Let with a different invariant; not true.
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Nominal/Ex/LetInv.thy Mon Jul 04 14:47:21 2011 +0900
@@ -0,0 +1,279 @@
+theory Let
+imports "../Nominal2"
+begin
+
+atom_decl name
+
+nominal_datatype trm =
+ Var "name"
+| App "trm" "trm"
+| Lam x::"name" t::"trm" bind x in t
+| Let as::"assn" t::"trm" bind "bn as" in t
+and assn =
+ ANil
+| ACons "name" "trm" "assn"
+binder
+ bn
+where
+ "bn ANil = []"
+| "bn (ACons x t as) = (atom x) # (bn as)"
+
+print_theorems
+
+thm alpha_trm_raw_alpha_assn_raw_alpha_bn_raw.intros
+thm bn_raw.simps
+thm permute_bn_raw.simps
+thm trm_assn.perm_bn_alpha
+thm trm_assn.permute_bn
+
+thm trm_assn.fv_defs
+thm trm_assn.eq_iff
+thm trm_assn.bn_defs
+thm trm_assn.bn_inducts
+thm trm_assn.perm_simps
+thm trm_assn.induct
+thm trm_assn.inducts
+thm trm_assn.distinct
+thm trm_assn.supp
+thm trm_assn.fresh
+thm trm_assn.exhaust
+thm trm_assn.strong_exhaust
+thm trm_assn.perm_bn_simps
+
+lemma alpha_bn_inducts_raw[consumes 1]:
+ "\<lbrakk>alpha_bn_raw a b; P3 ANil_raw ANil_raw;
+ \<And>trm_raw trm_rawa assn_raw assn_rawa name namea.
+ \<lbrakk>alpha_trm_raw trm_raw trm_rawa; alpha_bn_raw assn_raw assn_rawa;
+ P3 assn_raw assn_rawa\<rbrakk>
+ \<Longrightarrow> P3 (ACons_raw name trm_raw assn_raw)
+ (ACons_raw namea trm_rawa assn_rawa)\<rbrakk> \<Longrightarrow> P3 a b"
+ by (erule alpha_trm_raw_alpha_assn_raw_alpha_bn_raw.inducts(3)[of _ _ "\<lambda>x y. True" _ "\<lambda>x y. True", simplified]) auto
+
+lemmas alpha_bn_inducts[consumes 1] = alpha_bn_inducts_raw[quot_lifted]
+
+
+
+lemma alpha_bn_refl: "alpha_bn x x"
+ by (induct x rule: trm_assn.inducts(2))
+ (rule TrueI, auto simp add: trm_assn.eq_iff)
+lemma alpha_bn_sym: "alpha_bn x y \<Longrightarrow> alpha_bn y x"
+ sorry
+lemma alpha_bn_trans: "alpha_bn x y \<Longrightarrow> alpha_bn y z \<Longrightarrow> alpha_bn x z"
+ sorry
+
+lemma bn_inj[rule_format]:
+ assumes a: "alpha_bn x y"
+ shows "bn x = bn y \<longrightarrow> x = y"
+ by (rule alpha_bn_inducts[OF a]) (simp_all add: trm_assn.bn_defs)
+
+lemma bn_inj2:
+ assumes a: "alpha_bn x y"
+ shows "\<And>q r. (q \<bullet> bn x) = (r \<bullet> bn y) \<Longrightarrow> permute_bn q x = permute_bn r y"
+using a
+apply(induct rule: alpha_bn_inducts)
+apply(simp add: trm_assn.perm_bn_simps)
+apply(simp add: trm_assn.perm_bn_simps)
+apply(simp add: trm_assn.bn_defs)
+apply(simp add: atom_eqvt)
+done
+
+lemma Abs_lst_fcb2:
+ fixes as bs :: "atom list"
+ and x y :: "'b :: fs"
+ and c::"'c::fs"
+ assumes eq: "[as]lst. x = [bs]lst. y"
+ and fcb1: "(set as) \<sharp>* c \<Longrightarrow> (set as) \<sharp>* f as x c"
+ and fresh1: "set as \<sharp>* c"
+ and fresh2: "set bs \<sharp>* c"
+ and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f as x c) = f (p \<bullet> as) (p \<bullet> x) c"
+ and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f bs y c) = f (p \<bullet> bs) (p \<bullet> y) c"
+ shows "f as x c = f bs y c"
+proof -
+ have "supp (as, x, c) supports (f as x c)"
+ unfolding supports_def fresh_def[symmetric]
+ by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh)
+ then have fin1: "finite (supp (f as x c))"
+ by (auto intro: supports_finite simp add: finite_supp)
+ have "supp (bs, y, c) supports (f bs y c)"
+ unfolding supports_def fresh_def[symmetric]
+ by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh)
+ then have fin2: "finite (supp (f bs y c))"
+ by (auto intro: supports_finite simp add: finite_supp)
+ obtain q::"perm" where
+ fr1: "(q \<bullet> (set as)) \<sharp>* (x, c, f as x c, f bs y c)" and
+ fr2: "supp q \<sharp>* Abs_lst as x" and
+ inc: "supp q \<subseteq> (set as) \<union> q \<bullet> (set as)"
+ using at_set_avoiding3[where xs="set as" and c="(x, c, f as x c, f bs y c)" and x="[as]lst. x"]
+ fin1 fin2
+ by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv)
+ have "Abs_lst (q \<bullet> as) (q \<bullet> x) = q \<bullet> Abs_lst as x" by simp
+ also have "\<dots> = Abs_lst as x"
+ by (simp only: fr2 perm_supp_eq)
+ finally have "Abs_lst (q \<bullet> as) (q \<bullet> x) = Abs_lst bs y" using eq by simp
+ then obtain r::perm where
+ qq1: "q \<bullet> x = r \<bullet> y" and
+ qq2: "q \<bullet> as = r \<bullet> bs" and
+ qq3: "supp r \<subseteq> (q \<bullet> (set as)) \<union> set bs"
+ apply(drule_tac sym)
+ apply(simp only: Abs_eq_iff2 alphas)
+ apply(erule exE)
+ apply(erule conjE)+
+ apply(drule_tac x="p" in meta_spec)
+ apply(simp add: set_eqvt)
+ apply(blast)
+ done
+ have "(set as) \<sharp>* f as x c"
+ apply(rule fcb1)
+ apply(rule fresh1)
+ done
+ then have "q \<bullet> ((set as) \<sharp>* f as x c)"
+ by (simp add: permute_bool_def)
+ then have "set (q \<bullet> as) \<sharp>* f (q \<bullet> as) (q \<bullet> x) c"
+ apply(simp add: fresh_star_eqvt set_eqvt)
+ apply(subst (asm) perm1)
+ using inc fresh1 fr1
+ apply(auto simp add: fresh_star_def fresh_Pair)
+ done
+ then have "set (r \<bullet> bs) \<sharp>* f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 by simp
+ then have "r \<bullet> ((set bs) \<sharp>* f bs y c)"
+ apply(simp add: fresh_star_eqvt set_eqvt)
+ apply(subst (asm) perm2[symmetric])
+ using qq3 fresh2 fr1
+ apply(auto simp add: set_eqvt fresh_star_def fresh_Pair)
+ done
+ then have fcb2: "(set bs) \<sharp>* f bs y c" by (simp add: permute_bool_def)
+ have "f as x c = q \<bullet> (f as x c)"
+ apply(rule perm_supp_eq[symmetric])
+ using inc fcb1[OF fresh1] fr1 by (auto simp add: fresh_star_def)
+ also have "\<dots> = f (q \<bullet> as) (q \<bullet> x) c"
+ apply(rule perm1)
+ using inc fresh1 fr1 by (auto simp add: fresh_star_def)
+ also have "\<dots> = f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 by simp
+ also have "\<dots> = r \<bullet> (f bs y c)"
+ apply(rule perm2[symmetric])
+ using qq3 fresh2 fr1 by (auto simp add: fresh_star_def)
+ also have "... = f bs y c"
+ apply(rule perm_supp_eq)
+ using qq3 fr1 fcb2 by (auto simp add: fresh_star_def)
+ finally show ?thesis by simp
+qed
+
+lemma Abs_lst1_fcb2:
+ fixes a b :: "atom"
+ and x y :: "'b :: fs"
+ and c::"'c :: fs"
+ assumes e: "(Abs_lst [a] x) = (Abs_lst [b] y)"
+ and fcb1: "a \<sharp> c \<Longrightarrow> a \<sharp> f a x c"
+ and fresh: "{a, b} \<sharp>* c"
+ and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f a x c) = f (p \<bullet> a) (p \<bullet> x) c"
+ and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f b y c) = f (p \<bullet> b) (p \<bullet> y) c"
+ shows "f a x c = f b y c"
+using e
+apply(drule_tac Abs_lst_fcb2[where c="c" and f="\<lambda>(as::atom list) . f (hd as)"])
+apply(simp_all)
+using fcb1 fresh perm1 perm2
+apply(simp_all add: fresh_star_def)
+done
+
+
+function
+ apply_assn2 :: "(trm \<Rightarrow> trm) \<Rightarrow> assn \<Rightarrow> assn"
+where
+ "apply_assn2 f ANil = ANil"
+| "apply_assn2 f (ACons x t as) = ACons x (f t) (apply_assn2 f as)"
+ apply(case_tac x)
+ apply(case_tac b rule: trm_assn.exhaust(2))
+ apply(simp_all)
+ apply(blast)
+ done
+
+termination by lexicographic_order
+
+lemma apply_assn_eqvt[eqvt]:
+ "p \<bullet> (apply_assn2 f a) = apply_assn2 (p \<bullet> f) (p \<bullet> a)"
+ apply(induct f a rule: apply_assn2.induct)
+ apply simp_all
+ apply(perm_simp)
+ apply rule
+ done
+
+lemma
+ fixes x y :: "'a :: fs"
+ shows "[a # as]lst. x = [b # bs]lst. y \<Longrightarrow> [[a]]lst. [as]lst. x = [[b]]lst. [bs]lst. y"
+ apply (simp add: Abs_eq_iff)
+ apply (elim exE)
+ apply (rule_tac x="p" in exI)
+ apply (simp add: alphas)
+ apply clarify
+ apply rule
+ apply (simp add: supp_Abs)
+ apply blast
+ apply (simp add: supp_Abs fresh_star_def)
+ apply blast
+ done
+
+lemma
+ assumes neq: "a \<noteq> b" "sort_of a = sort_of b"
+ shows "[[a]]lst. [[a]]lst. a = [[a]]lst. [[b]]lst. b \<and> [[a, a]]lst. a \<noteq> [[a, b]]lst. b"
+ apply (simp add: Abs1_eq_iff)
+ apply rule
+ apply (simp add: Abs_eq_iff alphas supp_atom fresh_star_def)
+ apply (rule_tac x="(a \<rightleftharpoons> b)" in exI)
+ apply (simp add: neq)
+ apply (simp add: Abs_eq_iff alphas supp_atom fresh_star_def neq)
+ done
+
+nominal_primrec
+ subst :: "name \<Rightarrow> trm \<Rightarrow> trm \<Rightarrow> trm"
+where
+ "subst s t (Var x) = (if (s = x) then t else (Var x))"
+| "subst s t (App l r) = App (subst s t l) (subst s t r)"
+| "atom v \<sharp> (s, t) \<Longrightarrow> subst s t (Lam v b) = Lam v (subst s t b)"
+| "set (bn as) \<sharp>* (s, t) \<Longrightarrow> subst s t (Let as b) = Let (apply_assn2 (subst s t) as) (subst s t b)"
+ apply (simp only: eqvt_def subst_graph_def)
+ apply (rule, perm_simp, rule)
+ apply (rule TrueI)
+ apply (case_tac x)
+ apply (rule_tac y="c" and c="(a,b)" in trm_assn.strong_exhaust(1))
+ apply (auto simp add: fresh_star_def)[3]
+ apply (drule_tac x="assn" in meta_spec)
+ apply (simp add: Abs1_eq_iff alpha_bn_refl)
+ apply auto
+ apply (erule_tac c="(sa, ta)" in Abs_lst1_fcb2)
+ apply (simp add: Abs_fresh_iff)
+ apply (simp add: fresh_star_def)
+ apply (simp_all add: fresh_star_Pair_elim perm_supp_eq eqvt_at_def)[2]
+ apply (subgoal_tac "apply_assn2 (\<lambda>x2\<Colon>trm. subst_sumC (sa, ta, x2)) asa
+ = apply_assn2 (\<lambda>x2\<Colon>trm. subst_sumC (sa, ta, x2)) as")
+ prefer 2
+ apply (erule alpha_bn_inducts)
+ apply simp
+ apply (simp only: apply_assn2.simps)
+ apply simp
+--"We know nothing about names; not true; but we can apply fcb2"
+ defer
+ apply (simp only: )
+ apply (erule_tac c="(sa, ta)" in Abs_lst_fcb2)
+--"We again need induction for fcb assumption; this time true"
+ apply (induct_tac as rule: trm_assn.inducts(2))
+ apply (rule TrueI)+
+ apply (simp_all add: trm_assn.bn_defs fresh_star_def)[2]
+ apply (auto simp add: Abs_fresh_iff)[1]
+ apply assumption+
+--"But eqvt is not going to be true as well"
+ apply (simp add: fresh_star_Pair_elim perm_supp_eq eqvt_at_def trm_assn.fv_bn_eqvt)
+ apply (simp add: apply_assn_eqvt)
+ apply (drule sym)
+ apply (subgoal_tac "p \<bullet> (\<lambda>x2\<Colon>trm. subst_sumC (sa, ta, x2)) = (\<lambda>x2\<Colon>trm. subst_sumC (sa, ta, x2))")
+ apply (simp)
+ apply (erule alpha_bn_inducts)
+ apply simp
+ apply simp
+ apply (simp add: trm_assn.bn_defs)
+--"Again we cannot relate 'namea' with 'p \<bullet> name'"
+ prefer 4
+ apply (erule alpha_bn_inducts)
+ apply simp_all[2]
+ oops
+
+end