lattice properties.
--- a/Nominal/FSet.thy Tue Apr 20 15:59:57 2010 +0200
+++ b/Nominal/FSet.thy Wed Apr 21 09:13:32 2010 +0200
@@ -563,10 +563,6 @@
"ffold :: ('a \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> 'a fset \<Rightarrow> 'b"
is "ffold_raw"
-lemma funion_sym_pre:
- "xs @ ys \<approx> ys @ xs"
- by auto
-
lemma set_cong:
shows "(set x = set y) = (x \<approx> y)"
by auto
@@ -760,13 +756,9 @@
shows "S |\<union>| {||} = S"
by (lifting append_Nil2)
-lemma funion_sym:
- shows "S |\<union>| T = T |\<union>| S"
- by (lifting funion_sym_pre)
+thm sup.commute[where 'a="'a fset"]
-lemma funion_assoc:
- shows "S |\<union>| T |\<union>| U = S |\<union>| (T |\<union>| U)"
- by (lifting append_assoc)
+thm sup.assoc[where 'a="'a fset"]
lemma singleton_union_left:
"{|a|} |\<union>| S = finsert a S"
@@ -774,7 +766,7 @@
lemma singleton_union_right:
"S |\<union>| {|a|} = finsert a S"
- by (subst funion_sym) simp
+ by (subst sup.commute) simp
section {* Induction and Cases rules for finite sets *}