proved that lfp is equivariant (that simplifies equivariance proofs of inductively defined predicates)
--- a/Nominal/Ex/Datatypes.thy Thu Apr 28 11:51:01 2011 +0800
+++ b/Nominal/Ex/Datatypes.thy Tue May 03 13:09:08 2011 +0100
@@ -67,7 +67,29 @@
thm baz.fv_bn_eqvt
thm baz.size_eqvt
thm baz.supp
+
+(*
+ a nominal datatype with a set argument of
+ pure type
+*)
+nominal_datatype set_ty =
+ Set_ty "nat set"
+| Fun "nat \<Rightarrow> nat"
+| Var "name"
+| Lam x::"name" t::"set_ty" bind x in t
+
+thm set_ty.distinct
+thm set_ty.induct
+thm set_ty.exhaust
+thm set_ty.strong_exhaust
+thm set_ty.fv_defs
+thm set_ty.bn_defs
+thm set_ty.perm_simps
+thm set_ty.eq_iff
+thm set_ty.fv_bn_eqvt
+thm set_ty.size_eqvt
+thm set_ty.supp
end
--- a/Nominal/Ex/Lambda.thy Thu Apr 28 11:51:01 2011 +0800
+++ b/Nominal/Ex/Lambda.thy Tue May 03 13:09:08 2011 +0100
@@ -15,6 +15,13 @@
where
Var: "triv (Var x) n"
+lemma
+ "p \<bullet> (triv t x) = triv (p \<bullet> t) (p \<bullet> x)"
+unfolding triv_def
+apply(perm_simp)
+oops
+(*apply(perm_simp)*)
+
equivariance triv
nominal_inductive triv avoids Var: "{}::name set"
apply(auto simp add: fresh_star_def)
--- a/Nominal/Nominal2_Base.thy Thu Apr 28 11:51:01 2011 +0800
+++ b/Nominal/Nominal2_Base.thy Tue May 03 13:09:08 2011 +0100
@@ -789,7 +789,6 @@
unfolding permute_perm_def
by (simp add: diff_minus minus_add add_assoc)
-
subsubsection {* Equivariance of Logical Operators *}
lemma eq_eqvt [eqvt]:
@@ -951,6 +950,12 @@
unfolding Union_eq
by (perm_simp) (rule refl)
+lemma Inter_eqvt [eqvt]:
+ shows "p \<bullet> (\<Inter> S) = \<Inter> (p \<bullet> S)"
+ unfolding Inter_eq
+ by (perm_simp) (rule refl)
+
+
(* FIXME: eqvt attribute *)
lemma Sigma_eqvt:
shows "(p \<bullet> (X \<times> Y)) = (p \<bullet> X) \<times> (p \<bullet> Y)"
@@ -958,9 +963,78 @@
unfolding UNION_eq_Union_image
by (perm_simp) (rule refl)
+text {*
+ In order to prove that lfp is equivariant we need two
+ auxiliary classes which specify that (op <=) and
+ Inf are equivariant. Instances for bool and fun are
+ given.
+*}
+
+class le_eqvt = order +
+ assumes le_eqvt [eqvt]: "p \<bullet> (x \<le> y) = ((p \<bullet> x) \<le> (p \<bullet> (y::('a::{pt, order}))))"
+
+class inf_eqvt = complete_lattice +
+ assumes inf_eqvt [eqvt]: "p \<bullet> (Inf X) = Inf (p \<bullet> (X::('a::{pt, Inf}) set))"
+
+instantiation bool :: le_eqvt
+begin
+
+instance
+apply(default)
+unfolding le_bool_def
+apply(perm_simp)
+apply(rule refl)
+done
+
+end
+
+instantiation "fun" :: (pt, le_eqvt) le_eqvt
+begin
+
+instance
+apply(default)
+unfolding le_fun_def
+apply(perm_simp)
+apply(rule refl)
+done
+
+end
+
+instantiation bool :: inf_eqvt
+begin
+
+instance
+apply(default)
+unfolding Inf_bool_def
+apply(perm_simp)
+apply(rule refl)
+done
+
+end
+
+instantiation "fun" :: (pt, inf_eqvt) inf_eqvt
+begin
+
+instance
+apply(default)
+unfolding Inf_fun_def
+apply(perm_simp)
+apply(rule refl)
+done
+
+end
+
+lemma lfp_eqvt [eqvt]:
+ fixes F::"('a \<Rightarrow> 'b) \<Rightarrow> ('a::pt \<Rightarrow> 'b::{inf_eqvt, le_eqvt})"
+ shows "p \<bullet> (lfp F) = lfp (p \<bullet> F)"
+unfolding lfp_def
+by (perm_simp) (rule refl)
+
lemma finite_eqvt [eqvt]:
shows "p \<bullet> finite A = finite (p \<bullet> A)"
- unfolding permute_finite permute_bool_def ..
+unfolding finite_def
+by (perm_simp) (rule refl)
+
subsubsection {* Equivariance for product operations *}