--- a/Nominal/Nominal2_Supp.thy Sat Mar 20 13:50:00 2010 +0100
+++ b/Nominal/Nominal2_Supp.thy Sat Mar 20 16:27:51 2010 +0100
@@ -466,6 +466,21 @@
then show "p \<bullet> x = x" using eq by simp
qed
+section {* at_set_avoiding2 *}
+lemma at_set_avoiding2
+ assumes "finite xs"
+ and "finite (supp c)" "finite (supp x)"
+ and "xs \<sharp>* x"
+ shows "\<exists>p. (p \<bullet> xs) \<sharp>* c \<and> supp x \<sharp>* p"
+using assms
+apply(erule_tac c="(c, x)" in at_set_avoiding)
+apply(simp add: supp_Pair)
+apply(rule_tac x="p" in exI)
+apply(simp add: fresh_star_prod)
+apply(subgoal_tac "\<forall>a \<in> supp p. a \<sharp> x")
+apply(auto simp add: fresh_star_def fresh_def supp_perm)[1]
+apply(auto simp add: fresh_star_def fresh_def)
+done
end
\ No newline at end of file