a modified function package where, as a test, True has been injected into the compatibility condictions
authorChristian Urban <urbanc@in.tum.de>
Thu, 06 Jan 2011 23:06:45 +0000
changeset 2649 a8ebcb368a15
parent 2648 5d9724ad543d
child 2650 e5fa8de0e4bd
a modified function package where, as a test, True has been injected into the compatibility condictions
Nominal/Ex/LamTest.thy
Nominal/Ex/Lambda.thy
Nominal/Nominal2.thy
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Nominal/Ex/LamTest.thy	Thu Jan 06 23:06:45 2011 +0000
@@ -0,0 +1,1549 @@
+theory LamTest
+imports "../Nominal2" 
+begin
+
+atom_decl name
+
+nominal_datatype lam =
+  Var "name"
+| App "lam" "lam"
+| Lam x::"name" l::"lam"  bind x in l
+
+definition
+ "eqvt x \<equiv> \<forall>p. p \<bullet> x = x"
+
+
+ML {*
+
+
+val trace = Unsynchronized.ref false
+fun trace_msg msg = if ! trace then tracing (msg ()) else ()
+
+val boolT = HOLogic.boolT
+val mk_eq = HOLogic.mk_eq
+
+open Function_Lib
+open Function_Common
+
+datatype globals = Globals of
+ {fvar: term,
+  domT: typ,
+  ranT: typ,
+  h: term,
+  y: term,
+  x: term,
+  z: term,
+  a: term,
+  P: term,
+  D: term,
+  Pbool:term}
+
+datatype rec_call_info = RCInfo of
+ {RIvs: (string * typ) list,  (* Call context: fixes and assumes *)
+  CCas: thm list,
+  rcarg: term,                 (* The recursive argument *)
+  llRI: thm,
+  h_assum: term}
+
+
+datatype clause_context = ClauseContext of
+ {ctxt : Proof.context,
+  qs : term list,
+  gs : term list,
+  lhs: term,
+  rhs: term,
+  cqs: cterm list,
+  ags: thm list,
+  case_hyp : thm}
+
+
+fun transfer_clause_ctx thy (ClauseContext { ctxt, qs, gs, lhs, rhs, cqs, ags, case_hyp }) =
+  ClauseContext { ctxt = ProofContext.transfer thy ctxt,
+    qs = qs, gs = gs, lhs = lhs, rhs = rhs, cqs = cqs, ags = ags, case_hyp = case_hyp }
+
+
+datatype clause_info = ClauseInfo of
+ {no: int,
+  qglr : ((string * typ) list * term list * term * term),
+  cdata : clause_context,
+  tree: Function_Ctx_Tree.ctx_tree,
+  lGI: thm,
+  RCs: rec_call_info list}
+
+
+(* Theory dependencies. *)
+val acc_induct_rule = @{thm accp_induct_rule}
+
+val ex1_implies_ex = @{thm FunDef.fundef_ex1_existence}
+val ex1_implies_un = @{thm FunDef.fundef_ex1_uniqueness}
+val ex1_implies_iff = @{thm FunDef.fundef_ex1_iff}
+
+val acc_downward = @{thm accp_downward}
+val accI = @{thm accp.accI}
+val case_split = @{thm HOL.case_split}
+val fundef_default_value = @{thm FunDef.fundef_default_value}
+val not_acc_down = @{thm not_accp_down}
+
+
+
+fun find_calls tree =
+  let
+    fun add_Ri (fixes,assumes) (_ $ arg) _ (_, xs) =
+      ([], (fixes, assumes, arg) :: xs)
+      | add_Ri _ _ _ _ = raise Match
+  in
+    rev (Function_Ctx_Tree.traverse_tree add_Ri tree [])
+  end
+*}
+
+
+ML {*
+(** building proof obligations *)
+
+fun mk_compat_proof_obligations domT ranT fvar f glrs =
+  let
+    val _ = tracing ("domT: " ^ @{make_string} domT)
+    val _ = tracing ("ranT: " ^ @{make_string} ranT)
+    val _ = tracing ("fvar: " ^ @{make_string} fvar)
+    val _ = tracing ("f: " ^ @{make_string} f)
+    fun mk_impl ((qs, gs, lhs, rhs),(qs', gs', lhs', rhs')) =
+      let
+        val shift = incr_boundvars (length qs')
+      in
+        Logic.mk_implies
+          (HOLogic.mk_Trueprop (HOLogic.eq_const domT $ shift lhs $ lhs'),
+            HOLogic.mk_Trueprop (HOLogic.eq_const ranT $ shift rhs $ rhs'))
+        |> fold_rev (curry Logic.mk_implies) (map shift gs @ gs')
+        |> (curry Logic.mk_implies) @{term "Trueprop True"}
+        |> fold_rev (fn (n,T) => fn b => Term.all T $ Abs(n,T,b)) (qs @ qs')
+        |> curry abstract_over fvar
+        |> curry subst_bound f
+      end
+  in
+    map mk_impl (unordered_pairs glrs)
+    |> tap (fn ts => tracing ("compat_trms:\n" ^ cat_lines (map (Syntax.string_of_term @{context}) ts)))
+  end
+*}
+
+ML {*
+fun mk_completeness (Globals {x, Pbool, ...}) clauses qglrs =
+  let
+    fun mk_case (ClauseContext {qs, gs, lhs, ...}, (oqs, _, _, _)) =
+      HOLogic.mk_Trueprop Pbool
+      |> curry Logic.mk_implies (HOLogic.mk_Trueprop (mk_eq (x, lhs)))
+      |> fold_rev (curry Logic.mk_implies) gs
+      |> fold_rev mk_forall_rename (map fst oqs ~~ qs)
+  in
+    HOLogic.mk_Trueprop Pbool
+    |> fold_rev (curry Logic.mk_implies o mk_case) (clauses ~~ qglrs)
+    |> mk_forall_rename ("x", x)
+    |> mk_forall_rename ("P", Pbool)
+  end
+
+(** making a context with it's own local bindings **)
+
+fun mk_clause_context x ctxt (pre_qs,pre_gs,pre_lhs,pre_rhs) =
+  let
+    val (qs, ctxt') = Variable.variant_fixes (map fst pre_qs) ctxt
+      |>> map2 (fn (_, T) => fn n => Free (n, T)) pre_qs
+
+    val thy = ProofContext.theory_of ctxt'
+
+    fun inst t = subst_bounds (rev qs, t)
+    val gs = map inst pre_gs
+    val lhs = inst pre_lhs
+    val rhs = inst pre_rhs
+
+    val cqs = map (cterm_of thy) qs
+    val ags = map (Thm.assume o cterm_of thy) gs
+
+    val case_hyp = Thm.assume (cterm_of thy (HOLogic.mk_Trueprop (mk_eq (x, lhs))))
+  in
+    ClauseContext { ctxt = ctxt', qs = qs, gs = gs, lhs = lhs, rhs = rhs,
+      cqs = cqs, ags = ags, case_hyp = case_hyp }
+  end
+
+
+(* lowlevel term function. FIXME: remove *)
+fun abstract_over_list vs body =
+  let
+    fun abs lev v tm =
+      if v aconv tm then Bound lev
+      else
+        (case tm of
+          Abs (a, T, t) => Abs (a, T, abs (lev + 1) v t)
+        | t $ u => abs lev v t $ abs lev v u
+        | t => t)
+  in
+    fold_index (fn (i, v) => fn t => abs i v t) vs body
+  end
+
+
+
+fun mk_clause_info globals G f no cdata qglr tree RCs GIntro_thm RIntro_thms =
+  let
+    val Globals {h, ...} = globals
+
+    val ClauseContext { ctxt, qs, cqs, ags, ... } = cdata
+    val cert = Thm.cterm_of (ProofContext.theory_of ctxt)
+
+    (* Instantiate the GIntro thm with "f" and import into the clause context. *)
+    val lGI = GIntro_thm
+      |> Thm.forall_elim (cert f)
+      |> fold Thm.forall_elim cqs
+      |> fold Thm.elim_implies ags
+
+    fun mk_call_info (rcfix, rcassm, rcarg) RI =
+      let
+        val llRI = RI
+          |> fold Thm.forall_elim cqs
+          |> fold (Thm.forall_elim o cert o Free) rcfix
+          |> fold Thm.elim_implies ags
+          |> fold Thm.elim_implies rcassm
+
+        val h_assum =
+          HOLogic.mk_Trueprop (G $ rcarg $ (h $ rcarg))
+          |> fold_rev (curry Logic.mk_implies o prop_of) rcassm
+          |> fold_rev (Logic.all o Free) rcfix
+          |> Pattern.rewrite_term (ProofContext.theory_of ctxt) [(f, h)] []
+          |> abstract_over_list (rev qs)
+      in
+        RCInfo {RIvs=rcfix, rcarg=rcarg, CCas=rcassm, llRI=llRI, h_assum=h_assum}
+      end
+
+    val RC_infos = map2 mk_call_info RCs RIntro_thms
+  in
+    ClauseInfo {no=no, cdata=cdata, qglr=qglr, lGI=lGI, RCs=RC_infos,
+      tree=tree}
+  end
+*}
+
+ML {*
+fun store_compat_thms 0 thms = []
+  | store_compat_thms n thms =
+  let
+    val (thms1, thms2) = chop n thms
+  in
+    (thms1 :: store_compat_thms (n - 1) thms2)
+  end
+*}
+
+
+ML {*
+(* expects i <= j *)
+fun lookup_compat_thm i j cts =
+  nth (nth cts (i - 1)) (j - i)
+
+(* Returns "Gsi, Gsj, lhs_i = lhs_j |-- rhs_j_f = rhs_i_f" *)
+(* if j < i, then turn around *)
+fun get_compat_thm thy cts i j ctxi ctxj =
+  let
+    val ClauseContext {cqs=cqsi,ags=agsi,lhs=lhsi,...} = ctxi
+    val ClauseContext {cqs=cqsj,ags=agsj,lhs=lhsj,...} = ctxj
+
+    val lhsi_eq_lhsj = cterm_of thy (HOLogic.mk_Trueprop (mk_eq (lhsi, lhsj)))
+  in if j < i then
+    let
+      val _ = tracing "then"
+      val compat = lookup_compat_thm j i cts
+    in
+      compat         (* "!!qj qi. Gsj => Gsi => lhsj = lhsi ==> rhsj = rhsi" *)
+      |> fold Thm.forall_elim (cqsj @ cqsi) (* "Gsj => Gsi => lhsj = lhsi ==> rhsj = rhsi" *)
+      |> Thm.elim_implies @{thm TrueI}
+      |> fold Thm.elim_implies agsj
+      |> fold Thm.elim_implies agsi
+      |> Thm.elim_implies ((Thm.assume lhsi_eq_lhsj) RS sym) (* "Gsj, Gsi, lhsi = lhsj |-- rhsj = rhsi" *)
+    end
+    else
+    let
+      val _ = tracing "else"
+      val compat = lookup_compat_thm i j cts
+
+      fun pp s (th:thm) = tracing (s ^ " compat thm: " ^ @{make_string} th)
+    in
+      compat        (* "!!qi qj. Gsi => Gsj => lhsi = lhsj ==> rhsi = rhsj" *)
+      |> (tap (fn th => pp "*0" th))
+      |> fold Thm.forall_elim (cqsi @ cqsj) (* "Gsi => Gsj => lhsi = lhsj ==> rhsi = rhsj" *)
+      |> (tap (fn th => pp "*1" th))
+      |> Thm.elim_implies @{thm TrueI}
+      |> fold Thm.elim_implies agsi
+      |> (tap (fn th => pp "*2" th))
+      |> fold Thm.elim_implies agsj
+      |> (tap (fn th => pp "*3" th))
+      |> Thm.elim_implies (Thm.assume lhsi_eq_lhsj)
+      |> (tap (fn th => pp "*4" th))
+      |> (fn thm => thm RS sym) (* "Gsi, Gsj, lhsi = lhsj |-- rhsj = rhsi" *)
+    end
+  end
+*}
+
+(* WASS *)
+
+ML {*
+(* Generates the replacement lemma in fully quantified form. *)
+fun mk_replacement_lemma thy h ih_elim clause =
+  let
+    val ClauseInfo {cdata=ClauseContext {qs, lhs, cqs, ags, case_hyp, ...},
+      RCs, tree, ...} = clause
+    local open Conv in
+      val ih_conv = arg1_conv o arg_conv o arg_conv
+    end
+
+    val ih_elim_case =
+      Conv.fconv_rule (ih_conv (K (case_hyp RS eq_reflection))) ih_elim
+
+    val Ris = map (fn RCInfo {llRI, ...} => llRI) RCs
+    val h_assums = map (fn RCInfo {h_assum, ...} =>
+      Thm.assume (cterm_of thy (subst_bounds (rev qs, h_assum)))) RCs
+
+    val (eql, _) =
+      Function_Ctx_Tree.rewrite_by_tree thy h ih_elim_case (Ris ~~ h_assums) tree
+
+    val replace_lemma = (eql RS meta_eq_to_obj_eq)
+      |> Thm.implies_intr (cprop_of case_hyp)
+      |> fold_rev (Thm.implies_intr o cprop_of) h_assums
+      |> fold_rev (Thm.implies_intr o cprop_of) ags
+      |> fold_rev Thm.forall_intr cqs
+      |> Thm.close_derivation
+  in
+    replace_lemma
+  end
+*}
+
+ML {*
+fun mk_uniqueness_clause thy globals compat_store clausei clausej RLj =
+  let
+    val Globals {h, y, x, fvar, ...} = globals
+    val ClauseInfo {no=i, cdata=cctxi as ClauseContext {ctxt=ctxti, lhs=lhsi, case_hyp, ...}, ...} = clausei
+    val ClauseInfo {no=j, qglr=cdescj, RCs=RCsj, ...} = clausej
+
+    val cctxj as ClauseContext {ags = agsj', lhs = lhsj', rhs = rhsj', qs = qsj', cqs = cqsj', ...} =
+      mk_clause_context x ctxti cdescj
+
+    val _ = tracing "1"
+
+    val rhsj'h = Pattern.rewrite_term thy [(fvar,h)] [] rhsj'
+   
+    val _ = tracing "1A"
+
+    val compat = get_compat_thm thy compat_store i j cctxi cctxj
+   
+    val _ = tracing "1B"
+
+    val Ghsj' = map 
+      (fn RCInfo {h_assum, ...} => Thm.assume (cterm_of thy (subst_bounds (rev qsj', h_assum)))) RCsj
+
+    val _ = tracing "2"
+
+    val RLj_import = RLj
+      |> fold Thm.forall_elim cqsj'
+      |> fold Thm.elim_implies agsj'
+      |> fold Thm.elim_implies Ghsj'
+
+    val _ = tracing "3"
+
+    val y_eq_rhsj'h = Thm.assume (cterm_of thy (HOLogic.mk_Trueprop (mk_eq (y, rhsj'h))))
+    val lhsi_eq_lhsj' = Thm.assume (cterm_of thy (HOLogic.mk_Trueprop (mk_eq (lhsi, lhsj'))))
+       (* lhs_i = lhs_j' |-- lhs_i = lhs_j' *)
+
+    val _ = tracing "4"
+  in
+    (trans OF [case_hyp, lhsi_eq_lhsj']) (* lhs_i = lhs_j' |-- x = lhs_j' *)
+    |> Thm.implies_elim RLj_import
+      (* Rj1' ... Rjk', lhs_i = lhs_j' |-- rhs_j'_h = rhs_j'_f *)
+    |> (fn it => trans OF [it, compat])
+      (* lhs_i = lhs_j', Gj', Rj1' ... Rjk' |-- rhs_j'_h = rhs_i_f *)
+    |> (fn it => trans OF [y_eq_rhsj'h, it])
+      (* lhs_i = lhs_j', Gj', Rj1' ... Rjk', y = rhs_j_h' |-- y = rhs_i_f *)
+    |> fold_rev (Thm.implies_intr o cprop_of) Ghsj'
+    |> fold_rev (Thm.implies_intr o cprop_of) agsj'
+      (* lhs_i = lhs_j' , y = rhs_j_h' |-- Gj', Rj1'...Rjk' ==> y = rhs_i_f *)
+    |> Thm.implies_intr (cprop_of y_eq_rhsj'h)
+    |> Thm.implies_intr (cprop_of lhsi_eq_lhsj')
+    |> fold_rev Thm.forall_intr (cterm_of thy h :: cqsj')
+  end
+*}
+
+(* HERE *)
+
+ML {*
+fun mk_uniqueness_case thy globals G f ihyp ih_intro G_cases compat_store clauses rep_lemmas clausei =
+  let
+    val Globals {x, y, ranT, fvar, ...} = globals
+    val ClauseInfo {cdata = ClauseContext {lhs, rhs, cqs, ags, case_hyp, ...}, lGI, RCs, ...} = clausei
+    val rhsC = Pattern.rewrite_term thy [(fvar, f)] [] rhs
+
+    val ih_intro_case = full_simplify (HOL_basic_ss addsimps [case_hyp]) ih_intro
+
+    val _ = tracing "A"
+
+    fun prep_RC (RCInfo {llRI, RIvs, CCas, ...}) = (llRI RS ih_intro_case)
+      |> fold_rev (Thm.implies_intr o cprop_of) CCas
+      |> fold_rev (Thm.forall_intr o cterm_of thy o Free) RIvs
+
+    val existence = fold (curry op COMP o prep_RC) RCs lGI
+
+    val _ = tracing "B"
+
+    val P = cterm_of thy (mk_eq (y, rhsC))
+    val G_lhs_y = Thm.assume (cterm_of thy (HOLogic.mk_Trueprop (G $ lhs $ y)))
+
+    val _ = tracing "B2"
+
+    val unique_clauses =
+      map2 (mk_uniqueness_clause thy globals compat_store clausei) clauses rep_lemmas
+  
+    val _ = tracing "C"
+
+    fun elim_implies_eta A AB =
+      Thm.compose_no_flatten true (A, 0) 1 AB |> Seq.list_of |> the_single
+
+    val _ = tracing "D"
+
+    val uniqueness = G_cases
+      |> Thm.forall_elim (cterm_of thy lhs)
+      |> Thm.forall_elim (cterm_of thy y)
+      |> Thm.forall_elim P
+      |> Thm.elim_implies G_lhs_y
+      |> fold elim_implies_eta unique_clauses
+      |> Thm.implies_intr (cprop_of G_lhs_y)
+      |> Thm.forall_intr (cterm_of thy y)
+
+    val _ = tracing "E"
+
+    val P2 = cterm_of thy (lambda y (G $ lhs $ y)) (* P2 y := (lhs, y): G *)
+
+    val exactly_one =
+      ex1I |> instantiate' [SOME (ctyp_of thy ranT)] [SOME P2, SOME (cterm_of thy rhsC)]
+      |> curry (op COMP) existence
+      |> curry (op COMP) uniqueness
+      |> simplify (HOL_basic_ss addsimps [case_hyp RS sym])
+      |> Thm.implies_intr (cprop_of case_hyp)
+      |> fold_rev (Thm.implies_intr o cprop_of) ags
+      |> fold_rev Thm.forall_intr cqs
+
+    val _ = tracing "F"
+
+    val function_value =
+      existence
+      |> Thm.implies_intr ihyp
+      |> Thm.implies_intr (cprop_of case_hyp)
+      |> Thm.forall_intr (cterm_of thy x)
+      |> Thm.forall_elim (cterm_of thy lhs)
+      |> curry (op RS) refl
+
+    val _ = tracing "G" 
+  in
+    (exactly_one, function_value)
+  end
+*}
+
+ML {*
+fun prove_stuff ctxt globals G f R clauses complete compat compat_store G_elim f_def =
+  let
+    val Globals {h, domT, ranT, x, ...} = globals
+    val thy = ProofContext.theory_of ctxt
+
+    (* Inductive Hypothesis: !!z. (z,x):R ==> EX!y. (z,y):G *)
+    val ihyp = Term.all domT $ Abs ("z", domT,
+      Logic.mk_implies (HOLogic.mk_Trueprop (R $ Bound 0 $ x),
+        HOLogic.mk_Trueprop (Const (@{const_name Ex1}, (ranT --> boolT) --> boolT) $
+          Abs ("y", ranT, G $ Bound 1 $ Bound 0))))
+      |> cterm_of thy
+
+    val ihyp_thm = Thm.assume ihyp |> Thm.forall_elim_vars 0
+    val ih_intro = ihyp_thm RS (f_def RS ex1_implies_ex)
+    val ih_elim = ihyp_thm RS (f_def RS ex1_implies_un)
+      |> instantiate' [] [NONE, SOME (cterm_of thy h)]
+
+    val _ = trace_msg (K "Proving Replacement lemmas...")
+    val repLemmas = map (mk_replacement_lemma thy h ih_elim) clauses
+
+    val _ = trace_msg (K "Proving cases for unique existence...")
+    val (ex1s, values) =
+      split_list (map (mk_uniqueness_case thy globals G f 
+        ihyp ih_intro G_elim compat_store clauses repLemmas) clauses)
+
+    val _ = trace_msg (K "Proving: Graph is a function")
+    val graph_is_function = complete
+      |> Thm.forall_elim_vars 0
+      |> fold (curry op COMP) ex1s
+      |> Thm.implies_intr (ihyp)
+      |> Thm.implies_intr (cterm_of thy (HOLogic.mk_Trueprop (mk_acc domT R $ x)))
+      |> Thm.forall_intr (cterm_of thy x)
+      |> (fn it => Drule.compose_single (it, 2, acc_induct_rule)) (* "EX! y. (?x,y):G" *)
+      |> (fn it => fold (Thm.forall_intr o cterm_of thy o Var) (Term.add_vars (prop_of it) []) it)
+
+    val goalstate =  Conjunction.intr graph_is_function complete
+      |> Thm.close_derivation
+      |> Goal.protect
+      |> fold_rev (Thm.implies_intr o cprop_of) compat
+      |> Thm.implies_intr (cprop_of complete)
+  in
+    (goalstate, values)
+  end
+
+(* wrapper -- restores quantifiers in rule specifications *)
+fun inductive_def (binding as ((R, T), _)) intrs lthy =
+  let
+    val ({intrs = intrs_gen, elims = [elim_gen], preds = [ Rdef ], induct, ...}, lthy) =
+      lthy
+      |> Local_Theory.conceal
+      |> Inductive.add_inductive_i
+          {quiet_mode = true,
+            verbose = ! trace,
+            alt_name = Binding.empty,
+            coind = false,
+            no_elim = false,
+            no_ind = false,
+            skip_mono = true,
+            fork_mono = false}
+          [binding] (* relation *)
+          [] (* no parameters *)
+          (map (fn t => (Attrib.empty_binding, t)) intrs) (* intro rules *)
+          [] (* no special monos *)
+      ||> Local_Theory.restore_naming lthy
+
+    val cert = cterm_of (ProofContext.theory_of lthy)
+    fun requantify orig_intro thm =
+      let
+        val (qs, t) = dest_all_all orig_intro
+        val frees = frees_in_term lthy t |> remove (op =) (Binding.name_of R, T)
+        val vars = Term.add_vars (prop_of thm) [] |> rev
+        val varmap = AList.lookup (op =) (frees ~~ map fst vars)
+          #> the_default ("",0)
+      in
+        fold_rev (fn Free (n, T) =>
+          forall_intr_rename (n, cert (Var (varmap (n, T), T)))) qs thm
+      end
+  in
+    ((Rdef, map2 requantify intrs intrs_gen, forall_intr_vars elim_gen, induct), lthy)
+  end
+*}
+
+ML {*
+fun define_graph Gname fvar domT ranT clauses RCss lthy =
+  let
+    val GT = domT --> ranT --> boolT
+    val (Gvar as (n, T)) = singleton (Variable.variant_frees lthy []) (Gname, GT)
+
+    fun mk_GIntro (ClauseContext {qs, gs, lhs, rhs, ...}) RCs =
+      let
+        fun mk_h_assm (rcfix, rcassm, rcarg) =
+          HOLogic.mk_Trueprop (Free Gvar $ rcarg $ (fvar $ rcarg))
+          |> fold_rev (curry Logic.mk_implies o prop_of) rcassm
+          |> fold_rev (Logic.all o Free) rcfix
+      in
+        HOLogic.mk_Trueprop (Free Gvar $ lhs $ rhs)
+        |> fold_rev (curry Logic.mk_implies o mk_h_assm) RCs
+        |> fold_rev (curry Logic.mk_implies) gs
+        |> fold_rev Logic.all (fvar :: qs)
+      end
+
+    val G_intros = map2 mk_GIntro clauses RCss
+  in
+    inductive_def ((Binding.name n, T), NoSyn) G_intros lthy
+  end
+*}
+
+ML {*
+fun define_function fdefname (fname, mixfix) domT ranT G default lthy =
+  let
+    val f_def =
+      Abs ("x", domT, Const (@{const_name FunDef.THE_default}, ranT --> (ranT --> boolT) --> ranT) 
+        $ (default $ Bound 0) $ Abs ("y", ranT, G $ Bound 1 $ Bound 0))
+      |> Syntax.check_term lthy
+  in
+    Local_Theory.define
+      ((Binding.name (function_name fname), mixfix),
+        ((Binding.conceal (Binding.name fdefname), []), f_def)) lthy
+  end
+
+fun define_recursion_relation Rname domT qglrs clauses RCss lthy =
+  let
+    val RT = domT --> domT --> boolT
+    val (Rvar as (n, T)) = singleton (Variable.variant_frees lthy []) (Rname, RT)
+
+    fun mk_RIntro (ClauseContext {qs, gs, lhs, ...}, (oqs, _, _, _)) (rcfix, rcassm, rcarg) =
+      HOLogic.mk_Trueprop (Free Rvar $ rcarg $ lhs)
+      |> fold_rev (curry Logic.mk_implies o prop_of) rcassm
+      |> fold_rev (curry Logic.mk_implies) gs
+      |> fold_rev (Logic.all o Free) rcfix
+      |> fold_rev mk_forall_rename (map fst oqs ~~ qs)
+      (* "!!qs xs. CS ==> G => (r, lhs) : R" *)
+
+    val R_intross = map2 (map o mk_RIntro) (clauses ~~ qglrs) RCss
+
+    val ((R, RIntro_thms, R_elim, _), lthy) =
+      inductive_def ((Binding.name n, T), NoSyn) (flat R_intross) lthy
+  in
+    ((R, Library.unflat R_intross RIntro_thms, R_elim), lthy)
+  end
+
+
+fun fix_globals domT ranT fvar ctxt =
+  let
+    val ([h, y, x, z, a, D, P, Pbool],ctxt') = Variable.variant_fixes
+      ["h_fd", "y_fd", "x_fd", "z_fd", "a_fd", "D_fd", "P_fd", "Pb_fd"] ctxt
+  in
+    (Globals {h = Free (h, domT --> ranT),
+      y = Free (y, ranT),
+      x = Free (x, domT),
+      z = Free (z, domT),
+      a = Free (a, domT),
+      D = Free (D, domT --> boolT),
+      P = Free (P, domT --> boolT),
+      Pbool = Free (Pbool, boolT),
+      fvar = fvar,
+      domT = domT,
+      ranT = ranT},
+    ctxt')
+  end
+
+fun inst_RC thy fvar f (rcfix, rcassm, rcarg) =
+  let
+    fun inst_term t = subst_bound(f, abstract_over (fvar, t))
+  in
+    (rcfix, map (Thm.assume o cterm_of thy o inst_term o prop_of) rcassm, inst_term rcarg)
+  end
+
+
+
+(**********************************************************
+ *                   PROVING THE RULES
+ **********************************************************)
+
+fun mk_psimps thy globals R clauses valthms f_iff graph_is_function =
+  let
+    val Globals {domT, z, ...} = globals
+
+    fun mk_psimp (ClauseInfo {qglr = (oqs, _, _, _), cdata = ClauseContext {cqs, lhs, ags, ...}, ...}) valthm =
+      let
+        val lhs_acc = cterm_of thy (HOLogic.mk_Trueprop (mk_acc domT R $ lhs)) (* "acc R lhs" *)
+        val z_smaller = cterm_of thy (HOLogic.mk_Trueprop (R $ z $ lhs)) (* "R z lhs" *)
+      in
+        ((Thm.assume z_smaller) RS ((Thm.assume lhs_acc) RS acc_downward))
+        |> (fn it => it COMP graph_is_function)
+        |> Thm.implies_intr z_smaller
+        |> Thm.forall_intr (cterm_of thy z)
+        |> (fn it => it COMP valthm)
+        |> Thm.implies_intr lhs_acc
+        |> asm_simplify (HOL_basic_ss addsimps [f_iff])
+        |> fold_rev (Thm.implies_intr o cprop_of) ags
+        |> fold_rev forall_intr_rename (map fst oqs ~~ cqs)
+      end
+  in
+    map2 mk_psimp clauses valthms
+  end
+
+
+(** Induction rule **)
+
+
+val acc_subset_induct = @{thm predicate1I} RS @{thm accp_subset_induct}
+
+
+fun mk_partial_induct_rule thy globals R complete_thm clauses =
+  let
+    val Globals {domT, x, z, a, P, D, ...} = globals
+    val acc_R = mk_acc domT R
+
+    val x_D = Thm.assume (cterm_of thy (HOLogic.mk_Trueprop (D $ x)))
+    val a_D = cterm_of thy (HOLogic.mk_Trueprop (D $ a))
+
+    val D_subset = cterm_of thy (Logic.all x
+      (Logic.mk_implies (HOLogic.mk_Trueprop (D $ x), HOLogic.mk_Trueprop (acc_R $ x))))
+
+    val D_dcl = (* "!!x z. [| x: D; (z,x):R |] ==> z:D" *)
+      Logic.all x (Logic.all z (Logic.mk_implies (HOLogic.mk_Trueprop (D $ x),
+        Logic.mk_implies (HOLogic.mk_Trueprop (R $ z $ x),
+          HOLogic.mk_Trueprop (D $ z)))))
+      |> cterm_of thy
+
+    (* Inductive Hypothesis: !!z. (z,x):R ==> P z *)
+    val ihyp = Term.all domT $ Abs ("z", domT,
+      Logic.mk_implies (HOLogic.mk_Trueprop (R $ Bound 0 $ x),
+        HOLogic.mk_Trueprop (P $ Bound 0)))
+      |> cterm_of thy
+
+    val aihyp = Thm.assume ihyp
+
+    fun prove_case clause =
+      let
+        val ClauseInfo {cdata = ClauseContext {ctxt, qs, cqs, ags, gs, lhs, case_hyp, ...},
+          RCs, qglr = (oqs, _, _, _), ...} = clause
+
+        val case_hyp_conv = K (case_hyp RS eq_reflection)
+        local open Conv in
+          val lhs_D = fconv_rule (arg_conv (arg_conv (case_hyp_conv))) x_D
+          val sih =
+            fconv_rule (Conv.binder_conv
+              (K (arg1_conv (arg_conv (arg_conv case_hyp_conv)))) ctxt) aihyp
+        end
+
+        fun mk_Prec (RCInfo {llRI, RIvs, CCas, rcarg, ...}) = sih
+          |> Thm.forall_elim (cterm_of thy rcarg)
+          |> Thm.elim_implies llRI
+          |> fold_rev (Thm.implies_intr o cprop_of) CCas
+          |> fold_rev (Thm.forall_intr o cterm_of thy o Free) RIvs
+
+        val P_recs = map mk_Prec RCs   (*  [P rec1, P rec2, ... ]  *)
+
+        val step = HOLogic.mk_Trueprop (P $ lhs)
+          |> fold_rev (curry Logic.mk_implies o prop_of) P_recs
+          |> fold_rev (curry Logic.mk_implies) gs
+          |> curry Logic.mk_implies (HOLogic.mk_Trueprop (D $ lhs))
+          |> fold_rev mk_forall_rename (map fst oqs ~~ qs)
+          |> cterm_of thy
+
+        val P_lhs = Thm.assume step
+          |> fold Thm.forall_elim cqs
+          |> Thm.elim_implies lhs_D
+          |> fold Thm.elim_implies ags
+          |> fold Thm.elim_implies P_recs
+
+        val res = cterm_of thy (HOLogic.mk_Trueprop (P $ x))
+          |> Conv.arg_conv (Conv.arg_conv case_hyp_conv)
+          |> Thm.symmetric (* P lhs == P x *)
+          |> (fn eql => Thm.equal_elim eql P_lhs) (* "P x" *)
+          |> Thm.implies_intr (cprop_of case_hyp)
+          |> fold_rev (Thm.implies_intr o cprop_of) ags
+          |> fold_rev Thm.forall_intr cqs
+      in
+        (res, step)
+      end
+
+    val (cases, steps) = split_list (map prove_case clauses)
+
+    val istep = complete_thm
+      |> Thm.forall_elim_vars 0
+      |> fold (curry op COMP) cases (*  P x  *)
+      |> Thm.implies_intr ihyp
+      |> Thm.implies_intr (cprop_of x_D)
+      |> Thm.forall_intr (cterm_of thy x)
+
+    val subset_induct_rule =
+      acc_subset_induct
+      |> (curry op COMP) (Thm.assume D_subset)
+      |> (curry op COMP) (Thm.assume D_dcl)
+      |> (curry op COMP) (Thm.assume a_D)
+      |> (curry op COMP) istep
+      |> fold_rev Thm.implies_intr steps
+      |> Thm.implies_intr a_D
+      |> Thm.implies_intr D_dcl
+      |> Thm.implies_intr D_subset
+
+    val simple_induct_rule =
+      subset_induct_rule
+      |> Thm.forall_intr (cterm_of thy D)
+      |> Thm.forall_elim (cterm_of thy acc_R)
+      |> assume_tac 1 |> Seq.hd
+      |> (curry op COMP) (acc_downward
+        |> (instantiate' [SOME (ctyp_of thy domT)]
+             (map (SOME o cterm_of thy) [R, x, z]))
+        |> Thm.forall_intr (cterm_of thy z)
+        |> Thm.forall_intr (cterm_of thy x))
+      |> Thm.forall_intr (cterm_of thy a)
+      |> Thm.forall_intr (cterm_of thy P)
+  in
+    simple_induct_rule
+  end
+
+
+(* FIXME: broken by design *)
+fun mk_domain_intro ctxt (Globals {domT, ...}) R R_cases clause =
+  let
+    val thy = ProofContext.theory_of ctxt
+    val ClauseInfo {cdata = ClauseContext {gs, lhs, cqs, ...},
+      qglr = (oqs, _, _, _), ...} = clause
+    val goal = HOLogic.mk_Trueprop (mk_acc domT R $ lhs)
+      |> fold_rev (curry Logic.mk_implies) gs
+      |> cterm_of thy
+  in
+    Goal.init goal
+    |> (SINGLE (resolve_tac [accI] 1)) |> the
+    |> (SINGLE (eresolve_tac [Thm.forall_elim_vars 0 R_cases] 1))  |> the
+    |> (SINGLE (auto_tac (clasimpset_of ctxt))) |> the
+    |> Goal.conclude
+    |> fold_rev forall_intr_rename (map fst oqs ~~ cqs)
+  end
+
+
+
+(** Termination rule **)
+
+val wf_induct_rule = @{thm Wellfounded.wfP_induct_rule}
+val wf_in_rel = @{thm FunDef.wf_in_rel}
+val in_rel_def = @{thm FunDef.in_rel_def}
+
+fun mk_nest_term_case thy globals R' ihyp clause =
+  let
+    val Globals {z, ...} = globals
+    val ClauseInfo {cdata = ClauseContext {qs, cqs, ags, lhs, case_hyp, ...}, tree,
+      qglr=(oqs, _, _, _), ...} = clause
+
+    val ih_case = full_simplify (HOL_basic_ss addsimps [case_hyp]) ihyp
+
+    fun step (fixes, assumes) (_ $ arg) u (sub,(hyps,thms)) =
+      let
+        val used = (u @ sub)
+          |> map (fn (ctx,thm) => Function_Ctx_Tree.export_thm thy ctx thm)
+
+        val hyp = HOLogic.mk_Trueprop (R' $ arg $ lhs)
+          |> fold_rev (curry Logic.mk_implies o prop_of) used (* additional hyps *)
+          |> Function_Ctx_Tree.export_term (fixes, assumes)
+          |> fold_rev (curry Logic.mk_implies o prop_of) ags
+          |> fold_rev mk_forall_rename (map fst oqs ~~ qs)
+          |> cterm_of thy
+
+        val thm = Thm.assume hyp
+          |> fold Thm.forall_elim cqs
+          |> fold Thm.elim_implies ags
+          |> Function_Ctx_Tree.import_thm thy (fixes, assumes)
+          |> fold Thm.elim_implies used (*  "(arg, lhs) : R'"  *)
+
+        val z_eq_arg = HOLogic.mk_Trueprop (mk_eq (z, arg))
+          |> cterm_of thy |> Thm.assume
+
+        val acc = thm COMP ih_case
+        val z_acc_local = acc
+          |> Conv.fconv_rule
+              (Conv.arg_conv (Conv.arg_conv (K (Thm.symmetric (z_eq_arg RS eq_reflection)))))
+
+        val ethm = z_acc_local
+          |> Function_Ctx_Tree.export_thm thy (fixes,
+               z_eq_arg :: case_hyp :: ags @ assumes)
+          |> fold_rev forall_intr_rename (map fst oqs ~~ cqs)
+
+        val sub' = sub @ [(([],[]), acc)]
+      in
+        (sub', (hyp :: hyps, ethm :: thms))
+      end
+      | step _ _ _ _ = raise Match
+  in
+    Function_Ctx_Tree.traverse_tree step tree
+  end
+
+
+fun mk_nest_term_rule thy globals R R_cases clauses =
+  let
+    val Globals { domT, x, z, ... } = globals
+    val acc_R = mk_acc domT R
+
+    val R' = Free ("R", fastype_of R)
+
+    val Rrel = Free ("R", HOLogic.mk_setT (HOLogic.mk_prodT (domT, domT)))
+    val inrel_R = Const (@{const_name FunDef.in_rel},
+      HOLogic.mk_setT (HOLogic.mk_prodT (domT, domT)) --> fastype_of R) $ Rrel
+
+    val wfR' = HOLogic.mk_Trueprop (Const (@{const_name Wellfounded.wfP},
+      (domT --> domT --> boolT) --> boolT) $ R')
+      |> cterm_of thy (* "wf R'" *)
+
+    (* Inductive Hypothesis: !!z. (z,x):R' ==> z : acc R *)
+    val ihyp = Term.all domT $ Abs ("z", domT,
+      Logic.mk_implies (HOLogic.mk_Trueprop (R' $ Bound 0 $ x),
+        HOLogic.mk_Trueprop (acc_R $ Bound 0)))
+      |> cterm_of thy
+
+    val ihyp_a = Thm.assume ihyp |> Thm.forall_elim_vars 0
+
+    val R_z_x = cterm_of thy (HOLogic.mk_Trueprop (R $ z $ x))
+
+    val (hyps, cases) = fold (mk_nest_term_case thy globals R' ihyp_a) clauses ([], [])
+  in
+    R_cases
+    |> Thm.forall_elim (cterm_of thy z)
+    |> Thm.forall_elim (cterm_of thy x)
+    |> Thm.forall_elim (cterm_of thy (acc_R $ z))
+    |> curry op COMP (Thm.assume R_z_x)
+    |> fold_rev (curry op COMP) cases
+    |> Thm.implies_intr R_z_x
+    |> Thm.forall_intr (cterm_of thy z)
+    |> (fn it => it COMP accI)
+    |> Thm.implies_intr ihyp
+    |> Thm.forall_intr (cterm_of thy x)
+    |> (fn it => Drule.compose_single(it,2,wf_induct_rule))
+    |> curry op RS (Thm.assume wfR')
+    |> forall_intr_vars
+    |> (fn it => it COMP allI)
+    |> fold Thm.implies_intr hyps
+    |> Thm.implies_intr wfR'
+    |> Thm.forall_intr (cterm_of thy R')
+    |> Thm.forall_elim (cterm_of thy (inrel_R))
+    |> curry op RS wf_in_rel
+    |> full_simplify (HOL_basic_ss addsimps [in_rel_def])
+    |> Thm.forall_intr (cterm_of thy Rrel)
+  end
+
+
+
+(* Tail recursion (probably very fragile)
+ *
+ * FIXME:
+ * - Need to do forall_elim_vars on psimps: Unneccesary, if psimps would be taken from the same context.
+ * - Must we really replace the fvar by f here?
+ * - Splitting is not configured automatically: Problems with case?
+ *)
+fun mk_trsimps octxt globals f G R f_def R_cases G_induct clauses psimps =
+  let
+    val Globals {domT, ranT, fvar, ...} = globals
+
+    val R_cases = Thm.forall_elim_vars 0 R_cases (* FIXME: Should be already in standard form. *)
+
+    val graph_implies_dom = (* "G ?x ?y ==> dom ?x"  *)
+      Goal.prove octxt ["x", "y"] [HOLogic.mk_Trueprop (G $ Free ("x", domT) $ Free ("y", ranT))]
+        (HOLogic.mk_Trueprop (mk_acc domT R $ Free ("x", domT)))
+        (fn {prems=[a], ...} =>
+          ((rtac (G_induct OF [a]))
+          THEN_ALL_NEW rtac accI
+          THEN_ALL_NEW etac R_cases
+          THEN_ALL_NEW asm_full_simp_tac (simpset_of octxt)) 1)
+
+    val default_thm =
+      forall_intr_vars graph_implies_dom COMP (f_def COMP fundef_default_value)
+
+    fun mk_trsimp clause psimp =
+      let
+        val ClauseInfo {qglr = (oqs, _, _, _), cdata =
+          ClauseContext {ctxt, cqs, gs, lhs, rhs, ...}, ...} = clause
+        val thy = ProofContext.theory_of ctxt
+        val rhs_f = Pattern.rewrite_term thy [(fvar, f)] [] rhs
+
+        val trsimp = Logic.list_implies(gs,
+          HOLogic.mk_Trueprop (HOLogic.mk_eq(f $ lhs, rhs_f))) (* "f lhs = rhs" *)
+        val lhs_acc = (mk_acc domT R $ lhs) (* "acc R lhs" *)
+        fun simp_default_tac ss =
+          asm_full_simp_tac (ss addsimps [default_thm, Let_def])
+      in
+        Goal.prove ctxt [] [] trsimp (fn _ =>
+          rtac (instantiate' [] [SOME (cterm_of thy lhs_acc)] case_split) 1
+          THEN (rtac (Thm.forall_elim_vars 0 psimp) THEN_ALL_NEW assume_tac) 1
+          THEN (simp_default_tac (simpset_of ctxt) 1)
+          THEN TRY ((etac not_acc_down 1)
+            THEN ((etac R_cases)
+              THEN_ALL_NEW (simp_default_tac (simpset_of ctxt))) 1))
+        |> fold_rev forall_intr_rename (map fst oqs ~~ cqs)
+      end
+  in
+    map2 mk_trsimp clauses psimps
+  end
+
+
+fun prepare_function config defname [((fname, fT), mixfix)] abstract_qglrs lthy =
+  let
+    val FunctionConfig {domintros, tailrec, default=default_opt, ...} = config
+
+    val default_str = the_default "%x. undefined" default_opt (*FIXME dynamic scoping*)
+    val fvar = Free (fname, fT)
+    val domT = domain_type fT
+    val ranT = range_type fT
+
+    val default = Syntax.parse_term lthy default_str
+      |> Type.constraint fT |> Syntax.check_term lthy
+
+    val (globals, ctxt') = fix_globals domT ranT fvar lthy
+
+    val Globals { x, h, ... } = globals
+
+    val clauses = map (mk_clause_context x ctxt') abstract_qglrs
+
+    val n = length abstract_qglrs
+
+    fun build_tree (ClauseContext { ctxt, rhs, ...}) =
+       Function_Ctx_Tree.mk_tree (fname, fT) h ctxt rhs
+
+    val trees = map build_tree clauses
+    val RCss = map find_calls trees
+
+    val ((G, GIntro_thms, G_elim, G_induct), lthy) =
+      PROFILE "def_graph" (define_graph (graph_name defname) fvar domT ranT clauses RCss) lthy
+
+    val _ = tracing ("Graph - name: " ^ @{make_string} G)
+    val _ = tracing ("Graph intros:\n" ^ cat_lines (map @{make_string} GIntro_thms))
+
+    val ((f, (_, f_defthm)), lthy) =
+      PROFILE "def_fun" (define_function (defname ^ "_sumC_def") (fname, mixfix) domT ranT G default) lthy
+
+    val _ = tracing ("f - name: " ^ @{make_string} f)
+    val _ = tracing ("f_defthm:\n" ^ @{make_string} f_defthm)
+
+    val RCss = map (map (inst_RC (ProofContext.theory_of lthy) fvar f)) RCss
+    val trees = map (Function_Ctx_Tree.inst_tree (ProofContext.theory_of lthy) fvar f) trees
+
+    val ((R, RIntro_thmss, R_elim), lthy) =
+      PROFILE "def_rel" (define_recursion_relation (rel_name defname) domT abstract_qglrs clauses RCss) lthy
+
+    val _ = tracing ("Relation - name: " ^ @{make_string} R) 
+    val _ = tracing ("Relation intros:\n" ^ cat_lines (map @{make_string} RIntro_thmss))
+
+    val (_, lthy) =
+      Local_Theory.abbrev Syntax.mode_default ((Binding.name (dom_name defname), NoSyn), mk_acc domT R) lthy
+
+    val newthy = ProofContext.theory_of lthy
+    val clauses = map (transfer_clause_ctx newthy) clauses
+
+    val cert = cterm_of (ProofContext.theory_of lthy)
+
+    val xclauses = PROFILE "xclauses"
+      (map7 (mk_clause_info globals G f) (1 upto n) clauses abstract_qglrs trees
+        RCss GIntro_thms) RIntro_thmss
+
+    val complete =
+      mk_completeness globals clauses abstract_qglrs |> cert |> Thm.assume
+
+    val compat =
+      mk_compat_proof_obligations domT ranT fvar f abstract_qglrs
+      |> map (cert #> Thm.assume)
+
+    val compat_store = store_compat_thms n compat
+
+    val _ = tracing ("globals:\n" ^ @{make_string} globals)
+    val _ = tracing ("complete:\n" ^ @{make_string} complete)
+    val _ = tracing ("compat:\n" ^ @{make_string} compat)
+    val _ = tracing ("compat_store:\n" ^ @{make_string} compat_store)
+
+    val (goalstate, values) = PROFILE "prove_stuff"
+      (prove_stuff lthy globals G f R xclauses complete compat
+         compat_store G_elim) f_defthm
+     
+    val _ = tracing ("goalstate prove_stuff thm:\n" ^ @{make_string} goalstate)
+
+    val mk_trsimps =
+      mk_trsimps lthy globals f G R f_defthm R_elim G_induct xclauses
+
+    fun mk_partial_rules provedgoal =
+      let
+        val newthy = theory_of_thm provedgoal (*FIXME*)
+
+        val (graph_is_function, complete_thm) =
+          provedgoal
+          |> Conjunction.elim
+          |> apfst (Thm.forall_elim_vars 0)
+
+        val f_iff = graph_is_function RS (f_defthm RS ex1_implies_iff)
+
+        val psimps = PROFILE "Proving simplification rules"
+          (mk_psimps newthy globals R xclauses values f_iff) graph_is_function
+
+        val simple_pinduct = PROFILE "Proving partial induction rule"
+          (mk_partial_induct_rule newthy globals R complete_thm) xclauses
+
+        val total_intro = PROFILE "Proving nested termination rule"
+          (mk_nest_term_rule newthy globals R R_elim) xclauses
+
+        val dom_intros =
+          if domintros then SOME (PROFILE "Proving domain introduction rules"
+             (map (mk_domain_intro lthy globals R R_elim)) xclauses)
+           else NONE
+        val trsimps = if tailrec then SOME (mk_trsimps psimps) else NONE
+
+      in
+        FunctionResult {fs=[f], G=G, R=R, cases=complete_thm,
+          psimps=psimps, simple_pinducts=[simple_pinduct],
+          termination=total_intro, trsimps=trsimps,
+          domintros=dom_intros}
+      end
+  in
+    ((f, goalstate, mk_partial_rules), lthy)
+  end
+*}
+
+ML {*
+open Function_Lib
+open Function_Common
+
+type qgar = string * (string * typ) list * term list * term list * term
+
+datatype mutual_part = MutualPart of
+ {i : int,
+  i' : int,
+  fvar : string * typ,
+  cargTs: typ list,
+  f_def: term,
+
+  f: term option,
+  f_defthm : thm option}
+
+datatype mutual_info = Mutual of
+ {n : int,
+  n' : int,
+  fsum_var : string * typ,
+
+  ST: typ,
+  RST: typ,
+
+  parts: mutual_part list,
+  fqgars: qgar list,
+  qglrs: ((string * typ) list * term list * term * term) list,
+
+  fsum : term option}
+
+fun mutual_induct_Pnames n =
+  if n < 5 then fst (chop n ["P","Q","R","S"])
+  else map (fn i => "P" ^ string_of_int i) (1 upto n)
+
+fun get_part fname =
+  the o find_first (fn (MutualPart {fvar=(n,_), ...}) => n = fname)
+
+(* FIXME *)
+fun mk_prod_abs e (t1, t2) =
+  let
+    val bTs = rev (map snd e)
+    val T1 = fastype_of1 (bTs, t1)
+    val T2 = fastype_of1 (bTs, t2)
+  in
+    HOLogic.pair_const T1 T2 $ t1 $ t2
+  end
+
+fun analyze_eqs ctxt defname fs eqs =
+  let
+    val num = length fs
+    val fqgars = map (split_def ctxt (K true)) eqs
+    val arity_of = map (fn (fname,_,_,args,_) => (fname, length args)) fqgars
+      |> AList.lookup (op =) #> the
+
+    fun curried_types (fname, fT) =
+      let
+        val (caTs, uaTs) = chop (arity_of fname) (binder_types fT)
+      in
+        (caTs, uaTs ---> body_type fT)
+      end
+
+    val (caTss, resultTs) = split_list (map curried_types fs)
+    val argTs = map (foldr1 HOLogic.mk_prodT) caTss
+
+    val dresultTs = distinct (op =) resultTs
+    val n' = length dresultTs
+
+    val RST = Balanced_Tree.make (uncurry SumTree.mk_sumT) dresultTs
+    val ST = Balanced_Tree.make (uncurry SumTree.mk_sumT) argTs
+
+    val fsum_type = ST --> RST
+
+    val ([fsum_var_name], _) = Variable.add_fixes [ defname ^ "_sum" ] ctxt
+    val fsum_var = (fsum_var_name, fsum_type)
+
+    fun define (fvar as (n, _)) caTs resultT i =
+      let
+        val vars = map_index (fn (j,T) => Free ("x" ^ string_of_int j, T)) caTs (* FIXME: Bind xs properly *)
+        val i' = find_index (fn Ta => Ta = resultT) dresultTs + 1
+
+        val f_exp = SumTree.mk_proj RST n' i' (Free fsum_var $ SumTree.mk_inj ST num i (foldr1 HOLogic.mk_prod vars))
+        val def = Term.abstract_over (Free fsum_var, fold_rev lambda vars f_exp)
+
+        val rew = (n, fold_rev lambda vars f_exp)
+      in
+        (MutualPart {i=i, i'=i', fvar=fvar,cargTs=caTs,f_def=def,f=NONE,f_defthm=NONE}, rew)
+      end
+
+    val (parts, rews) = split_list (map4 define fs caTss resultTs (1 upto num))
+
+    fun convert_eqs (f, qs, gs, args, rhs) =
+      let
+        val MutualPart {i, i', ...} = get_part f parts
+      in
+        (qs, gs, SumTree.mk_inj ST num i (foldr1 (mk_prod_abs qs) args),
+         SumTree.mk_inj RST n' i' (replace_frees rews rhs)
+         |> Envir.beta_norm)
+      end
+
+    val qglrs = map convert_eqs fqgars
+  in
+    Mutual {n=num, n'=n', fsum_var=fsum_var, ST=ST, RST=RST,
+      parts=parts, fqgars=fqgars, qglrs=qglrs, fsum=NONE}
+  end
+
+fun define_projections fixes mutual fsum lthy =
+  let
+    fun def ((MutualPart {i=i, i'=i', fvar=(fname, fT), cargTs, f_def, ...}), (_, mixfix)) lthy =
+      let
+        val ((f, (_, f_defthm)), lthy') =
+          Local_Theory.define
+            ((Binding.name fname, mixfix),
+              ((Binding.conceal (Binding.name (fname ^ "_def")), []),
+              Term.subst_bound (fsum, f_def))) lthy
+      in
+        (MutualPart {i=i, i'=i', fvar=(fname, fT), cargTs=cargTs, f_def=f_def,
+           f=SOME f, f_defthm=SOME f_defthm },
+         lthy')
+      end
+
+    val Mutual { n, n', fsum_var, ST, RST, parts, fqgars, qglrs, ... } = mutual
+    val (parts', lthy') = fold_map def (parts ~~ fixes) lthy
+  in
+    (Mutual { n=n, n'=n', fsum_var=fsum_var, ST=ST, RST=RST, parts=parts',
+       fqgars=fqgars, qglrs=qglrs, fsum=SOME fsum },
+     lthy')
+  end
+
+fun in_context ctxt (f, pre_qs, pre_gs, pre_args, pre_rhs) F =
+  let
+    val thy = ProofContext.theory_of ctxt
+
+    val oqnames = map fst pre_qs
+    val (qs, _) = Variable.variant_fixes oqnames ctxt
+      |>> map2 (fn (_, T) => fn n => Free (n, T)) pre_qs
+
+    fun inst t = subst_bounds (rev qs, t)
+    val gs = map inst pre_gs
+    val args = map inst pre_args
+    val rhs = inst pre_rhs
+
+    val cqs = map (cterm_of thy) qs
+    val ags = map (Thm.assume o cterm_of thy) gs
+
+    val import = fold Thm.forall_elim cqs
+      #> fold Thm.elim_implies ags
+
+    val export = fold_rev (Thm.implies_intr o cprop_of) ags
+      #> fold_rev forall_intr_rename (oqnames ~~ cqs)
+  in
+    F ctxt (f, qs, gs, args, rhs) import export
+  end
+
+fun recover_mutual_psimp all_orig_fdefs parts ctxt (fname, _, _, args, rhs)
+  import (export : thm -> thm) sum_psimp_eq =
+  let
+    val (MutualPart {f=SOME f, ...}) = get_part fname parts
+
+    val psimp = import sum_psimp_eq
+    val (simp, restore_cond) =
+      case cprems_of psimp of
+        [] => (psimp, I)
+      | [cond] => (Thm.implies_elim psimp (Thm.assume cond), Thm.implies_intr cond)
+      | _ => raise General.Fail "Too many conditions"
+
+  in
+    Goal.prove ctxt [] []
+      (HOLogic.Trueprop $ HOLogic.mk_eq (list_comb (f, args), rhs))
+      (fn _ => (Local_Defs.unfold_tac ctxt all_orig_fdefs)
+         THEN EqSubst.eqsubst_tac ctxt [0] [simp] 1
+         THEN (simp_tac (simpset_of ctxt)) 1) (* FIXME: global simpset?!! *)
+    |> restore_cond
+    |> export
+  end
+
+fun mk_applied_form ctxt caTs thm =
+  let
+    val thy = ProofContext.theory_of ctxt
+    val xs = map_index (fn (i,T) => cterm_of thy (Free ("x" ^ string_of_int i, T))) caTs (* FIXME: Bind xs properly *)
+  in
+    fold (fn x => fn thm => Thm.combination thm (Thm.reflexive x)) xs thm
+    |> Conv.fconv_rule (Thm.beta_conversion true)
+    |> fold_rev Thm.forall_intr xs
+    |> Thm.forall_elim_vars 0
+  end
+
+fun mutual_induct_rules lthy induct all_f_defs (Mutual {n, ST, parts, ...}) =
+  let
+    val cert = cterm_of (ProofContext.theory_of lthy)
+    val newPs =
+      map2 (fn Pname => fn MutualPart {cargTs, ...} =>
+          Free (Pname, cargTs ---> HOLogic.boolT))
+        (mutual_induct_Pnames (length parts)) parts
+
+    fun mk_P (MutualPart {cargTs, ...}) P =
+      let
+        val avars = map_index (fn (i,T) => Var (("a", i), T)) cargTs
+        val atup = foldr1 HOLogic.mk_prod avars
+      in
+        HOLogic.tupled_lambda atup (list_comb (P, avars))
+      end
+
+    val Ps = map2 mk_P parts newPs
+    val case_exp = SumTree.mk_sumcases HOLogic.boolT Ps
+
+    val induct_inst =
+      Thm.forall_elim (cert case_exp) induct
+      |> full_simplify SumTree.sumcase_split_ss
+      |> full_simplify (HOL_basic_ss addsimps all_f_defs)
+
+    fun project rule (MutualPart {cargTs, i, ...}) k =
+      let
+        val afs = map_index (fn (j,T) => Free ("a" ^ string_of_int (j + k), T)) cargTs (* FIXME! *)
+        val inj = SumTree.mk_inj ST n i (foldr1 HOLogic.mk_prod afs)
+      in
+        (rule
+         |> Thm.forall_elim (cert inj)
+         |> full_simplify SumTree.sumcase_split_ss
+         |> fold_rev (Thm.forall_intr o cert) (afs @ newPs),
+         k + length cargTs)
+      end
+  in
+    fst (fold_map (project induct_inst) parts 0)
+  end
+
+fun mk_partial_rules_mutual lthy inner_cont (m as Mutual {parts, fqgars, ...}) proof =
+  let
+    val result = inner_cont proof
+    val FunctionResult {G, R, cases, psimps, trsimps, simple_pinducts=[simple_pinduct],
+      termination, domintros, ...} = result
+
+    val (all_f_defs, fs) =
+      map (fn MutualPart {f_defthm = SOME f_def, f = SOME f, cargTs, ...} =>
+        (mk_applied_form lthy cargTs (Thm.symmetric f_def), f))
+      parts
+      |> split_list
+
+    val all_orig_fdefs =
+      map (fn MutualPart {f_defthm = SOME f_def, ...} => f_def) parts
+
+    fun mk_mpsimp fqgar sum_psimp =
+      in_context lthy fqgar (recover_mutual_psimp all_orig_fdefs parts) sum_psimp
+
+    val rew_ss = HOL_basic_ss addsimps all_f_defs
+    val mpsimps = map2 mk_mpsimp fqgars psimps
+    val mtrsimps = Option.map (map2 mk_mpsimp fqgars) trsimps
+    val minducts = mutual_induct_rules lthy simple_pinduct all_f_defs m
+    val mtermination = full_simplify rew_ss termination
+    val mdomintros = Option.map (map (full_simplify rew_ss)) domintros
+  in
+    FunctionResult { fs=fs, G=G, R=R,
+      psimps=mpsimps, simple_pinducts=minducts,
+      cases=cases, termination=mtermination,
+      domintros=mdomintros, trsimps=mtrsimps}
+  end
+
+fun prepare_function_mutual config defname fixes eqss lthy =
+  let
+    val mutual as Mutual {fsum_var=(n, T), qglrs, ...} =
+      analyze_eqs lthy defname (map fst fixes) (map Envir.beta_eta_contract eqss)
+
+    val ((fsum, goalstate, cont), lthy') =
+      prepare_function config defname [((n, T), NoSyn)] qglrs lthy
+
+    val (mutual', lthy'') = define_projections fixes mutual fsum lthy'
+
+    val mutual_cont = mk_partial_rules_mutual lthy'' cont mutual'
+  in
+    ((goalstate, mutual_cont), lthy'')
+  end
+
+*}
+
+
+ML {*
+
+open Function_Lib
+open Function_Common
+
+val simp_attribs = map (Attrib.internal o K)
+  [Simplifier.simp_add,
+   Code.add_default_eqn_attribute,
+   Nitpick_Simps.add]
+
+val psimp_attribs = map (Attrib.internal o K)
+  [Nitpick_Psimps.add]
+
+fun mk_defname fixes = fixes |> map (fst o fst) |> space_implode "_"
+
+fun add_simps fnames post sort extra_qualify label mod_binding moreatts
+  simps lthy =
+  let
+    val spec = post simps
+      |> map (apfst (apsnd (fn ats => moreatts @ ats)))
+      |> map (apfst (apfst extra_qualify))
+
+    val (saved_spec_simps, lthy) =
+      fold_map Local_Theory.note spec lthy
+
+    val saved_simps = maps snd saved_spec_simps
+    val simps_by_f = sort saved_simps
+
+    fun add_for_f fname simps =
+      Local_Theory.note
+        ((mod_binding (Binding.qualify true fname (Binding.name label)), []), simps)
+      #> snd
+  in
+    (saved_simps, fold2 add_for_f fnames simps_by_f lthy)
+  end
+
+fun prepare_function is_external prep default_constraint fixspec eqns config lthy =
+  let
+    val constrn_fxs = map (fn (b, T, mx) => (b, SOME (the_default default_constraint T), mx))
+    val ((fixes0, spec0), ctxt') = prep (constrn_fxs fixspec) eqns lthy
+    val fixes = map (apfst (apfst Binding.name_of)) fixes0;
+    val spec = map (fn (bnd, prop) => (bnd, [prop])) spec0;
+    val (eqs, post, sort_cont, cnames) = get_preproc lthy config ctxt' fixes spec
+
+    val defname = mk_defname fixes
+    val FunctionConfig {partials, tailrec, default, ...} = config
+    val _ =
+      if tailrec then Output.legacy_feature
+        "'function (tailrec)' command. Use 'partial_function (tailrec)'."
+      else ()
+    val _ =
+      if is_some default then Output.legacy_feature
+        "'function (default)'. Use 'partial_function'."
+      else ()
+
+    val ((goal_state, cont), lthy') =
+      prepare_function_mutual config defname fixes eqs lthy
+
+    fun afterqed [[proof]] lthy =
+      let
+        val FunctionResult {fs, R, psimps, trsimps, simple_pinducts,
+          termination, domintros, cases, ...} =
+          cont (Thm.close_derivation proof)
+
+        val fnames = map (fst o fst) fixes
+        fun qualify n = Binding.name n
+          |> Binding.qualify true defname
+        val conceal_partial = if partials then I else Binding.conceal
+
+        val addsmps = add_simps fnames post sort_cont
+
+        val (((psimps', pinducts'), (_, [termination'])), lthy) =
+          lthy
+          |> addsmps (conceal_partial o Binding.qualify false "partial")
+               "psimps" conceal_partial psimp_attribs psimps
+          ||> (case trsimps of NONE => I | SOME thms =>
+                   addsmps I "simps" I simp_attribs thms #> snd
+                   #> Spec_Rules.add Spec_Rules.Equational (fs, thms))
+          ||>> Local_Theory.note ((conceal_partial (qualify "pinduct"),
+                 [Attrib.internal (K (Rule_Cases.case_names cnames)),
+                  Attrib.internal (K (Rule_Cases.consumes 1)),
+                  Attrib.internal (K (Induct.induct_pred ""))]), simple_pinducts)
+          ||>> Local_Theory.note ((Binding.conceal (qualify "termination"), []), [termination])
+          ||> (snd o Local_Theory.note ((qualify "cases",
+                 [Attrib.internal (K (Rule_Cases.case_names cnames))]), [cases]))
+          ||> (case domintros of NONE => I | SOME thms => 
+                   Local_Theory.note ((qualify "domintros", []), thms) #> snd)
+
+        val info = { add_simps=addsmps, case_names=cnames, psimps=psimps',
+          pinducts=snd pinducts', simps=NONE, inducts=NONE, termination=termination',
+          fs=fs, R=R, defname=defname, is_partial=true }
+
+        val _ =
+          if not is_external then ()
+          else Specification.print_consts lthy (K false) (map fst fixes)
+      in
+        (info, 
+         lthy |> Local_Theory.declaration false (add_function_data o morph_function_data info))
+      end
+  in
+    ((goal_state, afterqed), lthy')
+  end
+
+*}
+ML {*
+  Proof.theorem;
+  Proof.refine
+*}
+
+
+ML {*
+fun gen_function is_external prep default_constraint fixspec eqns config lthy =
+  let
+    val ((goal_state, afterqed), lthy') =
+      prepare_function is_external prep default_constraint fixspec eqns config lthy
+
+    val _ = tracing ("goal state:\n" ^ @{make_string} goal_state)
+    val _ = tracing ("concl of goal state:\n" ^ Syntax.string_of_term lthy' (concl_of goal_state))
+  in
+    lthy'
+    |> Proof.theorem NONE (snd oo afterqed) [[(Logic.unprotect (concl_of goal_state), [])]]
+ (*|> tap (fn x => tracing ("after thm:\n" ^ Pretty.string_of (Pretty.chunks (Proof.pretty_goals true x))))*)
+    |> Proof.refine (Method.primitive_text (K goal_state)) 
+    |> Seq.hd
+ (*|> tap (fn x => tracing ("after ref:\n" ^ Pretty.string_of (Pretty.chunks (Proof.pretty_goals true x))))*)
+  end
+*}
+
+
+ML {*
+val function = gen_function false Specification.check_spec (Type_Infer.anyT HOLogic.typeS)
+val function_cmd = gen_function true Specification.read_spec "_::type"
+
+fun add_case_cong n thy =
+  let
+    val cong = #case_cong (Datatype.the_info thy n)
+      |> safe_mk_meta_eq
+  in
+    Context.theory_map
+      (Function_Ctx_Tree.map_function_congs (Thm.add_thm cong)) thy
+  end
+
+val setup_case_cong = Datatype.interpretation (K (fold add_case_cong))
+
+
+(* setup *)
+
+val setup =
+  Attrib.setup @{binding fundef_cong}
+    (Attrib.add_del Function_Ctx_Tree.cong_add Function_Ctx_Tree.cong_del)
+    "declaration of congruence rule for function definitions"
+  #> setup_case_cong
+  #> Function_Relation.setup
+  #> Function_Common.Termination_Simps.setup
+
+val get_congs = Function_Ctx_Tree.get_function_congs
+
+fun get_info ctxt t = Item_Net.retrieve (get_function ctxt) t
+  |> the_single |> snd
+
+
+(* outer syntax *)
+
+val _ =
+  Outer_Syntax.local_theory_to_proof "nominal_primrec" "define recursive functions for nominal types"
+  Keyword.thy_goal
+  (function_parser default_config
+     >> (fn ((config, fixes), statements) => function_cmd fixes statements config))
+*}
+
+ML {* trace := true *}
+
+nominal_primrec
+  depth :: "lam \<Rightarrow> nat"
+where
+  "depth (Var x) = 1"
+| "depth (App t1 t2) = (max (depth t1) (depth t2)) + 1"
+| "depth (Lam x t) = (depth t) + 1"
+apply(rule_tac y="x" in lam.exhaust)
+apply(simp_all)[3]
+apply(simp_all only: lam.distinct)
+apply(simp add: lam.eq_iff)
+apply(simp add: lam.eq_iff)
+sorry
+
+nominal_primrec 
+  frees :: "lam \<Rightarrow> name set"
+where
+  "frees (Var x) = {x}"
+| "frees (App t1 t2) = (frees t1) \<union> (frees t2)"
+| "frees (Lam x t) = (frees t) - {x}"
+apply(rule_tac y="x" in lam.exhaust)
+apply(simp_all)[3]
+apply(simp_all only: lam.distinct)
+apply(simp add: lam.eq_iff)
+apply(simp add: lam.eq_iff)
+apply(simp add: lam.eq_iff)
+sorry
+
+nominal_primrec
+  subst :: "lam \<Rightarrow> name \<Rightarrow> lam \<Rightarrow> lam"  ("_ [_ ::= _]" [100,100,100] 100)
+where
+  "(Var x)[y ::= s] = (if x=y then s else (Var x))"
+| "(App t\<^isub>1 t\<^isub>2)[y ::= s] = App (t\<^isub>1[y ::= s]) (t\<^isub>2[y ::= s])"
+| "atom x \<sharp> (y, s) \<Longrightarrow> (Lam x t)[y ::= s] = Lam x (t[y ::= s])"
+apply(case_tac x)
+apply(simp)
+apply(rule_tac y="a" and c="(b, c)" in lam.strong_exhaust)
+apply(simp_all add: lam.distinct)[3]
+apply(auto)[1]
+apply(auto)[1]
+apply(simp add: fresh_star_def)
+apply(simp_all add: lam.distinct)[5]
+apply(simp add: lam.eq_iff)
+apply(simp add: lam.eq_iff)
+apply(simp add: lam.eq_iff)
+sorry
+
+
+
+end
+
+
+
--- a/Nominal/Ex/Lambda.thy	Thu Jan 06 20:25:40 2011 +0000
+++ b/Nominal/Ex/Lambda.thy	Thu Jan 06 23:06:45 2011 +0000
@@ -5,6 +5,8 @@
 
 atom_decl name
 
+ML {* suffix *}
+
 nominal_datatype lam =
   Var "name"
 | App "lam" "lam"
--- a/Nominal/Nominal2.thy	Thu Jan 06 20:25:40 2011 +0000
+++ b/Nominal/Nominal2.thy	Thu Jan 06 23:06:45 2011 +0000
@@ -167,7 +167,6 @@
 ML {*
 fun nominal_datatype2 opt_thms_name dts bn_funs bn_eqs bclauses lthy =
 let
-  (* definition of the raw datatypes *)
   val _ = trace_msg (K "Defining raw datatypes...")
   val (raw_dt_names, raw_dts, raw_bclauses, raw_bn_funs, raw_bn_eqs, cnstr_names, lthy0) =
     define_raw_dts dts bn_funs bn_eqs bclauses lthy   
@@ -203,7 +202,6 @@
   (* noting the raw permutations as eqvt theorems *)
   val (_, lthy3) = Local_Theory.note ((Binding.empty, [eqvt_attr]), raw_perm_simps) lthy2a
 
-
   val _ = trace_msg (K "Defining raw fv- and bn-functions...")
   val (raw_bns, raw_bn_defs, raw_bn_info, raw_bn_induct, lthy3a) =
     define_raw_bns raw_full_ty_names raw_dts raw_bn_funs raw_bn_eqs 
@@ -362,8 +360,7 @@
   val qalpha_bns = map #qconst qalpha_bns_info
   val qperm_bns = map #qconst qperm_bns_info
 
-  val _ = trace_msg (K "Lifting of theorems...")
-  
+  val _ = trace_msg (K "Lifting of theorems...")  
   val eq_iff_simps = @{thms alphas permute_prod.simps prod_fv.simps prod_alpha_def prod_rel_def
     prod.cases} 
 
@@ -403,7 +400,6 @@
       qperm_simps qfv_qbn_eqvts qinduct (flat raw_bclauses) lthyC
 
   (* postprocessing of eq and fv theorems *)
-
   val qeq_iffs' = qeq_iffs
     |> map (simplify (HOL_basic_ss addsimps qfv_supp_thms))
     |> map (simplify (HOL_basic_ss addsimps @{thms prod_fv_supp prod_alpha_eq Abs_eq_iff[symmetric]}))