--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Nominal/Test_compat1.thy Tue Mar 09 09:54:58 2010 +0100
@@ -0,0 +1,659 @@
+theory Test_compat
+imports "Parser" "../Attic/Prove"
+begin
+
+text {*
+ example 1
+
+ single let binding
+*}
+
+nominal_datatype lam =
+ VAR "name"
+| APP "lam" "lam"
+| LET bp::"bp" t::"lam" bind "bi bp" in t
+and bp =
+ BP "name" "lam"
+binder
+ bi::"bp \<Rightarrow> atom set"
+where
+ "bi (BP x t) = {atom x}"
+
+thm alpha_lam_raw_alpha_bp_raw.intros[no_vars]
+
+abbreviation "VAR \<equiv> VAR_raw"
+abbreviation "APP \<equiv> APP_raw"
+abbreviation "LET \<equiv> LET_raw"
+abbreviation "BP \<equiv> BP_raw"
+abbreviation "bi \<equiv> bi_raw"
+
+(* non-recursive case *)
+
+inductive
+ alpha_lam :: "lam_raw \<Rightarrow> lam_raw \<Rightarrow> bool" and
+ alpha_bp :: "bp_raw \<Rightarrow> bp_raw \<Rightarrow> bool" and
+ compat_bp :: "bp_raw \<Rightarrow> perm \<Rightarrow> bp_raw \<Rightarrow> bool"
+where
+ "x = y \<Longrightarrow> alpha_lam (VAR x) (VAR y)"
+| "alpha_lam l1 s1 \<and> alpha_lam l2 s2 \<Longrightarrow> alpha_lam (APP l1 l2) (APP s1 s2)"
+| "\<exists>pi. (bi bp, lam) \<approx>gen alpha_lam fv_lam_raw pi (bi bp', lam') \<and> (pi \<bullet> (bi bp)) = bi bp'
+ \<and> compat_bp bp pi bp'
+ \<Longrightarrow> alpha_lam (LET bp lam) (LET bp' lam')"
+| "alpha_lam lam lam' \<and> name = name' \<Longrightarrow> alpha_bp (BP name lam) (BP name' lam')"
+| "alpha_lam t t' \<Longrightarrow> compat_bp (BP x t) pi (BP x' t')"
+
+lemma test1:
+ assumes "distinct [x, y]"
+ shows "alpha_lam (LET (BP x (VAR x)) (VAR x))
+ (LET (BP y (VAR x)) (VAR y))"
+apply(rule alpha_lam_alpha_bp_compat_bp.intros)
+apply(rule_tac x="(x \<leftrightarrow> y)" in exI)
+apply(simp add: alpha_gen fresh_star_def)
+apply(simp add: alpha_lam_alpha_bp_compat_bp.intros(1))
+apply(rule conjI)
+defer
+apply(rule alpha_lam_alpha_bp_compat_bp.intros)
+apply(simp add: alpha_lam_alpha_bp_compat_bp.intros(1))
+apply(simp add: permute_set_eq atom_eqvt)
+done
+
+lemma test2:
+ assumes asm: "distinct [x, y]"
+ shows "\<not> alpha_lam (LET (BP x (VAR x)) (VAR x))
+ (LET (BP y (VAR y)) (VAR y))"
+using asm
+apply(clarify)
+apply(erule alpha_lam.cases)
+apply(simp_all)
+apply(erule exE)
+apply(clarify)
+apply(simp add: alpha_gen fresh_star_def)
+apply(erule alpha_lam.cases)
+apply(simp_all)
+apply(clarify)
+apply(erule compat_bp.cases)
+apply(simp_all)
+apply(clarify)
+apply(erule alpha_lam.cases)
+apply(simp_all)
+done
+
+(* recursive case where we have also bind "bi bp" in bp *)
+
+inductive
+ Alpha_lam :: "lam_raw \<Rightarrow> lam_raw \<Rightarrow> bool" and
+ Alpha_bp :: "bp_raw \<Rightarrow> bp_raw \<Rightarrow> bool" and
+ Compat_bp :: "bp_raw \<Rightarrow> perm \<Rightarrow> bp_raw \<Rightarrow> bool"
+where
+ "x = y \<Longrightarrow> Alpha_lam (VAR x) (VAR y)"
+| "Alpha_lam l1 s1 \<and> Alpha_lam l2 s2 \<Longrightarrow> Alpha_lam (APP l1 l2) (APP s1 s2)"
+| "\<exists>pi. (bi bp, lam) \<approx>gen Alpha_lam fv_lam_raw pi (bi bp', lam') \<and> Compat_bp bp pi bp'
+ \<and> (pi \<bullet> (bi bp)) = bi bp'
+ \<Longrightarrow> Alpha_lam (LET bp lam) (LET bp' lam')"
+| "Alpha_lam lam lam' \<and> name = name' \<Longrightarrow> Alpha_bp (BP name lam) (BP name' lam')"
+| "Alpha_lam (pi \<bullet> t) t' \<Longrightarrow> Compat_bp (BP x t) pi (BP x' t')"
+
+lemma Test1:
+ assumes "distinct [x, y]"
+ shows "Alpha_lam (LET (BP x (VAR x)) (VAR x))
+ (LET (BP y (VAR y)) (VAR y))"
+apply(rule Alpha_lam_Alpha_bp_Compat_bp.intros)
+apply(rule_tac x="(x \<leftrightarrow> y)" in exI)
+apply(simp add: alpha_gen fresh_star_def)
+apply(simp add: Alpha_lam_Alpha_bp_Compat_bp.intros(1))
+apply(rule conjI)
+apply(rule Alpha_lam_Alpha_bp_Compat_bp.intros)
+apply(simp add: Alpha_lam_Alpha_bp_Compat_bp.intros(1))
+apply(simp add: permute_set_eq atom_eqvt)
+done
+
+lemma Test2:
+ assumes asm: "distinct [x, y]"
+ shows "\<not> Alpha_lam (LET (BP x (VAR x)) (VAR x))
+ (LET (BP y (VAR x)) (VAR y))"
+using asm
+apply(clarify)
+apply(erule Alpha_lam.cases)
+apply(simp_all)
+apply(erule exE)
+apply(clarify)
+apply(simp add: alpha_gen fresh_star_def)
+apply(erule Alpha_lam.cases)
+apply(simp_all)
+apply(clarify)
+apply(erule Compat_bp.cases)
+apply(simp_all)
+apply(clarify)
+apply(erule Alpha_lam.cases)
+apply(simp_all)
+done
+
+
+text {* example 2 *}
+
+nominal_datatype trm' =
+ Var "name"
+| App "trm'" "trm'"
+| Lam x::"name" t::"trm'" bind x in t
+| Let p::"pat'" "trm'" t::"trm'" bind "f p" in t
+and pat' =
+ PN
+| PS "name"
+| PD "name" "name"
+binder
+ f::"pat' \<Rightarrow> atom set"
+where
+ "f PN = {}"
+| "f (PS x) = {atom x}"
+| "f (PD x y) = {atom x} \<union> {atom y}"
+
+thm alpha_trm'_raw_alpha_pat'_raw.intros[no_vars]
+
+abbreviation "Var \<equiv> Var_raw"
+abbreviation "App \<equiv> App_raw"
+abbreviation "Lam \<equiv> Lam_raw"
+abbreviation "Lett \<equiv> Let_raw"
+abbreviation "PN \<equiv> PN_raw"
+abbreviation "PS \<equiv> PS_raw"
+abbreviation "PD \<equiv> PD_raw"
+abbreviation "f \<equiv> f_raw"
+
+(* not_yet_done *)
+inductive
+ alpha_trm' :: "trm'_raw \<Rightarrow> trm'_raw \<Rightarrow> bool" and
+ alpha_pat' :: "pat'_raw \<Rightarrow> pat'_raw \<Rightarrow> bool" and
+ compat_pat' :: "pat'_raw \<Rightarrow> perm \<Rightarrow> pat'_raw \<Rightarrow> bool"
+where
+ "name = name' \<Longrightarrow> alpha_trm' (Var name) (Var name')"
+| "alpha_trm' t2 t2' \<and> alpha_trm' t1 t1' \<Longrightarrow> alpha_trm' (App t1 t2) (App t1' t2')"
+| "\<exists>pi. ({atom x}, t) \<approx>gen alpha_trm' fv_trm'_raw pi ({atom x'}, t') \<Longrightarrow> alpha_trm' (Lam x t) (Lam x' t')"
+| "\<exists>pi. (f p, t) \<approx>gen alpha_trm' fv_trm'_raw pi (f p', t') \<and> alpha_trm' s s' \<and> (pi \<bullet> f p) = f p' \<and>
+ compat_pat' p pi p' \<Longrightarrow> alpha_trm' (Lett p s t) (Lett p' s' t')"
+| "alpha_pat' PN PN"
+| "name = name' \<Longrightarrow> alpha_pat' (PS name) (PS name')"
+| "name2 = name2' \<and> name1 = name1' \<Longrightarrow> alpha_pat' (PD name1 name2) (PD name1' name2')"
+| "compat_pat' PN pi PN"
+| "compat_pat' (PS x) pi (PS x')"
+| "compat_pat' (PD p1 p2) pi (PD p1' p2')"
+
+lemma
+ assumes a: "distinct [x, y, z, u]"
+ shows "alpha_trm' (Lett (PD x u) t (App (Var x) (Var y)))
+ (Lett (PD z u) t (App (Var z) (Var y)))"
+using a
+apply -
+apply(rule alpha_trm'_alpha_pat'_compat_pat'.intros)
+apply(auto simp add: alpha_gen)
+apply(rule_tac x="(x \<leftrightarrow> z)" in exI)
+apply(auto simp add: fresh_star_def permute_set_eq atom_eqvt)
+defer
+apply(rule alpha_trm'_alpha_pat'_compat_pat'.intros)
+apply(simp add: alpha_trm'_alpha_pat'_compat_pat'.intros)
+prefer 4
+apply(rule alpha_trm'_alpha_pat'_compat_pat'.intros)
+(* they can be proved *)
+oops
+
+lemma
+ assumes a: "distinct [x, y, z, u]"
+ shows "alpha_trm' (Lett (PD x u) t (App (Var x) (Var y)))
+ (Lett (PD z z) t (App (Var z) (Var y)))"
+using a
+apply -
+apply(rule alpha_trm'_alpha_pat'_compat_pat'.intros)
+apply(auto simp add: alpha_gen)
+apply(rule_tac x="(x \<leftrightarrow> z)" in exI)
+apply(auto simp add: fresh_star_def permute_set_eq atom_eqvt)
+defer
+apply(rule alpha_trm'_alpha_pat'_compat_pat'.intros)
+apply(simp add: alpha_trm'_alpha_pat'_compat_pat'.intros)
+prefer 4
+apply(rule alpha_trm'_alpha_pat'_compat_pat'.intros)
+(* they can be proved *)
+oops
+
+using a
+apply(clarify)
+apply(erule alpha_trm'.cases)
+apply(simp_all)
+apply(auto simp add: alpha_gen)
+apply(erule alpha_trm'.cases)
+apply(simp_all)
+apply(clarify)
+apply(erule compat_pat'.cases)
+apply(simp_all)
+apply(clarify)
+apply(erule alpha_trm'.cases)
+apply(simp_all)
+done
+
+nominal_datatype trm0 =
+ Var0 "name"
+| App0 "trm0" "trm0"
+| Lam0 x::"name" t::"trm0" bind x in t
+| Let0 p::"pat0" "trm0" t::"trm0" bind "f0 p" in t
+and pat0 =
+ PN0
+| PS0 "name"
+| PD0 "pat0" "pat0"
+binder
+ f0::"pat0 \<Rightarrow> atom set"
+where
+ "f0 PN0 = {}"
+| "f0 (PS0 x) = {atom x}"
+| "f0 (PD0 p1 p2) = (f0 p1) \<union> (f0 p2)"
+
+thm f0_raw.simps
+(*thm trm0_pat0_induct
+thm trm0_pat0_perm
+thm trm0_pat0_fv
+thm trm0_pat0_bn*)
+
+text {* example type schemes *}
+
+(* does not work yet
+nominal_datatype t =
+ Var "name"
+| Fun "t" "t"
+
+nominal_datatype tyS =
+ All xs::"name list" ty::"t_raw" bind xs in ty
+*)
+
+
+nominal_datatype t =
+ Var "name"
+| Fun "t" "t"
+and tyS =
+ All xs::"name set" ty::"t" bind xs in ty
+
+(* example 1 from Terms.thy *)
+
+nominal_datatype trm1 =
+ Vr1 "name"
+| Ap1 "trm1" "trm1"
+| Lm1 x::"name" t::"trm1" bind x in t
+| Lt1 p::"bp1" "trm1" t::"trm1" bind "bv1 p" in t
+and bp1 =
+ BUnit1
+| BV1 "name"
+| BP1 "bp1" "bp1"
+binder
+ bv1
+where
+ "bv1 (BUnit1) = {}"
+| "bv1 (BV1 x) = {atom x}"
+| "bv1 (BP1 bp1 bp2) = (bv1 bp1) \<union> (bv1 bp2)"
+
+thm bv1_raw.simps
+
+(* example 2 from Terms.thy *)
+
+nominal_datatype trm2 =
+ Vr2 "name"
+| Ap2 "trm2" "trm2"
+| Lm2 x::"name" t::"trm2" bind x in t
+| Lt2 r::"assign" t::"trm2" bind "bv2 r" in t
+and assign =
+ As "name" "trm2"
+binder
+ bv2
+where
+ "bv2 (As x t) = {atom x}"
+
+(* compat should be
+compat (As x t) pi (As x' t') == pi o x = x' & alpha t t'
+*)
+
+
+thm fv_trm2_raw_fv_assign_raw.simps[no_vars]
+thm alpha_trm2_raw_alpha_assign_raw.intros[no_vars]
+
+
+
+text {* example 3 from Terms.thy *}
+
+nominal_datatype trm3 =
+ Vr3 "name"
+| Ap3 "trm3" "trm3"
+| Lm3 x::"name" t::"trm3" bind x in t
+| Lt3 r::"rassigns3" t::"trm3" bind "bv3 r" in t
+and rassigns3 =
+ ANil
+| ACons "name" "trm3" "rassigns3"
+binder
+ bv3
+where
+ "bv3 ANil = {}"
+| "bv3 (ACons x t as) = {atom x} \<union> (bv3 as)"
+
+
+(* compat should be
+compat (ANil) pi (PNil) \<equiv> TRue
+compat (ACons x t ts) pi (ACons x' t' ts') \<equiv> pi o x = x' \<and> alpha t t' \<and> compat ts pi ts'
+*)
+
+(* example 4 from Terms.thy *)
+
+(* fv_eqvt does not work, we need to repaire defined permute functions
+ defined fv and defined alpha... *)
+nominal_datatype trm4 =
+ Vr4 "name"
+| Ap4 "trm4" "trm4 list"
+| Lm4 x::"name" t::"trm4" bind x in t
+
+thm alpha_trm4_raw_alpha_trm4_raw_list.intros[no_vars]
+thm fv_trm4_raw_fv_trm4_raw_list.simps[no_vars]
+
+(* example 5 from Terms.thy *)
+
+nominal_datatype trm5 =
+ Vr5 "name"
+| Ap5 "trm5" "trm5"
+| Lt5 l::"lts" t::"trm5" bind "bv5 l" in t
+and lts =
+ Lnil
+| Lcons "name" "trm5" "lts"
+binder
+ bv5
+where
+ "bv5 Lnil = {}"
+| "bv5 (Lcons n t ltl) = {atom n} \<union> (bv5 ltl)"
+
+(* example 6 from Terms.thy *)
+
+(* BV is not respectful, needs to fail*)
+nominal_datatype trm6 =
+ Vr6 "name"
+| Lm6 x::"name" t::"trm6" bind x in t
+| Lt6 left::"trm6" right::"trm6" bind "bv6 left" in right
+binder
+ bv6
+where
+ "bv6 (Vr6 n) = {}"
+| "bv6 (Lm6 n t) = {atom n} \<union> bv6 t"
+| "bv6 (Lt6 l r) = bv6 l \<union> bv6 r"
+(* example 7 from Terms.thy *)
+
+(* BV is not respectful, needs to fail*)
+nominal_datatype trm7 =
+ Vr7 "name"
+| Lm7 l::"name" r::"trm7" bind l in r
+| Lt7 l::"trm7" r::"trm7" bind "bv7 l" in r
+binder
+ bv7
+where
+ "bv7 (Vr7 n) = {atom n}"
+| "bv7 (Lm7 n t) = bv7 t - {atom n}"
+| "bv7 (Lt7 l r) = bv7 l \<union> bv7 r"
+
+(* example 8 from Terms.thy *)
+
+nominal_datatype foo8 =
+ Foo0 "name"
+| Foo1 b::"bar8" f::"foo8" bind "bv8 b" in f --"check fo error if this is called foo"
+and bar8 =
+ Bar0 "name"
+| Bar1 "name" s::"name" b::"bar8" bind s in b
+binder
+ bv8
+where
+ "bv8 (Bar0 x) = {}"
+| "bv8 (Bar1 v x b) = {atom v}"
+
+(* example 9 from Terms.thy *)
+
+(* BV is not respectful, needs to fail*)
+nominal_datatype lam9 =
+ Var9 "name"
+| Lam9 n::"name" l::"lam9" bind n in l
+and bla9 =
+ Bla9 f::"lam9" s::"lam9" bind "bv9 f" in s
+binder
+ bv9
+where
+ "bv9 (Var9 x) = {}"
+| "bv9 (Lam9 x b) = {atom x}"
+
+(* example from my PHD *)
+
+atom_decl coname
+
+nominal_datatype phd =
+ Ax "name" "coname"
+| Cut n::"coname" t1::"phd" c::"coname" t2::"phd" bind n in t1, bind c in t2
+| AndR c1::"coname" t1::"phd" c2::"coname" t2::"phd" "coname" bind c1 in t1, bind c2 in t2
+| AndL1 n::"name" t::"phd" "name" bind n in t
+| AndL2 n::"name" t::"phd" "name" bind n in t
+| ImpL c::"coname" t1::"phd" n::"name" t2::"phd" "name" bind c in t1, bind n in t2
+| ImpR c::"coname" n::"name" t::"phd" "coname" bind n in t, bind c in t
+
+thm alpha_phd_raw.intros[no_vars]
+thm fv_phd_raw.simps[no_vars]
+
+
+(* example form Leroy 96 about modules; OTT *)
+
+nominal_datatype mexp =
+ Acc "path"
+| Stru "body"
+| Funct x::"name" "sexp" m::"mexp" bind x in m
+| FApp "mexp" "path"
+| Ascr "mexp" "sexp"
+and body =
+ Empty
+| Seq c::defn d::"body" bind "cbinders c" in d
+and defn =
+ Type "name" "tyty"
+| Dty "name"
+| DStru "name" "mexp"
+| Val "name" "trmtrm"
+and sexp =
+ Sig sbody
+| SFunc "name" "sexp" "sexp"
+and sbody =
+ SEmpty
+| SSeq C::spec D::sbody bind "Cbinders C" in D
+and spec =
+ Type1 "name"
+| Type2 "name" "tyty"
+| SStru "name" "sexp"
+| SVal "name" "tyty"
+and tyty =
+ Tyref1 "name"
+| Tyref2 "path" "tyty"
+| Fun "tyty" "tyty"
+and path =
+ Sref1 "name"
+| Sref2 "path" "name"
+and trmtrm =
+ Tref1 "name"
+| Tref2 "path" "name"
+| Lam' v::"name" "tyty" M::"trmtrm" bind v in M
+| App' "trmtrm" "trmtrm"
+| Let' "body" "trmtrm"
+binder
+ cbinders :: "defn \<Rightarrow> atom set"
+and Cbinders :: "spec \<Rightarrow> atom set"
+where
+ "cbinders (Type t T) = {atom t}"
+| "cbinders (Dty t) = {atom t}"
+| "cbinders (DStru x s) = {atom x}"
+| "cbinders (Val v M) = {atom v}"
+| "Cbinders (Type1 t) = {atom t}"
+| "Cbinders (Type2 t T) = {atom t}"
+| "Cbinders (SStru x S) = {atom x}"
+| "Cbinders (SVal v T) = {atom v}"
+
+(* core haskell *)
+print_theorems
+
+atom_decl var
+atom_decl tvar
+
+
+(* there are types, coercion types and regular types *)
+nominal_datatype tkind =
+ KStar
+| KFun "tkind" "tkind"
+and ckind =
+ CKEq "ty" "ty"
+and ty =
+ TVar "tvar"
+| TC "string"
+| TApp "ty" "ty"
+| TFun "string" "ty list"
+| TAll tv::"tvar" "tkind" T::"ty" bind tv in T
+| TEq "ty" "ty" "ty"
+and co =
+ CC "string"
+| CApp "co" "co"
+| CFun "string" "co list"
+| CAll tv::"tvar" "ckind" C::"co" bind tv in C
+| CEq "co" "co" "co"
+| CSym "co"
+| CCir "co" "co"
+| CLeft "co"
+| CRight "co"
+| CSim "co"
+| CRightc "co"
+| CLeftc "co"
+| CCoe "co" "co"
+
+
+typedecl ty --"hack since ty is not yet defined"
+
+abbreviation
+ "atoms A \<equiv> atom ` A"
+
+nominal_datatype trm =
+ Var "var"
+| C "string"
+| LAM tv::"tvar" "kind" t::"trm" bind tv in t
+| APP "trm" "ty"
+| Lam v::"var" "ty" t::"trm" bind v in t
+| App "trm" "trm"
+| Let x::"var" "ty" "trm" t::"trm" bind x in t
+| Case "trm" "assoc list"
+| Cast "trm" "ty" --"ty is supposed to be a coercion type only"
+and assoc =
+ A p::"pat" t::"trm" bind "bv p" in t
+and pat =
+ K "string" "(tvar \<times> kind) list" "(var \<times> ty) list"
+binder
+ bv :: "pat \<Rightarrow> atom set"
+where
+ "bv (K s ts vs) = (atoms (set (map fst ts))) \<union> (atoms (set (map fst vs)))"
+
+(*
+compat (K s ts vs) pi (K s' ts' vs') ==
+ s = s' &
+
+*)
+
+
+(*thm bv_raw.simps*)
+
+(* example 3 from Peter Sewell's bestiary *)
+nominal_datatype exp =
+ VarP "name"
+| AppP "exp" "exp"
+| LamP x::"name" e::"exp" bind x in e
+| LetP x::"name" p::"pat" e1::"exp" e2::"exp" bind x in e2, bind "bp p" in e1
+and pat =
+ PVar "name"
+| PUnit
+| PPair "pat" "pat"
+binder
+ bp :: "pat \<Rightarrow> atom set"
+where
+ "bp (PVar x) = {atom x}"
+| "bp (PUnit) = {}"
+| "bp (PPair p1 p2) = bp p1 \<union> bp p2"
+thm alpha_exp_raw_alpha_pat_raw.intros
+
+(* example 6 from Peter Sewell's bestiary *)
+nominal_datatype exp6 =
+ EVar name
+| EPair exp6 exp6
+| ELetRec x::name p::pat6 e1::exp6 e2::exp6 bind x in e1, bind x in e2, bind "bp6 p" in e1
+and pat6 =
+ PVar' name
+| PUnit'
+| PPair' pat6 pat6
+binder
+ bp6 :: "pat6 \<Rightarrow> atom set"
+where
+ "bp6 (PVar' x) = {atom x}"
+| "bp6 (PUnit') = {}"
+| "bp6 (PPair' p1 p2) = bp6 p1 \<union> bp6 p2"
+thm alpha_exp6_raw_alpha_pat6_raw.intros
+
+(* example 7 from Peter Sewell's bestiary *)
+nominal_datatype exp7 =
+ EVar name
+| EUnit
+| EPair exp7 exp7
+| ELetRec l::lrbs e::exp7 bind "b7s l" in e, bind "b7s l" in l
+and lrb =
+ Assign name exp7
+and lrbs =
+ Single lrb
+| More lrb lrbs
+binder
+ b7 :: "lrb \<Rightarrow> atom set" and
+ b7s :: "lrbs \<Rightarrow> atom set"
+where
+ "b7 (Assign x e) = {atom x}"
+| "b7s (Single a) = b7 a"
+| "b7s (More a as) = (b7 a) \<union> (b7s as)"
+thm alpha_exp7_raw_alpha_lrb_raw_alpha_lrbs_raw.intros
+
+(* example 8 from Peter Sewell's bestiary *)
+nominal_datatype exp8 =
+ EVar name
+| EUnit
+| EPair exp8 exp8
+| ELetRec l::lrbs8 e::exp8 bind "b_lrbs8 l" in e, bind "b_lrbs8 l" in l
+and fnclause =
+ K x::name p::pat8 e::exp8 bind "b_pat p" in e
+and fnclauses =
+ S fnclause
+| ORs fnclause fnclauses
+and lrb8 =
+ Clause fnclauses
+and lrbs8 =
+ Single lrb8
+| More lrb8 lrbs8
+and pat8 =
+ PVar name
+| PUnit
+| PPair pat8 pat8
+binder
+ b_lrbs8 :: "lrbs8 \<Rightarrow> atom set" and
+ b_pat :: "pat8 \<Rightarrow> atom set" and
+ b_fnclauses :: "fnclauses \<Rightarrow> atom set" and
+ b_fnclause :: "fnclause \<Rightarrow> atom set" and
+ b_lrb8 :: "lrb8 \<Rightarrow> atom set"
+where
+ "b_lrbs8 (Single l) = b_lrb8 l"
+| "b_lrbs8 (More l ls) = b_lrb8 l \<union> b_lrbs8 ls"
+| "b_pat (PVar x) = {atom x}"
+| "b_pat (PUnit) = {}"
+| "b_pat (PPair p1 p2) = b_pat p1 \<union> b_pat p2"
+| "b_fnclauses (S fc) = (b_fnclause fc)"
+| "b_fnclauses (ORs fc fcs) = (b_fnclause fc) \<union> (b_fnclauses fcs)"
+| "b_lrb8 (Clause fcs) = (b_fnclauses fcs)"
+| "b_fnclause (K x pat exp8) = {atom x}"
+thm alpha_exp8_raw_alpha_fnclause_raw_alpha_fnclauses_raw_alpha_lrb8_raw_alpha_lrbs8_raw_alpha_pat8_raw.intros
+
+
+
+
+(* example 9 from Peter Sewell's bestiary *)
+(* run out of steam at the moment *)
+
+end
+
+
+