl = Thm.cprem_of thm n;
-      val (_, cconcl) = Thm.dest_comb concl;
-      val rewr = split_binop_conv cconcl;
-    in
-      rtac rewr n thm
-    end
-      handle CTERM _ => Seq.empty
-*}
-
-
-ML {*
-  fun split_arg_tac n thm =
-    let
-      val concl = Thm.cprem_of thm n;
-      val (_, cconcl) = Thm.dest_comb concl;
-      val rewr = split_arg_conv cconcl;
-    in
-      rtac rewr n thm
-    end
-      handle CTERM _ => Seq.empty
-*}
-
-
-lemma trueprop_cong:
-  shows "(a \<equiv> b) \<Longrightarrow> (Trueprop a \<equiv> Trueprop b)"
-  by auto
-
-lemma list_induct_hol4:
-  fixes P :: "'a list \<Rightarrow> bool"
-  assumes a: "((P []) \<and> (\<forall>t. (P t) \<longrightarrow> (\<forall>h. (P (h # t)))))"
-  shows "\<forall>l. (P l)"
-  using a
-  apply (rule_tac allI)
-  apply (induct_tac "l")
-  apply (simp)
-  apply (metis)
-  done
-
-ML {*
-val no_vars = Thm.rule_attribute (fn context => fn th =>
-  let
-    val ctxt = Variable.set_body false (Context.proof_of context);
-    val ((_, [th']), _) = Variable.import true [th] ctxt;
-  in th' end);
-*}
-
-(*lemma equality_twice:
-  "a = c \<Longrightarrow> b = d \<Longrightarrow> (a = b \<longrightarrow> c = d)"
-by auto*)
-
-
 (*interpretation code *)
 (*val bindd = ((Binding.make ("", Position.none)), ([]: Attrib.src list))
   val ((_, [eqn1pre]), lthy5) = Variable.import true [ABS_def] lthy4;
--- a/Attic/UnusedQuotMain.thy	Mon Jun 20 20:09:30 2011 +0900
+++ b/Attic/UnusedQuotMain.thy	Mon Jun 20 20:09:51 2011 +0900
@@ -1,687 +1,3 @@
-(* Code for getting the goal *)
-apply (tactic {* (ObjectLogic.full_atomize_tac THEN' gen_frees_tac @{context}) 1 *})
-ML_prf {* val qtm = #concl (fst (Subgoal.focus @{context} 1 (#goal (Isar.goal ())))) *}
-
-
-section {*  Infrastructure about definitions *}
-
-(* Does the same as 'subst' in a given theorem *)
-ML {*
-fun eqsubst_thm ctxt thms thm =
-  let
-    val goalstate = Goal.init (Thm.cprop_of thm)
-    val a' = case (SINGLE (EqSubst.eqsubst_tac ctxt [0] thms 1) goalstate) of
-      NONE => error "eqsubst_thm"
-    | SOME th => cprem_of th 1
-    val tac = (EqSubst.eqsubst_tac ctxt [0] thms 1) THEN simp_tac HOL_ss 1
-    val goal = Logic.mk_equals (term_of (Thm.cprop_of thm), term_of a');
-    val cgoal = cterm_of (ProofContext.theory_of ctxt) goal
-    val rt = Goal.prove_internal [] cgoal (fn _ => tac);
-  in
-    @{thm equal_elim_rule1} OF [rt, thm]
-  end
-*}
-
-(* expects atomized definitions *)
-ML {*
-fun add_lower_defs_aux lthy thm =
-  let
-    val e1 = @{thm fun_cong} OF [thm];
-    val f = eqsubst_thm lthy @{thms fun_map.simps} e1;
-    val g = simp_ids f
-  in
-    (simp_ids thm) :: (add_lower_defs_aux lthy g)
-  end
-  handle _ => [simp_ids thm]
-*}
-
-ML {*
-fun add_lower_defs lthy def =
-  let
-    val def_pre_sym = symmetric def
-    val def_atom = atomize_thm def_pre_sym
-    val defs_all = add_lower_defs_aux lthy def_atom
-  in
-    map Thm.varifyT defs_all
-  end
-*}
-
-
-
-ML {*
-fun repeat_eqsubst_thm ctxt thms thm =
-  repeat_eqsubst_thm ctxt thms (eqsubst_thm ctxt thms thm)
-  handle _ => thm
-*}
-
-
-ML {*
-fun eqsubst_prop ctxt thms t =
-  let
-    val goalstate = Goal.init (cterm_of (ProofContext.theory_of ctxt) t)
-    val a' = case (SINGLE (EqSubst.eqsubst_tac ctxt [0] thms 1) goalstate) of
-      NONE => error "eqsubst_prop"
-    | SOME th => cprem_of th 1
-  in term_of a' end
-*}
-
-ML {*
-  fun repeat_eqsubst_prop ctxt thms t =
-    repeat_eqsubst_prop ctxt thms (eqsubst_prop ctxt thms t)
-    handle _ => t
-*}
-
-
-text {* tyRel takes a type and builds a relation that a quantifier over this
-  type needs to respect. *}
-ML {*
-fun tyRel ty rty rel lthy =
-  if Sign.typ_instance (ProofContext.theory_of lthy) (ty, rty)
-  then rel
-  else (case ty of
-          Type (s, tys) =>
-            let
-              val tys_rel = map (fn ty => ty --> ty --> @{typ bool}) tys;
-              val ty_out = ty --> ty --> @{typ bool};
-              val tys_out = tys_rel ---> ty_out;
-            in
-            (case (maps_lookup (ProofContext.theory_of lthy) s) of
-               SOME (info) => list_comb (Const (#relfun info, tys_out),
-                              map (fn ty => tyRel ty rty rel lthy) tys)
-             | NONE  => HOLogic.eq_const ty
-            )
-            end
-        | _ => HOLogic.eq_const ty)
-*}
-
-(* 
-ML {* cterm_of @{theory} 
-  (tyRel @{typ "'a \<Rightarrow> 'a list \<Rightarrow> 't \<Rightarrow> 't"} (Logic.varifyT @{typ "'a list"}) 
-         @{term "f::('a list \<Rightarrow> 'a list \<Rightarrow> bool)"} @{context}) 
-*} 
-*)
-
-
-ML {*
-fun mk_babs ty ty' = Const (@{const_name "Babs"}, [ty' --> @{typ bool}, ty] ---> ty)
-fun mk_ball ty = Const (@{const_name "Ball"}, [ty, ty] ---> @{typ bool})
-fun mk_bex ty = Const (@{const_name "Bex"}, [ty, ty] ---> @{typ bool})
-fun mk_resp ty = Const (@{const_name Respects}, [[ty, ty] ---> @{typ bool}, ty] ---> @{typ bool})
-*}
-
-(* applies f to the subterm of an abstractions, otherwise to the given term *)
-ML {*
-fun apply_subt f trm =
-  case trm of
-    Abs (x, T, t) => 
-       let 
-         val (x', t') = Term.dest_abs (x, T, t)
-       in
-         Term.absfree (x', T, f t') 
-       end
-  | _ => f trm
-*}
-
-
-
-(* FIXME: if there are more than one quotient, then you have to look up the relation *)
-ML {*
-fun my_reg lthy rel rty trm =
-  case trm of
-    Abs (x, T, t) =>
-       if (needs_lift rty T) then
-         let
-            val rrel = tyRel T rty rel lthy
-         in
-           (mk_babs (fastype_of trm) T) $ (mk_resp T $ rrel) $ (apply_subt (my_reg lthy rel rty) trm)
-         end
-       else
-         Abs(x, T, (apply_subt (my_reg lthy rel rty) t))
-  | Const (@{const_name "All"}, ty) $ (t as Abs (x, T, _)) =>
-       let
-          val ty1 = domain_type ty
-          val ty2 = domain_type ty1
-          val rrel = tyRel T rty rel lthy
-       in
-         if (needs_lift rty T) then
-           (mk_ball ty1) $ (mk_resp ty2 $ rrel) $ (apply_subt (my_reg lthy rel rty) t)
-         else
-           Const (@{const_name "All"}, ty) $ apply_subt (my_reg lthy rel rty) t
-       end
-  | Const (@{const_name "Ex"}, ty) $ (t as Abs (x, T, _)) =>
-       let
-          val ty1 = domain_type ty
-          val ty2 = domain_type ty1
-          val rrel = tyRel T rty rel lthy
-       in
-         if (needs_lift rty T) then
-           (mk_bex ty1) $ (mk_resp ty2 $ rrel) $ (apply_subt (my_reg lthy rel rty) t)
-         else
-           Const (@{const_name "Ex"}, ty) $ apply_subt (my_reg lthy rel rty) t
-       end
-  | Const (@{const_name "op ="}, ty) $ t =>
-      if needs_lift rty (fastype_of t) then
-        (tyRel (fastype_of t) rty rel lthy) $ t   (* FIXME: t should be regularised too *)
-      else Const (@{const_name "op ="}, ty) $ (my_reg lthy rel rty t)
-  | t1 $ t2 => (my_reg lthy rel rty t1) $ (my_reg lthy rel rty t2)
-  | _ => trm
-*}
-
-(* For polymorphic types we need to find the type of the Relation term. *)
-(* TODO: we assume that the relation is a Constant. Is this always true? *)
-ML {*
-fun my_reg_inst lthy rel rty trm =
-  case rel of
-    Const (n, _) => Syntax.check_term lthy
-      (my_reg lthy (Const (n, dummyT)) (Logic.varifyT rty) trm)
-*}
-
-(*
-ML {*
-  val r = Free ("R", dummyT);
-  val t = (my_reg_inst @{context} r @{typ "'a list"} @{term "\<forall>(x::'b list). P x"});
-  val t2 = Syntax.check_term @{context} t;
-  cterm_of @{theory} t2
-*}
-*)
-
-text {* Assumes that the given theorem is atomized *}
-ML {*
-  fun build_regularize_goal thm rty rel lthy =
-     Logic.mk_implies
-       ((prop_of thm),
-       (my_reg_inst lthy rel rty (prop_of thm)))
-*}
-
-ML {*
-fun regularize thm rty rel rel_eqv rel_refl lthy =
-  let
-    val goal = build_regularize_goal thm rty rel lthy;
-    fun tac ctxt =
-      (ObjectLogic.full_atomize_tac) THEN'
-      REPEAT_ALL_NEW (FIRST' [
-        rtac rel_refl,
-        atac,
-        rtac @{thm universal_twice},
-        (rtac @{thm impI} THEN' atac),
-        rtac @{thm implication_twice},
-        EqSubst.eqsubst_tac ctxt [0]
-          [(@{thm equiv_res_forall} OF [rel_eqv]),
-           (@{thm equiv_res_exists} OF [rel_eqv])],
-        (* For a = b \<longrightarrow> a \<approx> b *)
-        (rtac @{thm impI} THEN' (asm_full_simp_tac HOL_ss) THEN' rtac rel_refl),
-        (rtac @{thm RIGHT_RES_FORALL_REGULAR})
-      ]);
-    val cthm = Goal.prove lthy [] [] goal
-      (fn {context, ...} => tac context 1);
-  in
-    cthm OF [thm]
-  end
-*}
-
-(*consts Rl :: "'a list \<Rightarrow> 'a list \<Rightarrow> bool"
-axioms Rl_eq: "EQUIV Rl"
-
-quotient ql = "'a list" / "Rl"
-  by (rule Rl_eq)
-ML {*
-  ctyp_of @{theory} (exchange_ty @{context} (Logic.varifyT @{typ "'a list"}) (Logic.varifyT @{typ "'a ql"}) @{typ "nat list \<Rightarrow> (nat \<times> nat) list"});
-  ctyp_of @{theory} (exchange_ty @{context} (Logic.varifyT @{typ "nat \<times> nat"}) (Logic.varifyT @{typ "int"}) @{typ "nat list \<Rightarrow> (nat \<times> nat) list"})
-*}
-*)
-
-ML {*
-(* returns all subterms where two types differ *)
-fun diff (T, S) Ds =
-  case (T, S) of
-    (TVar v, TVar u) => if v = u then Ds else (T, S)::Ds 
-  | (TFree x, TFree y) => if x = y then Ds else (T, S)::Ds
-  | (Type (a, Ts), Type (b, Us)) => 
-      if a = b then diffs (Ts, Us) Ds else (T, S)::Ds
-  | _ => (T, S)::Ds
-and diffs (T::Ts, U::Us) Ds = diffs (Ts, Us) (diff (T, U) Ds)
-  | diffs ([], []) Ds = Ds
-  | diffs _ _ = error "Unequal length of type arguments"
-
-*}
-
-ML {*
-fun build_repabs_term lthy thm consts rty qty =
-  let
-    (* TODO: The rty and qty stored in the quotient_info should
-       be varified, so this will soon not be needed *)
-    val rty = Logic.varifyT rty;
-    val qty = Logic.varifyT qty;
-
-  fun mk_abs tm =
-    let
-      val ty = fastype_of tm
-    in Syntax.check_term lthy ((get_fun_OLD absF (rty, qty) lthy ty) $ tm) end
-  fun mk_repabs tm =
-    let
-      val ty = fastype_of tm
-    in Syntax.check_term lthy ((get_fun_OLD repF (rty, qty) lthy ty) $ (mk_abs tm)) end
-
-    fun is_lifted_const (Const (x, _)) = member (op =) consts x
-      | is_lifted_const _ = false;
-
-    fun build_aux lthy tm =
-      case tm of
-        Abs (a as (_, vty, _)) =>
-          let
-            val (vs, t) = Term.dest_abs a;
-            val v = Free(vs, vty);
-            val t' = lambda v (build_aux lthy t)
-          in
-            if (not (needs_lift rty (fastype_of tm))) then t'
-            else mk_repabs (
-              if not (needs_lift rty vty) then t'
-              else
-                let
-                  val v' = mk_repabs v;
-                  (* TODO: I believe 'beta' is not needed any more *)
-                  val t1 = (* Envir.beta_norm *) (t' $ v')
-                in
-                  lambda v t1
-                end)
-          end
-      | x =>
-        case Term.strip_comb tm of
-          (Const(@{const_name Respects}, _), _) => tm
-        | (opp, tms0) =>
-          let
-            val tms = map (build_aux lthy) tms0
-            val ty = fastype_of tm
-          in
-            if (is_lifted_const opp andalso needs_lift rty ty) then
-            mk_repabs (list_comb (opp, tms))
-            else if ((Term.is_Free opp) andalso (length tms > 0) andalso (needs_lift rty ty)) then
-              mk_repabs (list_comb (opp, tms))
-            else if tms = [] then opp
-            else list_comb(opp, tms)
-          end
-  in
-    repeat_eqsubst_prop lthy @{thms id_def_sym}
-      (build_aux lthy (Thm.prop_of thm))
-  end
-*}
-
-text {* Builds provable goals for regularized theorems *}
-ML {*
-fun build_repabs_goal ctxt thm cons rty qty =
-  Logic.mk_equals ((Thm.prop_of thm), (build_repabs_term ctxt thm cons rty qty))
-*}
-
-ML {*
-fun repabs lthy thm consts rty qty quot_thm reflex_thm trans_thm rsp_thms =
-  let
-    val rt = build_repabs_term lthy thm consts rty qty;
-    val rg = Logic.mk_equals ((Thm.prop_of thm), rt);
-    fun tac ctxt = (ObjectLogic.full_atomize_tac) THEN'
-      (REPEAT_ALL_NEW (r_mk_comb_tac ctxt rty quot_thm reflex_thm trans_thm rsp_thms));
-    val cthm = Goal.prove lthy [] [] rg (fn x => tac (#context x) 1);
-  in
-    @{thm Pure.equal_elim_rule1} OF [cthm, thm]
-  end
-*}
-
-
-(* TODO: Check if it behaves properly with varifyed rty *)
-ML {*
-fun findabs_all rty tm =
-  case tm of
-    Abs(_, T, b) =>
-      let
-        val b' = subst_bound ((Free ("x", T)), b);
-        val tys = findabs_all rty b'
-        val ty = fastype_of tm
-      in if needs_lift rty ty then (ty :: tys) else tys
-      end
-  | f $ a => (findabs_all rty f) @ (findabs_all rty a)
-  | _ => [];
-fun findabs rty tm = distinct (op =) (findabs_all rty tm)
-*}
+(* Could go in the programming tutorial *)
 
-
-(* Currently useful only for LAMBDA_PRS *)
-ML {*
-fun make_simp_prs_thm lthy quot_thm thm typ =
-  let
-    val (_, [lty, rty]) = dest_Type typ;
-    val thy = ProofContext.theory_of lthy;
-    val (lcty, rcty) = (ctyp_of thy lty, ctyp_of thy rty)
-    val inst = [SOME lcty, NONE, SOME rcty];
-    val lpi = Drule.instantiate' inst [] thm;
-    val tac =
-      (compose_tac (false, lpi, 2)) THEN_ALL_NEW
-      (quotient_tac quot_thm);
-    val gc = Drule.strip_imp_concl (cprop_of lpi);
-    val t = Goal.prove_internal [] gc (fn _ => tac 1)
-  in
-    MetaSimplifier.rewrite_rule [@{thm eq_reflection} OF @{thms id_apply}] t
-  end
-*}
-
-ML {*
-fun findallex_all rty qty tm =
-  case tm of
-    Const (@{const_name All}, T) $ (s as (Abs(_, _, b))) =>
-      let
-        val (tya, tye) = findallex_all rty qty s
-      in if needs_lift rty T then
-        ((T :: tya), tye)
-      else (tya, tye) end
-  | Const (@{const_name Ex}, T) $ (s as (Abs(_, _, b))) =>
-      let
-        val (tya, tye) = findallex_all rty qty s
-      in if needs_lift rty T then
-        (tya, (T :: tye))
-      else (tya, tye) end
-  | Abs(_, T, b) =>
-      findallex_all rty qty (subst_bound ((Free ("x", T)), b))
-  | f $ a =>
-      let
-        val (a1, e1) = findallex_all rty qty f;
-        val (a2, e2) = findallex_all rty qty a;
-      in (a1 @ a2, e1 @ e2) end
-  | _ => ([], []);
-*}
-
-ML {*
-fun findallex lthy rty qty tm =
-  let
-    val (a, e) = findallex_all rty qty tm;
-    val (ad, ed) = (map domain_type a, map domain_type e);
-    val (au, eu) = (distinct (op =) ad, distinct (op =) ed);
-    val (rty, qty) = (Logic.varifyT rty, Logic.varifyT qty)
-  in
-    (map (exchange_ty lthy rty qty) au, map (exchange_ty lthy rty qty) eu)
-  end
-*}
-
-ML {*
-fun make_allex_prs_thm lthy quot_thm thm typ =
-  let
-    val (_, [lty, rty]) = dest_Type typ;
-    val thy = ProofContext.theory_of lthy;
-    val (lcty, rcty) = (ctyp_of thy lty, ctyp_of thy rty)
-    val inst = [NONE, SOME lcty];
-    val lpi = Drule.instantiate' inst [] thm;
-    val tac =
-      (compose_tac (false, lpi, 1)) THEN_ALL_NEW
-      (quotient_tac quot_thm);
-    val gc = Drule.strip_imp_concl (cprop_of lpi);
-    val t = Goal.prove_internal [] gc (fn _ => tac 1)
-    val t_noid = MetaSimplifier.rewrite_rule
-      [@{thm eq_reflection} OF @{thms id_apply}] t;
-    val t_sym = @{thm "HOL.sym"} OF [t_noid];
-    val t_eq = @{thm "eq_reflection"} OF [t_sym]
-  in
-    t_eq
-  end
-*}
-
-ML {*
-fun lift_thm lthy qty qty_name rsp_thms defs rthm = 
-let
-  val _ = tracing ("raw theorem:\n" ^ Syntax.string_of_term lthy (prop_of rthm))
-
-  val (rty, rel, rel_refl, rel_eqv) = lookup_quot_data lthy qty;
-  val (trans2, reps_same, absrep, quot) = lookup_quot_thms lthy qty_name;
-  val consts = lookup_quot_consts defs;
-  val t_a = atomize_thm rthm;
-
-  val _ = tracing ("raw atomized theorem:\n" ^ Syntax.string_of_term lthy (prop_of t_a))
-
-  val t_r = regularize t_a rty rel rel_eqv rel_refl lthy;
-
-  val _ = tracing ("regularised theorem:\n" ^ Syntax.string_of_term lthy (prop_of t_r))
-
-  val t_t = repabs lthy t_r consts rty qty quot rel_refl trans2 rsp_thms;
-
-  val _ = tracing ("rep/abs injected theorem:\n" ^ Syntax.string_of_term lthy (prop_of t_t))
-
-  val (alls, exs) = findallex lthy rty qty (prop_of t_a);
-  val allthms = map (make_allex_prs_thm lthy quot @{thm FORALL_PRS}) alls
-  val exthms = map (make_allex_prs_thm lthy quot @{thm EXISTS_PRS}) exs
-  val t_a = MetaSimplifier.rewrite_rule (allthms @ exthms) t_t
-
-  val _ = tracing ("??:\n" ^ Syntax.string_of_term lthy (prop_of t_a))
-
-  val abs = findabs rty (prop_of t_a);
-  val aps = findaps rty (prop_of t_a);
-  val app_prs_thms = map (applic_prs lthy rty qty absrep) aps;
-  val lam_prs_thms = map (make_simp_prs_thm lthy quot @{thm LAMBDA_PRS}) abs;
-  val t_l = repeat_eqsubst_thm lthy (lam_prs_thms @ app_prs_thms) t_a;
-  
-  val _ = tracing ("??:\n" ^ Syntax.string_of_term lthy (prop_of t_l))
-
-  val defs_sym = flat (map (add_lower_defs lthy) defs);
-  val defs_sym_eq = map (fn x => eq_reflection OF [x]) defs_sym;
-  val t_id = simp_ids lthy t_l;
-
-  val _ = tracing ("??:\n" ^ Syntax.string_of_term lthy (prop_of t_id))
-
-  val t_d0 = MetaSimplifier.rewrite_rule defs_sym_eq t_id;
-
-  val _ = tracing ("??:\n" ^ Syntax.string_of_term lthy (prop_of t_d0))
-
-  val t_d = repeat_eqsubst_thm lthy defs_sym t_d0;
-
-  val _ = tracing ("??:\n" ^ Syntax.string_of_term lthy (prop_of t_d))
-
-  val t_r = MetaSimplifier.rewrite_rule [reps_same] t_d;
-
-  val _ = tracing ("??:\n" ^ Syntax.string_of_term lthy (prop_of t_r))
-
-  val t_rv = ObjectLogic.rulify t_r
-
-  val _ = tracing ("lifted theorem:\n" ^ Syntax.string_of_term lthy (prop_of t_rv))
-in
-  Thm.varifyT t_rv
-end
-*}
-
-ML {*
-fun lift_thm_note qty qty_name rsp_thms defs thm name lthy =
-  let
-    val lifted_thm = lift_thm lthy qty qty_name rsp_thms defs thm;
-    val (_, lthy2) = note (name, lifted_thm) lthy;
-  in
-    lthy2
-  end
-*}
-
-
-ML {*
-fun regularize_goal lthy thm rel_eqv rel_refl qtrm =
-  let
-    val reg_trm = mk_REGULARIZE_goal lthy (prop_of thm) qtrm;
-    fun tac lthy = regularize_tac lthy rel_eqv rel_refl;
-    val cthm = Goal.prove lthy [] [] reg_trm
-      (fn {context, ...} => tac context 1);
-  in
-    cthm OF [thm]
-  end
-*}
-
-ML {*
-fun repabs_goal lthy thm rty quot_thm reflex_thm trans_thm rsp_thms qtrm =
-  let
-    val rg = Syntax.check_term lthy (mk_inj_REPABS_goal lthy ((prop_of thm), qtrm));
-    fun tac ctxt = (ObjectLogic.full_atomize_tac) THEN'
-      (REPEAT_ALL_NEW (r_mk_comb_tac ctxt rty quot_thm reflex_thm trans_thm rsp_thms));
-    val cthm = Goal.prove lthy [] [] rg (fn x => tac (#context x) 1);
-  in
-    @{thm Pure.equal_elim_rule1} OF [cthm, thm]
-  end
-*}
-
-
-ML {*
-fun atomize_goal thy gl =
-  let
-    val vars = map Free (Term.add_frees gl []);
-    val all = if fastype_of gl = @{typ bool} then HOLogic.all_const else Term.all;
-    fun lambda_all (var as Free(_, T)) trm = (all T) $ lambda var trm;
-    val glv = fold lambda_all vars gl
-    val gla = (term_of o snd o Thm.dest_equals o cprop_of) (ObjectLogic.atomize (cterm_of thy glv))
-    val glf = Type.legacy_freeze gla
-  in
-    if fastype_of gl = @{typ bool} then @{term Trueprop} $ glf else glf
-  end
-*}
-
-
-ML {* atomize_goal @{theory} @{term "x memb [] = False"} *}
-ML {* atomize_goal @{theory} @{term "x = xa ? a # x = a # xa"} *}
-
-
-ML {*
-fun applic_prs lthy absrep (rty, qty) =
-  let
-    fun mk_rep (T, T') tm = (Quotient_Def.get_fun repF lthy (T, T')) $ tm;
-    fun mk_abs (T, T') tm = (Quotient_Def.get_fun absF lthy (T, T')) $ tm;
-    val (raty, rgty) = Term.strip_type rty;
-    val (qaty, qgty) = Term.strip_type qty;
-    val vs = map (fn _ => "x") qaty;
-    val ((fname :: vfs), lthy') = Variable.variant_fixes ("f" :: vs) lthy;
-    val f = Free (fname, qaty ---> qgty);
-    val args = map Free (vfs ~~ qaty);
-    val rhs = list_comb(f, args);
-    val largs = map2 mk_rep (raty ~~ qaty) args;
-    val lhs = mk_abs (rgty, qgty) (list_comb((mk_rep (raty ---> rgty, qaty ---> qgty) f), largs));
-    val llhs = Syntax.check_term lthy lhs;
-    val eq = Logic.mk_equals (llhs, rhs);
-    val ceq = cterm_of (ProofContext.theory_of lthy') eq;
-    val sctxt = HOL_ss addsimps (@{thms fun_map.simps id_simps} @ absrep);
-    val t = Goal.prove_internal [] ceq (fn _ => simp_tac sctxt 1)
-    val t_id = MetaSimplifier.rewrite_rule @{thms id_simps} t;
-  in
-    singleton (ProofContext.export lthy' lthy) t_id
-  end
-*}
-
-ML {*
-fun find_aps_all rtm qtm =
-  case (rtm, qtm) of
-    (Abs(_, T1, s1), Abs(_, T2, s2)) =>
-      find_aps_all (subst_bound ((Free ("x", T1)), s1)) (subst_bound ((Free ("x", T2)), s2))
-  | (((f1 as (Free (_, T1))) $ a1), ((f2 as (Free (_, T2))) $ a2)) =>
-      let
-        val sub = (find_aps_all f1 f2) @ (find_aps_all a1 a2)
-      in
-        if T1 = T2 then sub else (T1, T2) :: sub
-      end
-  | ((f1 $ a1), (f2 $ a2)) => (find_aps_all f1 f2) @ (find_aps_all a1 a2)
-  | _ => [];
-
-fun find_aps rtm qtm = distinct (op =) (find_aps_all rtm qtm)
-*}
-
-
-
-ML {*
-fun lift_thm_goal lthy qty qty_name rsp_thms defs rthm goal =
-let
-  val (rty, rel, rel_refl, rel_eqv) = lookup_quot_data lthy qty;
-  val (trans2, reps_same, absrep, quot) = lookup_quot_thms lthy qty_name;
-  val t_a = atomize_thm rthm;
-  val goal_a = atomize_goal (ProofContext.theory_of lthy) goal;
-  val t_r = regularize_goal lthy t_a rel_eqv rel_refl goal_a;
-  val t_t = repabs_goal lthy t_r rty quot rel_refl trans2 rsp_thms goal_a;
-  val (alls, exs) = findallex lthy rty qty (prop_of t_a);
-  val allthms = map (make_allex_prs_thm lthy quot @{thm FORALL_PRS}) alls
-  val exthms = map (make_allex_prs_thm lthy quot @{thm EXISTS_PRS}) exs
-  val t_a = MetaSimplifier.rewrite_rule (allthms @ exthms) t_t
-  val abs = findabs rty (prop_of t_a);
-  val aps = findaps rty (prop_of t_a);
-  val app_prs_thms = map (applic_prs lthy rty qty absrep) aps;
-  val lam_prs_thms = map (make_simp_prs_thm lthy quot @{thm LAMBDA_PRS}) abs;
-  val t_l = repeat_eqsubst_thm lthy (lam_prs_thms @ app_prs_thms) t_a;
-  val defs_sym = flat (map (add_lower_defs lthy) defs);
-  val defs_sym_eq = map (fn x => eq_reflection OF [x]) defs_sym;
-  val t_id = simp_ids lthy t_l;
-  val t_d0 = MetaSimplifier.rewrite_rule defs_sym_eq t_id;
-  val t_d = repeat_eqsubst_thm lthy defs_sym t_d0;
-  val t_r = MetaSimplifier.rewrite_rule [reps_same] t_d;
-  val t_rv = ObjectLogic.rulify t_r
-in
-  Thm.varifyT t_rv
-end
-*}
-
-ML {*
-fun lift_thm_goal_note lthy qty qty_name rsp_thms defs thm name goal =
-  let
-    val lifted_thm = lift_thm_goal lthy qty qty_name rsp_thms defs thm goal;
-    val (_, lthy2) = note (name, lifted_thm) lthy;
-  in
-    lthy2
-  end
-*}
-
-ML {*
-fun simp_ids_trm trm =
-  trm |>
-  MetaSimplifier.rewrite false @{thms eq_reflection[OF FUN_MAP_I] eq_reflection[OF id_apply] id_def_sym prod_fun_id map_id}
-  |> cprop_of |> Thm.dest_equals |> snd
-
-*}
-
-(* Unused part of the locale *)
-
-lemma R_trans:
-  assumes ab: "R a b"
-  and     bc: "R b c"
-  shows "R a c"
-proof -
-  have tr: "transp R" using equivp equivp_reflp_symp_transp[of R] by simp
-  moreover have ab: "R a b" by fact
-  moreover have bc: "R b c" by fact
-  ultimately show "R a c" unfolding transp_def by blast
-qed
-
-lemma R_sym:
-  assumes ab: "R a b"
-  shows "R b a"
-proof -
-  have re: "symp R" using equivp equivp_reflp_symp_transp[of R] by simp
-  then show "R b a" using ab unfolding symp_def by blast
-qed
-
-lemma R_trans2:
-  assumes ac: "R a c"
-  and     bd: "R b d"
-  shows "R a b = R c d"
-using ac bd
-by (blast intro: R_trans R_sym)
-
-lemma REPS_same:
-  shows "R (REP a) (REP b) \<equiv> (a = b)"
-proof -
-  have "R (REP a) (REP b) = (a = b)"
-  proof
-    assume as: "R (REP a) (REP b)"
-    from rep_prop
-    obtain x y
-      where eqs: "Rep a = R x" "Rep b = R y" by blast
-    from eqs have "R (Eps (R x)) (Eps (R y))" using as unfolding REP_def by simp
-    then have "R x (Eps (R y))" using lem9 by simp
-    then have "R (Eps (R y)) x" using R_sym by blast
-    then have "R y x" using lem9 by simp
-    then have "R x y" using R_sym by blast
-    then have "ABS x = ABS y" using thm11 by simp
-    then have "Abs (Rep a) = Abs (Rep b)" using eqs unfolding ABS_def by simp
-    then show "a = b" using rep_inverse by simp
-  next
-    assume ab: "a = b"
-    have "reflp R" using equivp equivp_reflp_symp_transp[of R] by simp
-    then show "R (REP a) (REP b)" unfolding reflp_def using ab by auto
-  qed
-  then show "R (REP a) (REP b) \<equiv> (a = b)" by simp
-qed
-
-
-
-
+ML_prf {* val qtm = #concl (fst (Subgoal.focus @{context} 1 (#goal (Isar.goal ())))) *}
--- a/Nominal/Ex/Let.thy	Mon Jun 20 20:09:30 2011 +0900
+++ b/Nominal/Ex/Let.thy	Mon Jun 20 20:09:51 2011 +0900
@@ -90,39 +90,11 @@
 
 lemmas alpha_bn_inducts = alpha_bn_inducts_raw[quot_lifted]
 
-lemma Abs_lst_fcb:
-  fixes xs ys :: "'a :: fs"
-    and S T :: "'b :: fs"
-  assumes e: "(Abs_lst (ba xs) T) = (Abs_lst (ba ys) S)"
-    and f1: "\<And>x. x \<in> set (ba xs) \<Longrightarrow> x \<sharp> f xs T"
-    and f2: "\<And>x. supp T - set (ba xs) = supp S - set (ba ys) \<Longrightarrow> x \<in> set (ba ys) \<Longrightarrow> x \<sharp> f xs T"
-    and eqv: "\<And>p. p \<bullet> T = S \<Longrightarrow> p \<bullet> ba xs = ba ys \<Longrightarrow> supp p \<subseteq> set (ba xs) \<union> set (ba ys) \<Longrightarrow> p \<bullet> (f xs T) = f ys S"
-  shows "f xs T = f ys S"
-  using e apply -
-  apply(subst (asm) Abs_eq_iff2)
-  apply(simp add: alphas)
-  apply(elim exE conjE)
-  apply(rule trans)
-  apply(rule_tac p="p" in supp_perm_eq[symmetric])
-  apply(rule fresh_star_supp_conv)
-  apply(drule fresh_star_perm_set_conv)
-  apply(rule finite_Diff)
-  apply(rule finite_supp)
-  apply(subgoal_tac "(set (ba xs) \<union> set (ba ys)) \<sharp>* f xs T")
-  apply(metis Un_absorb2 fresh_star_Un)
-  apply(subst fresh_star_Un)
-  apply(rule conjI)
-  apply(simp add: fresh_star_def f1)
-  apply(simp add: fresh_star_def f2)
-  apply(simp add: eqv)
-  done
-
 lemma max_eqvt[eqvt]: "p \<bullet> (max (a :: _ :: pure) b) = max (p \<bullet> a) (p \<bullet> b)"
   by (simp add: permute_pure)
 
 (* TODO: should be provided by nominal *)
-lemma [eqvt]: "p \<bullet> bn a = bn (p \<bullet> a)"
-  by descending (rule eqvts)
+lemmas [eqvt] = trm_assn.fv_bn_eqvt
 
 (* PROBLEM: the proof needs induction on alpha_bn inside which is not possible... *)
 nominal_primrec
@@ -151,6 +123,7 @@
   apply (erule Abs_lst_fcb)
   apply (simp_all add: pure_fresh)
   apply (simp_all add: eqvt_at_def eqvts)
+  apply (rule arg_cong) back
   oops
 
 nominal_primrec
--- a/Nominal/Nominal2_Abs.thy	Mon Jun 20 20:09:30 2011 +0900
+++ b/Nominal/Nominal2_Abs.thy	Mon Jun 20 20:09:51 2011 +0900
@@ -1036,6 +1036,60 @@
   apply(simp add: Abs1_eq_iff[OF s s])
   done
 
+lemma Abs_lst_fcb:
+  fixes xs ys :: "'a :: fs"
+    and S T :: "'b :: fs"
+  assumes e: "(Abs_lst (ba xs) T) = (Abs_lst (ba ys) S)"
+    and f1: "\<And>x. x \<in> set (ba xs) \<Longrightarrow> x \<sharp> f xs T"
+    and f2: "\<And>x. supp T - set (ba xs) = supp S - set (ba ys) \<Longrightarrow> x \<in> set (ba ys) \<Longrightarrow> x \<sharp> f xs T"
+    and eqv: "\<And>p. p \<bullet> T = S \<Longrightarrow> p \<bullet> ba xs = ba ys \<Longrightarrow> supp p \<subseteq> set (ba xs) \<union> set (ba ys) \<Longrightarrow> p \<bullet> (f xs T) = f ys S"
+  shows "f xs T = f ys S"
+  using e apply -
+  apply(subst (asm) Abs_eq_iff2)
+  apply(simp add: alphas)
+  apply(elim exE conjE)
+  apply(rule trans)
+  apply(rule_tac p="p" in supp_perm_eq[symmetric])
+  apply(rule fresh_star_supp_conv)
+  apply(drule fresh_star_perm_set_conv)
+  apply(rule finite_Diff)
+  apply(rule finite_supp)
+  apply(subgoal_tac "(set (ba xs) \<union> set (ba ys)) \<sharp>* f xs T")
+  apply(metis Un_absorb2 fresh_star_Un)
+  apply(subst fresh_star_Un)
+  apply(rule conjI)
+  apply(simp add: fresh_star_def f1)
+  apply(simp add: fresh_star_def f2)
+  apply(simp add: eqv)
+  done
+
+lemma Abs_set_fcb:
+  fixes xs ys :: "'a :: fs"
+    and S T :: "'b :: fs"
+  assumes e: "(Abs_set (ba xs) T) = (Abs_set (ba ys) S)"
+    and f1: "\<And>x. x \<in> ba xs \<Longrightarrow> x \<sharp> f xs T"
+    and f2: "\<And>x. supp T - ba xs = supp S - ba ys \<Longrightarrow> x \<in> ba ys \<Longrightarrow> x \<sharp> f xs T"
+    and eqv: "\<And>p. p \<bullet> T = S \<Longrightarrow> p \<bullet> ba xs = ba ys \<Longrightarrow> supp p \<subseteq> ba xs \<union> ba ys \<Longrightarrow> p \<bullet> (f xs T) = f ys S"
+  shows "f xs T = f ys S"
+  using e apply -
+  apply(subst (asm) Abs_eq_iff2)
+  apply(simp add: alphas)
+  apply(elim exE conjE)
+  apply(rule trans)
+  apply(rule_tac p="p" in supp_perm_eq[symmetric])
+  apply(rule fresh_star_supp_conv)
+  apply(drule fresh_star_perm_set_conv)
+  apply(rule finite_Diff)
+  apply(rule finite_supp)
+  apply(subgoal_tac "(ba xs \<union> ba ys) \<sharp>* f xs T")
+  apply(metis Un_absorb2 fresh_star_Un)
+  apply(subst fresh_star_Un)
+  apply(rule conjI)
+  apply(simp add: fresh_star_def f1)
+  apply(simp add: fresh_star_def f2)
+  apply(simp add: eqv)
+  done
+
 lemma Abs_res_fcb:
   fixes xs ys :: "('a :: at_base) set"
     and S T :: "'b :: fs"
--- a/TODO	Mon Jun 20 20:09:30 2011 +0900
+++ b/TODO	Mon Jun 20 20:09:51 2011 +0900
@@ -1,13 +1,23 @@
 Function definitions
 
-- export proofs bout alpha_bn
-- equations like
+- nominal_datatype should export proofs about alpha_bn: reflexivity, induction, ...?
 
+- nominal_datatype should declare xxx.fv_bn_eqvt as [eqvt]
+
+- equations that talk about True/False, for example
     | "simp p (App t1 t2) = (if True then (App (simp p t1) (simp p t2)) else t1)"
+  do not work (since 'function' does not work)
 
-  do not work
+- equivariance for functions can be derived automatically (knowing termination and
+  equivariance of the graph).
 
-Parser should check that:
+- for multiple simultanously defined functions, compatibility cases should fold the
+  definition and derive eqvt_at for the folded one
+
+- equivariance of the graph for multiple functions does not use equivariance
+  infrastructure
+
+Nominal_Datatype Parser should check that:
 
 - types of bindings match types of binding functions
 - fsets are not bound in lst bindings
@@ -16,9 +26,19 @@
 
 Smaller things:
 
-- maybe <type>_perm whould be called permute_<type>.simps;
+- maybe <t1_t2>.perm_simps should be called permute_<type>.simps;
   that would conform with the terminology in Nominal2
 
+- nominal_induct does not work without an induction rule
+
+- nominal_induct throws strange "THM" exceptions if not enough
+  variables are given
+
+- nominal_induct cannot avoid a term (for example function applied
+  to an argument).
+
+- .induct and .exhaust could be the default methods for induction/cases
+  on nominal datatypes
 
 Other: