--- a/Nominal/Ex/Let.thy Tue Jun 28 14:45:30 2011 +0900
+++ b/Nominal/Ex/Let.thy Wed Jun 29 00:48:50 2011 +0100
@@ -18,9 +18,12 @@
"bn ANil = []"
| "bn (ACons x t as) = (atom x) # (bn as)"
+print_theorems
+
thm trm_assn.fv_defs
thm trm_assn.eq_iff
thm trm_assn.bn_defs
+thm trm_assn.bn_inducts
thm trm_assn.perm_simps
thm trm_assn.induct
thm trm_assn.inducts
@@ -30,6 +33,17 @@
thm trm_assn.exhaust
thm trm_assn.strong_exhaust
+lemma bn_inj:
+ assumes a: "alpha_bn_raw x y"
+ shows "bn_raw x = bn_raw y \<Longrightarrow> x = y"
+using a
+apply(induct)
+apply(auto)[6]
+apply(simp)
+apply(simp)
+oops
+
+
lemma lets_bla:
"x \<noteq> z \<Longrightarrow> y \<noteq> z \<Longrightarrow> x \<noteq> y \<Longrightarrow>(Let (ACons x (Var y) ANil) (Var x)) \<noteq> (Let (ACons x (Var z) ANil) (Var x))"
@@ -96,17 +110,19 @@
(* TODO: should be provided by nominal *)
lemmas [eqvt] = trm_assn.fv_bn_eqvt
+thm Abs_lst_fcb
+
+(*
lemma Abs_lst_fcb2:
fixes as bs :: "'a :: fs"
and x y :: "'b :: fs"
and c::"'c::fs"
assumes eq: "[ba as]lst. x = [ba bs]lst. y"
- and fcb1: "(set (ba as)) \<sharp>* f as x c"
+ and fcb1: "set (ba as) \<sharp>* f as x c"
and fresh1: "set (ba as) \<sharp>* c"
and fresh2: "set (ba bs) \<sharp>* c"
and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f as x c) = f (p \<bullet> as) (p \<bullet> x) c"
and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f bs y c) = f (p \<bullet> bs) (p \<bullet> y) c"
- and props: "eqvt ba" "inj ba"
shows "f as x c = f bs y c"
proof -
have "supp (as, x, c) supports (f as x c)"
@@ -123,8 +139,8 @@
fr1: "(q \<bullet> (set (ba as))) \<sharp>* (x, c, f as x c, f bs y c)" and
fr2: "supp q \<sharp>* ([ba as]lst. x)" and
inc: "supp q \<subseteq> (set (ba as)) \<union> q \<bullet> (set (ba as))"
- using at_set_avoiding3[where xs="set (ba as)" and c="(x, c, f as x c, f bs y c)" and x="[ba as]lst. x"]
- fin1 fin2
+ using at_set_avoiding3[where xs="set (ba as)" and c="(x, c, f as x c, f bs y c)"
+ and x="[ba as]lst. x"] fin1 fin2
by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv)
have "[q \<bullet> (ba as)]lst. (q \<bullet> x) = q \<bullet> ([ba as]lst. x)" by simp
also have "\<dots> = [ba as]lst. x"
@@ -142,10 +158,6 @@
apply(simp add: set_eqvt)
apply(blast)
done
- have qq4: "q \<bullet> as = r \<bullet> bs" using qq2 props unfolding eqvt_def inj_on_def
- apply(perm_simp)
- apply(simp)
- done
have "(set (ba as)) \<sharp>* f as x c" by (rule fcb1)
then have "q \<bullet> ((set (ba as)) \<sharp>* f as x c)"
by (simp add: permute_bool_def)
@@ -155,32 +167,32 @@
using inc fresh1 fr1
apply(auto simp add: fresh_star_def fresh_Pair)
done
- then have "set (r \<bullet> (ba bs)) \<sharp>* f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 qq4
+ then have "set (r \<bullet> (ba bs)) \<sharp>* f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2
by simp
- then have "r \<bullet> ((set (ba bs)) \<sharp>* f bs y c)"
+ then have "r \<bullet> ((set (ba bs)) \<sharp>* f (ba bs) y c)"
apply(simp add: fresh_star_eqvt set_eqvt)
apply(subst (asm) perm2[symmetric])
using qq3 fresh2 fr1
apply(auto simp add: set_eqvt fresh_star_def fresh_Pair)
done
- then have fcb2: "(set (ba bs)) \<sharp>* f bs y c" by (simp add: permute_bool_def)
- have "f as x c = q \<bullet> (f as x c)"
+ then have fcb2: "(set (ba bs)) \<sharp>* f (ba bs) y c" by (simp add: permute_bool_def)
+ have "f (ba as) x c = q \<bullet> (f (ba as) x c)"
apply(rule perm_supp_eq[symmetric])
using inc fcb1 fr1 by (auto simp add: fresh_star_def)
- also have "\<dots> = f (q \<bullet> as) (q \<bullet> x) c"
+ also have "\<dots> = f (q \<bullet> (ba as)) (q \<bullet> x) c"
apply(rule perm1)
using inc fresh1 fr1 by (auto simp add: fresh_star_def)
- also have "\<dots> = f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq4 by simp
- also have "\<dots> = r \<bullet> (f bs y c)"
+ also have "\<dots> = f (r \<bullet> (ba bs)) (r \<bullet> y) c" using qq1 qq2 by simp
+ also have "\<dots> = r \<bullet> (f (ba bs) y c)"
apply(rule perm2[symmetric])
using qq3 fresh2 fr1 by (auto simp add: fresh_star_def)
- also have "... = f bs y c"
+ also have "... = f (ba bs) y c"
apply(rule perm_supp_eq)
using qq3 fr1 fcb2 by (auto simp add: fresh_star_def)
finally show ?thesis by simp
qed
+*)
-(* PROBLEM: the proof needs induction on alpha_bn inside which is not possible... *)
nominal_primrec
height_trm :: "trm \<Rightarrow> nat"
and height_assn :: "assn \<Rightarrow> nat"
@@ -200,13 +212,42 @@
apply (drule_tac x="trm" in meta_spec)
apply (simp add: alpha_bn_refl)
apply (case_tac b rule: trm_assn.exhaust(2))
- apply (auto)
- apply (erule Abs_lst1_fcb)
- apply (simp_all add: pure_fresh)
+ apply (auto)[2]
+ apply(simp_all)
+ thm trm_assn.perm_bn_alpha trm_assn.permute_bn
+ apply (erule_tac c="()" in Abs_lst_fcb2)
+ apply (simp_all add: pure_fresh fresh_star_def)[3]
+ apply (simp add: eqvt_at_def)
apply (simp add: eqvt_at_def)
- apply (erule Abs_lst_fcb)
- apply (simp_all add: pure_fresh)
- apply (simp_all add: eqvt_at_def eqvts)
+ apply(erule conjE)
+ apply (simp add: meta_eq_to_obj_eq[OF height_trm_def, symmetric, unfolded fun_eq_iff])
+ apply (simp add: meta_eq_to_obj_eq[OF height_assn_def, symmetric, unfolded fun_eq_iff])
+ apply (subgoal_tac "eqvt_at height_assn as")
+ apply (subgoal_tac "eqvt_at height_assn asa")
+ apply (subgoal_tac "eqvt_at height_trm b")
+ apply (subgoal_tac "eqvt_at height_trm ba")
+ apply (thin_tac "eqvt_at height_trm_height_assn_sumC (Inr as)")
+ apply (thin_tac "eqvt_at height_trm_height_assn_sumC (Inr asa)")
+ apply (thin_tac "eqvt_at height_trm_height_assn_sumC (Inl b)")
+ apply (thin_tac "eqvt_at height_trm_height_assn_sumC (Inl ba)")
+ defer
+ apply (simp add: eqvt_at_def height_trm_def)
+ apply (simp add: eqvt_at_def height_trm_def)
+ apply (simp add: eqvt_at_def height_assn_def)
+ apply (simp add: eqvt_at_def height_assn_def)
+ apply (subgoal_tac "height_assn as = height_assn asa")
+ apply (subgoal_tac "height_trm b = height_trm ba")
+ apply simp
+ apply (erule_tac c="()" in Abs_lst_fcb2)
+ apply (simp_all add: pure_fresh fresh_star_def)[3]
+ apply (simp_all add: eqvt_at_def)[2]
+ apply (drule_tac c="()" in Abs_lst_fcb2)
+ apply (simp_all add: pure_fresh fresh_star_def)[3]
+ apply (simp_all add: eqvt_at_def)[2]
+ apply(simp add: eqvt_def)
+ apply(perm_simp)
+ apply(simp)
+ apply(simp add: inj_on_def)
apply (rule arg_cong) back
oops
--- a/Nominal/Ex/LetRecB.thy Tue Jun 28 14:45:30 2011 +0900
+++ b/Nominal/Ex/LetRecB.thy Wed Jun 29 00:48:50 2011 +0100
@@ -181,6 +181,11 @@
apply (simp add: eqvt_at_def)
apply (simp add: eqvt_at_def)
--""
+ apply(simp_all add: eqvt_def inj_on_def)
+ apply(perm_simp)
+ apply(simp)
+ apply(perm_simp)
+ apply(simp)
done
termination by lexicographic_order
--- a/Nominal/Nominal2.thy Tue Jun 28 14:45:30 2011 +0900
+++ b/Nominal/Nominal2.thy Wed Jun 29 00:48:50 2011 +0100
@@ -218,7 +218,7 @@
val (_, lthy3) = Local_Theory.note ((Binding.empty, [eqvt_attr]), raw_perm_simps) lthy2a
val _ = trace_msg (K "Defining raw fv- and bn-functions...")
- val (raw_bns, raw_bn_defs, raw_bn_info, raw_bn_induct, lthy3a) =
+ val (raw_bns, raw_bn_defs, raw_bn_info, raw_bn_inducts, lthy3a) =
define_raw_bns raw_dt_names raw_dts raw_bn_funs raw_bn_eqs
(raw_inject_thms @ raw_distinct_thms) raw_size_thms lthy3
@@ -235,19 +235,22 @@
val (alpha_trms, alpha_bn_trms, alpha_intros, alpha_cases, alpha_induct, lthy4) =
define_raw_alpha raw_dt_names raw_tys raw_cns_info raw_bn_info raw_bclauses raw_fvs lthy3c
+ val _ = tracing ("alpha_induct\n" ^ Syntax.string_of_term lthy3c (prop_of alpha_induct))
+ val _ = tracing ("alpha_intros\n" ^ cat_lines (map (Syntax.string_of_term lthy4 o prop_of) alpha_intros))
+
val alpha_tys = map (domain_type o fastype_of) alpha_trms
val _ = trace_msg (K "Proving distinct theorems...")
val alpha_distincts =
- mk_alpha_distincts lthy4 alpha_cases raw_distinct_thms alpha_trms raw_dt_names
+ raw_prove_alpha_distincts lthy4 alpha_cases raw_distinct_thms alpha_trms raw_dt_names
val _ = trace_msg (K "Proving eq-iff theorems...")
val alpha_eq_iff =
- mk_alpha_eq_iff lthy4 alpha_intros raw_distinct_thms raw_inject_thms alpha_cases
+ raw_prove_alpha_eq_iff lthy4 alpha_intros raw_distinct_thms raw_inject_thms alpha_cases
val _ = trace_msg (K "Proving equivariance of bns, fvs, size and alpha...")
val raw_bn_eqvt =
- raw_prove_eqvt raw_bns raw_bn_induct (raw_bn_defs @ raw_perm_simps) lthy4
+ raw_prove_eqvt raw_bns raw_bn_inducts (raw_bn_defs @ raw_perm_simps) lthy4
(* noting the raw_bn_eqvt lemmas in a temprorary theory *)
val lthy_tmp = snd (Local_Theory.note ((Binding.empty, [eqvt_attr]), raw_bn_eqvt) lthy4)
@@ -288,6 +291,8 @@
val alpha_bn_imp_thms =
raw_prove_bn_imp alpha_trms alpha_bn_trms alpha_intros alpha_induct lthy5
+ val _ = tracing ("alpha_bn_imp_thms:\n" ^ cat_lines (map (Syntax.string_of_term lthy5 o prop_of) alpha_bn_imp_thms))
+
val _ = trace_msg (K "Proving respectfulness...")
val raw_funs_rsp_aux =
raw_fv_bn_rsp_aux alpha_trms alpha_bn_trms raw_fvs
@@ -381,7 +386,8 @@
val eq_iff_simps = @{thms alphas permute_prod.simps prod_fv.simps prod_alpha_def prod_rel_def
prod.cases}
- val ((((((qdistincts, qeq_iffs), qfv_defs), qbn_defs), qperm_simps), qfv_qbn_eqvts), lthyA) =
+ val (((((((qdistincts, qeq_iffs), qfv_defs), qbn_defs), qperm_simps), qfv_qbn_eqvts), qbn_inducts),
+ lthyA) =
lthy9a
|> lift_thms qtys [] alpha_distincts
||>> lift_thms qtys eq_iff_simps alpha_eq_iff
@@ -389,6 +395,7 @@
||>> lift_thms qtys [] raw_bn_defs
||>> lift_thms qtys [] raw_perm_simps
||>> lift_thms qtys [] (raw_fv_eqvt @ raw_bn_eqvt)
+ ||>> lift_thms qtys [] raw_bn_inducts
val ((((((qsize_eqvt, [qinduct]), qexhausts), qsize_simps), qperm_bn_simps), qalpha_refl_thms), lthyB) =
lthyA
@@ -399,7 +406,7 @@
||>> lift_thms qtys [] raw_perm_bn_simps
||>> lift_thms qtys [] alpha_refl_thms
- val qinducts = Project_Rule.projections lthyA qinduct
+ val qinducts = Project_Rule.projections lthyB qinduct
val _ = trace_msg (K "Proving supp lemmas and fs-instances...")
val qsupports_thms =
@@ -470,8 +477,9 @@
||>> Local_Theory.note ((thms_suffix "eq_iff", [induct_attr, simp_attr]), qeq_iffs')
||>> Local_Theory.note ((thms_suffix "fv_defs", []), qfv_defs)
||>> Local_Theory.note ((thms_suffix "bn_defs", []), qbn_defs)
+ ||>> Local_Theory.note ((thms_suffix "bn_inducts", []), qbn_inducts)
||>> Local_Theory.note ((thms_suffix "perm_simps", [eqvt_attr, simp_attr]), qperm_simps)
- ||>> Local_Theory.note ((thms_suffix "fv_bn_eqvt", []), qfv_qbn_eqvts)
+ ||>> Local_Theory.note ((thms_suffix "fv_bn_eqvt", [eqvt_attr]), qfv_qbn_eqvts)
||>> Local_Theory.note ((thms_suffix "size", [simp_attr]), qsize_simps)
||>> Local_Theory.note ((thms_suffix "size_eqvt", []), qsize_eqvt)
||>> Local_Theory.note ((thms_suffix "induct", [case_names_attr]), [qinduct])
--- a/Nominal/nominal_dt_alpha.ML Tue Jun 28 14:45:30 2011 +0900
+++ b/Nominal/nominal_dt_alpha.ML Wed Jun 29 00:48:50 2011 +0100
@@ -13,10 +13,10 @@
bclause list list list -> term list -> Proof.context ->
term list * term list * thm list * thm list * thm * local_theory
- val mk_alpha_distincts: Proof.context -> thm list -> thm list ->
+ val raw_prove_alpha_distincts: Proof.context -> thm list -> thm list ->
term list -> string list -> thm list
- val mk_alpha_eq_iff: Proof.context -> thm list -> thm list -> thm list ->
+ val raw_prove_alpha_eq_iff: Proof.context -> thm list -> thm list -> thm list ->
thm list -> thm list
val induct_prove: typ list -> (typ * (term -> term)) list -> thm ->
@@ -297,7 +297,7 @@
THEN_ALL_NEW asm_full_simp_tac (HOL_ss addsimps distinct_thms)
-fun mk_alpha_distincts ctxt cases_thms distinct_thms alpha_trms alpha_str =
+fun raw_prove_alpha_distincts ctxt cases_thms distinct_thms alpha_trms alpha_str =
let
val ty_trm_assoc = alpha_str ~~ (map (fst o dest_Const) alpha_trms)
@@ -341,7 +341,7 @@
else HOLogic.mk_Trueprop (HOLogic.mk_eq (concl, list_conj hyps))
end;
-fun mk_alpha_eq_iff ctxt alpha_intros distinct_thms inject_thms alpha_elims =
+fun raw_prove_alpha_eq_iff ctxt alpha_intros distinct_thms inject_thms alpha_elims =
let
val ((_, thms_imp), ctxt') = Variable.import false alpha_intros ctxt;
val goals = map mk_alpha_eq_iff_goal thms_imp;