Code for solving symp goals with multiple existentials.
--- a/Nominal/Fv.thy Wed Mar 03 15:28:25 2010 +0100
+++ b/Nominal/Fv.thy Wed Mar 03 17:47:29 2010 +0100
@@ -1,5 +1,5 @@
theory Fv
-imports "Nominal2_Atoms" "Abs" "Perm" "Rsp" (* For testing *)
+imports "Nominal2_Atoms" "Abs" "Perm" "Rsp"
begin
(* Bindings are given as a list which has a length being equal
@@ -328,14 +328,18 @@
by auto
ML {*
-fun symp_tac induct inj eqvt =
- (((rtac impI THEN' etac induct) ORELSE' rtac induct) THEN_ALL_NEW
- asm_full_simp_tac (HOL_ss addsimps inj) THEN_ALL_NEW
- (REPEAT o etac conjE THEN' etac @{thm exi_neg} THEN' REPEAT o etac conjE THEN'
- (TRY o REPEAT_ALL_NEW (CHANGED o rtac conjI))) THEN_ALL_NEW
- (asm_full_simp_tac HOL_ss) THEN_ALL_NEW
- (etac @{thm alpha_gen_compose_sym} THEN'
- (asm_full_simp_tac (HOL_ss addsimps (@{thm atom_eqvt} :: eqvt)))))
+fun symp_tac induct inj eqvt ctxt =
+ ind_tac induct THEN_ALL_NEW
+ simp_tac ((mk_minimal_ss ctxt) addsimps inj) THEN_ALL_NEW split_conjs
+ THEN_ALL_NEW
+ REPEAT o etac @{thm exi_neg}
+ THEN_ALL_NEW
+ split_conjs THEN_ALL_NEW
+ asm_full_simp_tac (HOL_ss addsimps @{thms supp_minus_perm minus_add[symmetric]}) THEN_ALL_NEW
+ (rtac @{thm alpha_gen_compose_sym} THEN' RANGE [
+ (asm_full_simp_tac (HOL_ss addsimps @{thms plus_perm_eq})),
+ (asm_full_simp_tac (HOL_ss addsimps (eqvt @ all_eqvts ctxt)))
+ ])
*}
ML {*
@@ -402,7 +406,7 @@
val ([x, y, z], ctxt') = Variable.variant_fixes ["x","y","z"] ctxt;
val (reflg, (symg, transg)) = build_alpha_refl_gl alphas (x, y, z)
fun reflp_tac' _ = reflp_tac term_induct alpha_inj ctxt 1;
- fun symp_tac' _ = symp_tac alpha_induct alpha_inj eqvt 1;
+ fun symp_tac' _ = symp_tac alpha_induct alpha_inj eqvt ctxt 1;
fun transp_tac' _ = transp_tac ctxt alpha_induct alpha_inj term_inj distinct cases eqvt 1;
val reflt = Goal.prove ctxt' [] [] reflg reflp_tac';
val symt = Goal.prove ctxt' [] [] symg symp_tac';
--- a/Nominal/Rsp.thy Wed Mar 03 15:28:25 2010 +0100
+++ b/Nominal/Rsp.thy Wed Mar 03 17:47:29 2010 +0100
@@ -146,7 +146,9 @@
by auto
ML {*
- fun indtac induct = (rtac impI THEN' etac induct) ORELSE' rtac induct
+fun ind_tac induct = (rtac impI THEN' etac induct) ORELSE' rtac induct
+*}
+ML {*
fun all_eqvts ctxt =
Nominal_ThmDecls.get_eqvts_thms ctxt @ Nominal_ThmDecls.get_eqvts_raw_thms ctxt
val split_conjs = REPEAT o etac conjE THEN' TRY o REPEAT_ALL_NEW (CHANGED o rtac conjI)
@@ -161,7 +163,7 @@
ML {*
fun alpha_eqvt_tac induct simps ctxt =
- indtac induct THEN_ALL_NEW
+ ind_tac induct THEN_ALL_NEW
simp_tac ((mk_minimal_ss ctxt) addsimps simps) THEN_ALL_NEW
REPEAT o etac @{thm exi[of _ _ "p"]} THEN' split_conjs THEN_ALL_NEW
asm_full_simp_tac (HOL_ss addsimps (all_eqvts ctxt @ simps)) THEN_ALL_NEW