--- a/QuotMain.thy Sat Oct 17 15:42:57 2009 +0200
+++ b/QuotMain.thy Sat Oct 17 16:06:54 2009 +0200
@@ -1167,15 +1167,10 @@
ML {* val thm = @{thm list_induct_r} OF [li] *}
ML {* val trm = build_goal @{context} thm consts @{typ "'a list"} @{typ "'a fset"} *}
-thm APPLY_RSP
lemmas APPLY_RSP_I = APPLY_RSP[of "(op \<approx> ===> op =) ===> op =" "(ABS_fset ---> id) ---> id" "(REP_fset ---> id) ---> id" "op =" "id" "id"]
-lemmas APPLY_RSP_I2 = APPLY_RSP[of "op \<approx>" "ABS_fset" "REP_fset" "op =" "id" "id"]
-
-thm REP_ABS_RSP(2)
lemmas REP_ABS_RSP_I = REP_ABS_RSP(1)[of "(op \<approx> ===> op =) ===> op =" "(ABS_fset ---> id) ---> id" "(REP_fset ---> id) ---> id"]
prove trm
-thm UNION_def
apply (atomize(full))
apply (simp only: id_def[symmetric])
@@ -1186,8 +1181,11 @@
val m = Thm.match (tc', gc')
val t2 = Drule.instantiate m @{thm "APPLY_RSP_I" }
*}
+thm APPLY_RSP_I
apply (tactic {* rtac t2 1 *})
-prefer 4
+prefer 2
+apply (rule IDENTITY_QUOTIENT)
+prefer 3
(* ABS_REP_RSP_TAC *)
ML_prf {*
val (_, gc') = Thm.dest_comb (Subgoal.focus @{context} 1 (Isar.goal ()) |> fst |> #concl)
@@ -1217,28 +1215,27 @@
(* REFL_TAC *)
apply (simp)
(* APPLY_RSP_TAC *)
-thm APPLY_RSP
apply (rule_tac APPLY_RSP[of "op \<approx>" "ABS_fset" "REP_fset" "op =" "id" "id"])
-(* MINE *)
apply (rule QUOTIENT_fset)
-prefer 3
+apply (rule IDENTITY_QUOTIENT)
+prefer 2
(* ABS_REP_RSP *)
apply (rule REP_ABS_RSP(1)[of "op \<approx>" "ABS_fset" "REP_fset"])
-(* MINE *)
apply (rule QUOTIENT_fset)
(* MINE *)
apply (rule list_eq_refl )
-prefer 2
(* ABS_REP_RSP *)
apply (rule REP_ABS_RSP(1)[of "op \<approx> ===> op =" "REP_fset ---> id" "ABS_fset ---> id"])
prefer 2
(* MINE *)
apply (simp only: FUN_REL.simps)
-prefer 3
+prefer 2
(* APPLY_RSP *)
apply (rule_tac APPLY_RSP[of "op \<approx> ===> op =" "REP_fset ---> id" "ABS_fset ---> id" "op =" "id" "id" "Ball (Respects op \<approx>)" "Ball (Respects op \<approx>)"])
-(* 3: ho_respects *)
-prefer 4
+prefer 2
+apply (rule IDENTITY_QUOTIENT)
+(* 2: ho_respects *)
+prefer 3
(* ABS_REP_RSP *)
apply (rule REP_ABS_RSP(1)[of "op \<approx> ===> op =" "REP_fset ---> id" "ABS_fset ---> id"])
prefer 2
@@ -1255,17 +1252,18 @@
apply (simp)
(* APPLY_RSP *)
apply (rule APPLY_RSP[of "op \<approx>" "ABS_fset" "REP_fset" "op =" "id" "id"])
-prefer 3
+apply (rule QUOTIENT_fset)
+apply (rule IDENTITY_QUOTIENT)
apply (rule REP_ABS_RSP(1)[of "op \<approx> ===> op =" "REP_fset ---> id" "ABS_fset ---> id"])
prefer 2
(* MINE *)
apply (simp only: FUN_REL.simps)
-prefer 4
+prefer 2
apply (rule REP_ABS_RSP(1)[of "op \<approx>" "ABS_fset" "REP_fset"])
-prefer 2
+apply (rule QUOTIENT_fset)
(* FIRST_ASSUM MATCH_ACCEPT_TAC *)
apply (assumption)
-prefer 5
+prefer 2
(* MK_COMB_TAC *)
apply (tactic {* Cong_Tac.cong_tac @{thm cong} 1 *})
(* REFL_TAC *)
@@ -1274,41 +1272,31 @@
apply (rule ext)
(* APPLY_RSP *)
apply (rule APPLY_RSP[of "op \<approx>" "ABS_fset" "REP_fset" "op =" "id" "id"])
-prefer 3
+apply (rule QUOTIENT_fset)
+apply (rule IDENTITY_QUOTIENT)
apply (rule REP_ABS_RSP(1)[of "op \<approx> ===> op =" "REP_fset ---> id" "ABS_fset ---> id"])
prefer 2
apply (simp only: FUN_REL.simps)
-prefer 4
+prefer 2
apply (rule REP_ABS_RSP(1)[of "op \<approx>" "ABS_fset" "REP_fset"])
-prefer 2
+apply (rule QUOTIENT_fset)
(* APPLY_RSP *)
apply (rule_tac ?f="\<lambda>x. h # x" and ?g="\<lambda>x. h # x" in APPLY_RSP[of "op \<approx>" "ABS_fset" "REP_fset" "op \<approx>" "ABS_fset" "REP_fset"] )
-prefer 3
+apply (rule QUOTIENT_fset)
+apply (rule QUOTIENT_fset)
apply (rule_tac ?f="op #" and ?g="op #" in APPLY_RSP[of "op =" "id" "id" "op \<approx> ===> op \<approx>" "REP_fset ---> ABS_fset" "ABS_fset ---> REP_fset"])
-(* 3: CONS respects *)
-prefer 3
-apply (simp only: FUN_REL.simps)
+apply (rule IDENTITY_QUOTIENT)
+(* CONS respects *)
+prefer 2
+apply (simp add: FUN_REL.simps)
+apply (rule allI)
apply (rule allI)
apply (rule allI)
apply (rule impI)
-apply (rule allI)
-apply (rule allI)
-apply (rule impI)
-apply (simp)
-thm cons_preserves
apply (rule cons_preserves)
apply (assumption)
-prefer 3
+prefer 2
apply (simp)
-(* Mine *)
-apply (simp only: id_def)
-apply (rule IDENTITY_QUOTIENT)
-prefer 2
-apply (rule QUOTIENT_fset)
-prefer 2
-apply (rule QUOTIENT_fset)
-prefer 3
-apply (rule QUOTIENT_fset)
sorry
thm list.recs(2)
--- a/QuotScript.thy Sat Oct 17 15:42:57 2009 +0200
+++ b/QuotScript.thy Sat Oct 17 16:06:54 2009 +0200
@@ -81,8 +81,8 @@
by auto
lemma IDENTITY_QUOTIENT:
- shows "QUOTIENT (op =) (\<lambda>x. x) (\<lambda>x. x)"
-unfolding QUOTIENT_def
+ shows "QUOTIENT (op =) id id"
+unfolding QUOTIENT_def id_def
by blast
lemma QUOTIENT_SYM:
@@ -114,8 +114,8 @@
"f ---> g \<equiv> fun_map f g"
lemma FUN_MAP_I:
- shows "((\<lambda>x. x) ---> (\<lambda>x. x)) = (\<lambda>x. x)"
-by (simp add: expand_fun_eq)
+ shows "(id ---> id) = id"
+by (simp add: expand_fun_eq id_def)
lemma IN_FUN:
shows "x \<in> ((f ---> g) s) = g (f x \<in> s)"
@@ -382,13 +382,13 @@
lemma I_PRS:
assumes q: "QUOTIENT R Abs Rep"
- shows "(\<lambda>x. x) e = Abs ((\<lambda> x. x) (Rep e))"
+ shows "id e = Abs (id (Rep e))"
using QUOTIENT_ABS_REP[OF q] by auto
lemma I_RSP:
assumes q: "QUOTIENT R Abs Rep"
and a: "R e1 e2"
- shows "R ((\<lambda>x. x) e1) ((\<lambda> x. x) e2)"
+ shows "R (id e1) (id e2)"
using a by auto
lemma o_PRS: