--- a/Nominal/Ex/Lambda.thy Wed May 19 12:43:38 2010 +0100
+++ b/Nominal/Ex/Lambda.thy Wed May 19 12:44:03 2010 +0100
@@ -472,6 +472,115 @@
nominal_inductive typing
*)
+(* Substitution *)
+
+definition new where
+ "new s = (THE x. \<forall>a \<in> s. atom x \<noteq> a)"
+
+lemma size_no_change: "size (p \<bullet> (t :: lam_raw)) = size t"
+ by (induct t) simp_all
+
+function
+ subst_raw :: "lam_raw \<Rightarrow> name \<Rightarrow> lam_raw \<Rightarrow> lam_raw"
+where
+ "subst_raw (Var_raw x) y s = (if x=y then s else (Var_raw x))"
+| "subst_raw (App_raw l r) y s = App_raw (subst_raw l y s) (subst_raw r y s)"
+| "subst_raw (Lam_raw x t) y s =
+ Lam_raw (new ({atom y} \<union> fv_lam_raw s \<union> fv_lam_raw t - {atom x}))
+ (subst_raw ((x \<leftrightarrow> (new ({atom y} \<union> fv_lam_raw s \<union> fv_lam_raw t - {atom x}))) \<bullet> t) y s)"
+by (pat_completeness, auto)
+termination
+ apply (relation "measure (\<lambda>(t, y, s). (size t))")
+ apply (auto simp add: size_no_change)
+ done
+
+lemma fv_subst[simp]: "fv_lam_raw (subst_raw t y s) =
+ (if (atom y \<in> fv_lam_raw t) then fv_lam_raw s \<union> (fv_lam_raw t - {atom y}) else fv_lam_raw t)"
+ apply (induct t arbitrary: s)
+ apply (auto simp add: supp_at_base)[1]
+ apply (auto simp add: supp_at_base)[1]
+ apply (simp only: fv_lam_raw.simps)
+ apply simp
+ apply (rule conjI)
+ apply clarify
+ sorry
+
+thm supp_at_base
+lemma new_eqvt[eqvt]: "p \<bullet> (new s) = new (p \<bullet> s)"
+ sorry
+
+lemma subst_var_raw_eqvt[eqvt]: "p \<bullet> (subst_raw t y s) = subst_raw (p \<bullet> t) (p \<bullet> y) (p \<bullet> s)"
+ apply (induct t arbitrary: p y s)
+ apply simp_all
+ apply(perm_simp)
+ apply simp
+ sorry
+
+lemma subst_id: "alpha_lam_raw (subst_raw x d (Var_raw d)) x"
+ apply (induct x arbitrary: d)
+ apply (simp_all add: alpha_lam_raw.intros)
+ apply (rule alpha_lam_raw.intros)
+ apply (rule_tac x="(name \<leftrightarrow> new (insert (atom d) (supp d)))" in exI)
+ apply (simp add: alphas)
+ oops
+
+quotient_definition
+ subst ("_ [ _ ::= _ ]" [100,100,100] 100)
+where
+ "subst :: lam \<Rightarrow> name \<Rightarrow> lam \<Rightarrow> lam" is "subst_raw"
+
+lemmas fv_rsp = quot_respect(10)[simplified]
+
+lemma subst_rsp_pre1:
+ assumes a: "alpha_lam_raw a b"
+ shows "alpha_lam_raw (subst_raw a y c) (subst_raw b y c)"
+ using a
+ apply (induct a b arbitrary: c y rule: alpha_lam_raw.induct)
+ apply (simp add: equivp_reflp[OF lam_equivp])
+ apply (simp add: alpha_lam_raw.intros)
+ apply (simp only: alphas)
+ apply clarify
+ apply (simp only: subst_raw.simps)
+ apply (rule alpha_lam_raw.intros)
+ apply (simp only: alphas)
+ sorry
+
+lemma subst_rsp_pre2:
+ assumes a: "alpha_lam_raw a b"
+ shows "alpha_lam_raw (subst_raw c y a) (subst_raw c y b)"
+ using a
+ apply (induct c arbitrary: a b y)
+ apply (simp add: equivp_reflp[OF lam_equivp])
+ apply (simp add: alpha_lam_raw.intros)
+ apply simp
+ apply (rule alpha_lam_raw.intros)
+ sorry
+
+lemma [quot_respect]:
+ "(alpha_lam_raw ===> op = ===> alpha_lam_raw ===> alpha_lam_raw) subst_raw subst_raw"
+ proof (intro fun_relI, simp)
+ fix a b c d :: lam_raw
+ fix y :: name
+ assume a: "alpha_lam_raw a b"
+ assume b: "alpha_lam_raw c d"
+ have c: "alpha_lam_raw (subst_raw a y c) (subst_raw b y c)" using subst_rsp_pre1 a by simp
+ then have d: "alpha_lam_raw (subst_raw b y c) (subst_raw b y d)" using subst_rsp_pre2 b by simp
+ show "alpha_lam_raw (subst_raw a y c) (subst_raw b y d)"
+ using c d equivp_transp[OF lam_equivp] by blast
+ qed
+
+lemma simp3:
+ "x \<noteq> y \<Longrightarrow> atom x \<notin> fv_lam_raw s \<Longrightarrow> alpha_lam_raw (subst_raw (Lam_raw x t) y s) (Lam_raw x (subst_raw t y s))"
+ apply simp
+ apply (rule alpha_lam_raw.intros)
+ apply (rule_tac x ="(x \<leftrightarrow> (new (insert (atom y) (fv_lam_raw s \<union> fv_lam_raw t) -
+ {atom x})))" in exI)
+ apply (simp only: alphas)
+ apply simp
+ sorry
+
+lemmas subst_simps = subst_raw.simps(1-2)[quot_lifted,no_vars]
+ simp3[quot_lifted,simplified lam.supp,simplified fresh_def[symmetric], no_vars]
end