--- a/QuotMain.thy Mon Sep 28 02:39:44 2009 +0200
+++ b/QuotMain.thy Mon Sep 28 19:10:27 2009 +0200
@@ -77,8 +77,8 @@
done
lemma R_trans:
- assumes ab: "R a b"
- and bc: "R b c"
+ assumes ab: "R a b"
+ and bc: "R b c"
shows "R a c"
proof -
have tr: "TRANS R" using equiv EQUIV_REFL_SYM_TRANS[of R] by simp
@@ -88,15 +88,15 @@
qed
lemma R_sym:
- assumes ab: "R a b"
+ assumes ab: "R a b"
shows "R b a"
proof -
have re: "SYM R" using equiv EQUIV_REFL_SYM_TRANS[of R] by simp
then show "R b a" using ab unfolding SYM_def by blast
qed
-lemma R_trans2:
- assumes ac: "R a c"
+lemma R_trans2:
+ assumes ac: "R a c"
and bd: "R b d"
shows "R a b = R c d"
proof
@@ -559,7 +559,7 @@
| "xs \<approx> ys \<Longrightarrow> a#xs \<approx> a#ys"
| "\<lbrakk>xs1 \<approx> xs2; xs2 \<approx> xs3\<rbrakk> \<Longrightarrow> xs1 \<approx> xs3"
-lemma list_eq_sym:
+lemma list_eq_refl:
shows "xs \<approx> xs"
apply (induct xs)
apply (auto intro: list_eq.intros)
@@ -568,7 +568,7 @@
lemma equiv_list_eq:
shows "EQUIV list_eq"
unfolding EQUIV_REFL_SYM_TRANS REFL_def SYM_def TRANS_def
- apply(auto intro: list_eq.intros list_eq_sym)
+ apply(auto intro: list_eq.intros list_eq_refl)
done
local_setup {*
@@ -767,7 +767,7 @@
apply(rule list_eq.intros(3))
apply(unfold REP_fset_def ABS_fset_def)
apply(simp only: QUOT_TYPE.REP_ABS_rsp[OF QUOT_TYPE_fset])
-apply(rule list_eq_sym)
+apply(rule list_eq_refl)
done
lemma append_respects_fst:
@@ -776,7 +776,7 @@
using a
apply(induct)
apply(auto intro: list_eq.intros)
- apply(simp add: list_eq_sym)
+ apply(simp add: list_eq_refl)
done
lemma yyy:
@@ -794,17 +794,17 @@
apply(simp only: QUOT_TYPE_I_fset.thm11[symmetric])
apply(rule append_respects_fst)
apply(simp only: QUOT_TYPE_I_fset.REP_ABS_rsp)
- apply(rule list_eq_sym)
+ apply(rule list_eq_refl)
apply(simp)
apply(rule_tac f="(op =)" in arg_cong2)
apply(simp only: QUOT_TYPE_I_fset.thm11[symmetric])
apply(rule append_respects_fst)
apply(simp only: QUOT_TYPE_I_fset.REP_ABS_rsp)
- apply(rule list_eq_sym)
+ apply(rule list_eq_refl)
apply(simp only: QUOT_TYPE_I_fset.thm11[symmetric])
apply(rule list_eq.intros(5))
apply(simp only: QUOT_TYPE_I_fset.REP_ABS_rsp)
- apply(rule list_eq_sym)
+ apply(rule list_eq_refl)
done
lemma
@@ -823,45 +823,83 @@
*}
ML {*
-fun build_goal ctxt thm constructors qty mk_rep_abs =
-let
- fun is_const (Const (x, t)) = x mem constructors
+fun build_goal ctxt thm constructors lifted_type mk_rep_abs =
+ let
+ fun is_constructor (Const (x, _)) = member (op =) constructors x
+ | is_constructor _ = false;
+
+ fun maybe_mk_rep_abs t =
+ let
+ val _ = writeln ("Maybe: " ^ Syntax.string_of_term ctxt t)
+ in
+ if type_of t = lifted_type then mk_rep_abs t else t
+ end;
+
+ fun build_aux ctxt1 tm =
+ let
+ val (head, args) = Term.strip_comb tm;
+ val args' = map (build_aux ctxt1) args;
+ in
+ (case head of
+ Abs (x, T, t) =>
+ let
+ val ([x'], ctxt2) = Variable.variant_fixes [x] ctxt1;
+ val v = Free (x', T);
+ val t' = subst_bound (v, t);
+ val rec_term = build_aux ctxt2 t';
+ in Term.lambda_name (x, v) rec_term end
+ | _ =>
+ if is_constructor head then
+ maybe_mk_rep_abs (list_comb (head, map maybe_mk_rep_abs args'))
+ else list_comb (head, args'))
+ end;
+
+ val concl2 = Thm.prop_of thm;
+ in
+ Logic.mk_equals (build_aux ctxt concl2, concl2)
+ end
+*}
+
+ML {*
+fun build_goal' ctxt thm constructors lifted_type mk_rep_abs =
+ let
+ fun is_const (Const (x, t)) = member (op =) constructors x
| is_const _ = false
fun maybe_mk_rep_abs t =
- let
- val _ = writeln ("Maybe: " ^ Syntax.string_of_term ctxt t)
- in
- if type_of t = qty then mk_rep_abs t else t
- end
- handle TYPE _ => t
-
- fun build_aux (Abs (s, t, tr)) = (Abs (s, t, build_aux tr))
- | build_aux (f $ a) =
+ let
+ val _ = writeln ("Maybe: " ^ Syntax.string_of_term ctxt t)
+ in
+ if type_of t = lifted_type then mk_rep_abs t else t
+ end
+(* handle TYPE _ => t*)
+ fun build_aux ctxt1 (Abs (x, T, t)) =
+ let
+ val ([x'], ctxt2) = Variable.variant_fixes [x] ctxt1;
+ val v = Free (x', T);
+ val t' = subst_bound (v, t);
+ val rec_term = build_aux ctxt2 t';
+ in Term.lambda_name (x, v) rec_term end
+ | build_aux ctxt1 (f $ a) =
let
val (f, args) = strip_comb (f $ a)
val _ = writeln (Syntax.string_of_term ctxt f)
in
- (if is_const f then maybe_mk_rep_abs (list_comb (f, (map maybe_mk_rep_abs (map build_aux args))))
- else list_comb ((build_aux f), (map build_aux args)))
+ if is_const f then
+ maybe_mk_rep_abs
+ (list_comb (f, map maybe_mk_rep_abs (map (build_aux ctxt1) args)))
+ else list_comb (build_aux ctxt1 f, map (build_aux ctxt1) args)
end
- | build_aux x =
+ | build_aux _ x =
if is_const x then maybe_mk_rep_abs x else x
val concl2 = term_of (#prop (crep_thm thm))
-in
- Logic.mk_equals ((build_aux concl2), concl2)
+ in
+ Logic.mk_equals (build_aux ctxt concl2, concl2)
end *}
-thm EMPTY_def IN_def UNION_def
-
-ML {* val emptyt = symmetric (unlam_def @{context} @{thm EMPTY_def}) *}
-ML {* val in_t = symmetric (unlam_def @{context} @{thm IN_def}) *}
-ML {* val uniont = symmetric (unlam_def @{context} @{thm UNION_def}) *}
-ML {* val cardt = symmetric (unlam_def @{context} @{thm card_def}) *}
-ML {* val insertt = symmetric (unlam_def @{context} @{thm INSERT_def}) *}
ML {* val fset_defs = @{thms EMPTY_def IN_def UNION_def card_def INSERT_def} *}
-ML {* val fset_defs_sym = [emptyt, in_t, uniont, cardt, insertt] *}
+ML {* val fset_defs_sym = map (fn t => symmetric (unlam_def @{context} t)) fset_defs *}
ML {*
fun dest_cbinop t =
@@ -894,25 +932,46 @@
*}
ML {*
- fun foo_conv t =
+ fun split_binop_conv t =
let
val (lhs, rhs) = dest_ceq t;
val (bop, _) = dest_cbinop lhs;
val [clT, cr2] = bop |> Thm.ctyp_of_term |> Thm.dest_ctyp;
val [cmT, crT] = Thm.dest_ctyp cr2;
in
- Drule.instantiate' [SOME clT,SOME cmT,SOME crT] [NONE,NONE,NONE,NONE,SOME bop] @{thm arg_cong2}
+ Drule.instantiate' [SOME clT, SOME cmT, SOME crT] [NONE, NONE, NONE, NONE, SOME bop] @{thm arg_cong2}
+ end
+*}
+
+ML {*
+ fun split_arg_conv t =
+ let
+ val (lhs, rhs) = dest_ceq t;
+ val (lop, larg) = Thm.dest_comb lhs;
+ val [caT, crT] = lop |> Thm.ctyp_of_term |> Thm.dest_ctyp;
+ in
+ Drule.instantiate' [SOME caT, SOME crT] [NONE, NONE, SOME lop] @{thm arg_cong}
end
*}
ML {*
- fun foo_tac n thm =
+ fun split_binop_tac n thm =
let
val concl = Thm.cprem_of thm n;
val (_, cconcl) = Thm.dest_comb concl;
- val rewr = foo_conv cconcl;
-(* val _ = tracing (Display.string_of_thm @{context} rewr)
- val _ = tracing (Display.string_of_thm @{context} thm)*)
+ val rewr = split_binop_conv cconcl;
+ in
+ rtac rewr n thm
+ end
+ handle CTERM _ => Seq.empty
+*}
+
+ML {*
+ fun split_arg_tac n thm =
+ let
+ val concl = Thm.cprem_of thm n;
+ val (_, cconcl) = Thm.dest_comb concl;
+ val rewr = split_arg_conv cconcl;
in
rtac rewr n thm
end
@@ -925,23 +984,36 @@
shows "(a \<equiv> b) \<Longrightarrow> (Trueprop a \<equiv> Trueprop b)"
by auto
+
+thm QUOT_TYPE_I_fset.R_trans2
ML {*
fun foo_tac' ctxt =
REPEAT_ALL_NEW (FIRST' [
- rtac @{thm trueprop_cong},
- rtac @{thm list_eq_sym},
+(* rtac @{thm trueprop_cong},*)
+ rtac @{thm list_eq_refl},
rtac @{thm cons_preserves},
rtac @{thm mem_respects},
+ rtac @{thm card1_rsp},
rtac @{thm QUOT_TYPE_I_fset.R_trans2},
CHANGED o (simp_tac ((Simplifier.context ctxt HOL_ss) addsimps @{thms QUOT_TYPE_I_fset.REP_ABS_rsp})),
- foo_tac,
+ DatatypeAux.cong_tac,
+ rtac @{thm ext},
+ rtac @{thm eq_reflection},
CHANGED o (ObjectLogic.full_atomize_tac)
])
*}
ML {*
+<<<<<<< variant A
+ val m1_novars = snd(no_vars ((Context.Theory @{theory}), @{thm m1}))
+ val goal = build_goal @{context} m1_novars consts @{typ "'a list"} mk_rep_abs
+>>>>>>> variant B
val m1_novars = snd(no_vars ((Context.Theory @{theory}),@{thm m1}))
val goal = build_goal @{context} m1_novars consts @{typ "'a list"} mk_rep_abs
+####### Ancestor
+ val m1_novars = snd(no_vars ((Context.Theory @{theory}), @{thm m1}))
+ val goal = build_goal m1_novars consts @{typ "'a list"} mk_rep_abs
+======= end
val cgoal = cterm_of @{theory} goal
val cgoal2 = Thm.rhs_of (MetaSimplifier.rewrite false fset_defs_sym cgoal)
*}
@@ -949,15 +1021,39 @@
(*notation ( output) "prop" ("#_" [1000] 1000) *)
notation ( output) "Trueprop" ("#_" [1000] 1000)
+lemma atomize_eqv [atomize]: "(Trueprop A \<equiv> Trueprop B) \<equiv> (A \<equiv> B)"
+ (is "?rhs \<equiv> ?lhs")
+proof
+ assume "PROP ?lhs" then show "PROP ?rhs" by unfold
+next
+ assume *: "PROP ?rhs"
+ have "A = B"
+ proof (cases A)
+ case True
+ with * have B by unfold
+ with `A` show ?thesis by simp
+ next
+ case False
+ with * have "~ B" by auto
+ with `~ A` show ?thesis by simp
+ qed
+ then show "PROP ?lhs" by (rule eq_reflection)
+qed
+
+
prove {* (Thm.term_of cgoal2) *}
apply (tactic {* LocalDefs.unfold_tac @{context} fset_defs *} )
+ apply (atomize (full))
+
+ apply (rule trueprop_cong)
apply (tactic {* foo_tac' @{context} 1 *})
+ thm eq_reflection
done
thm length_append (* Not true but worth checking that the goal is correct *)
ML {*
- val m1_novars = snd(no_vars ((Context.Theory @{theory}),@{thm length_append}))
- val goal = build_goal @{context} m1_novars consts @{typ "'a list"} mk_rep_abs
+ val m1_novars = snd(no_vars ((Context.Theory @{theory}), @{thm length_append}))
+ val goal = build_goal m1_novars consts @{typ "'a list"} mk_rep_abs
val cgoal = cterm_of @{theory} goal
val cgoal2 = Thm.rhs_of (MetaSimplifier.rewrite false fset_defs_sym cgoal)
*}
@@ -968,8 +1064,8 @@
thm m2
ML {*
- val m1_novars = snd(no_vars ((Context.Theory @{theory}),@{thm m2}))
- val goal = build_goal @{context} m1_novars consts @{typ "'a list"} mk_rep_abs
+ val m1_novars = snd(no_vars ((Context.Theory @{theory}), @{thm m2}))
+ val goal = build_goal m1_novars consts @{typ "'a list"} mk_rep_abs
val cgoal = cterm_of @{theory} goal
val cgoal2 = Thm.rhs_of (MetaSimplifier.rewrite false fset_defs_sym cgoal)
*}
@@ -980,8 +1076,8 @@
thm list_eq.intros(4)
ML {*
- val m1_novars = snd(no_vars ((Context.Theory @{theory}),@{thm list_eq.intros(4)}))
- val goal = build_goal @{context} m1_novars consts @{typ "'a list"} mk_rep_abs
+ val m1_novars = snd(no_vars ((Context.Theory @{theory}), @{thm list_eq.intros(4)}))
+ val goal = build_goal m1_novars consts @{typ "'a list"} mk_rep_abs
val cgoal = cterm_of @{theory} goal
val cgoal2 = Thm.rhs_of (MetaSimplifier.rewrite false fset_defs_sym cgoal)
val cgoal3 = Thm.rhs_of (MetaSimplifier.rewrite true @{thms QUOT_TYPE_I_fset.thm10} cgoal2)
@@ -1006,33 +1102,19 @@
thm QUOT_TYPE_I_fset.REPS_same
ML {* val zzz'' = MetaSimplifier.rewrite_rule @{thms QUOT_TYPE_I_fset.REPS_same} @{thm zzz'} *}
-ML Drule.instantiate'
-ML {* zzz'' *}
-text {*
- A variable export will still be necessary in the end, but this is already the final theorem.
+thm list_eq.intros(5)
+ML {*
+ val m1_novars = snd(no_vars ((Context.Theory @{theory}), @{thm list_eq.intros(5)}))
+ val goal = build_goal m1_novars consts @{typ "'a list"} mk_rep_abs
*}
ML {*
- Toplevel.program (fn () =>
- MetaSimplifier.rewrite_rule @{thms QUOT_TYPE_I_fset.thm10} (
- Drule.instantiate' [] [NONE,SOME (@{cpat "REP_fset x"})] zzz''
- )
- )
-*}
-
-
-thm list_eq.intros(5)
-ML {*
- val m1_novars = snd(no_vars ((Context.Theory @{theory}),@{thm list_eq.intros(5)}))
- val goal = build_goal @{context} m1_novars consts @{typ "'a list"} mk_rep_abs
-*}
-ML {*
- val cgoal =
+ val cgoal =
Toplevel.program (fn () =>
cterm_of @{theory} goal
)
*}
ML {*
- val cgoal2 = Thm.rhs_of (MetaSimplifier.rewrite false fset_defs_sym cgoal)
+ val cgoal2 = Thm.rhs_of (MetaSimplifier.rewrite true fset_defs_sym cgoal)
*}
prove {* Thm.term_of cgoal2 *}
apply (tactic {* LocalDefs.unfold_tac @{context} fset_defs *} )
@@ -1040,7 +1122,6 @@
done
thm list.induct
-ML {* Logic.list_implies ((Thm.prems_of @{thm list.induct}), (Thm.concl_of @{thm list.induct})) *}
ML {*
val m1_novars = snd(no_vars ((Context.Theory @{theory}),@{thm list.induct}))
@@ -1053,18 +1134,94 @@
*}
ML {*
val cgoal = cterm_of @{theory} goal
- val cgoal2 = Thm.rhs_of (MetaSimplifier.rewrite false fset_defs_sym cgoal)
*}
-ML fset_defs_sym
+ML {*
+ val cgoal2 = Thm.rhs_of (MetaSimplifier.rewrite true fset_defs_sym cgoal)
+*}
+
prove {* (Thm.term_of cgoal2) *}
apply (tactic {* LocalDefs.unfold_tac @{context} fset_defs *} )
- apply (atomize(full))
- apply (rule_tac trueprop_cong)
- apply (atomize(full))
- apply (tactic {* foo_tac' @{context} 1 *})
- apply (rule_tac f = "P" in arg_cong)
+ apply (tactic {* foo_tac' @{context} 1 *})
sorry
+ML {*
+ fun lift_theorem_fset_aux thm lthy =
+ let
+ val ((_, [novars]), lthy2) = Variable.import true [thm] lthy;
+ val goal = build_goal novars consts @{typ "'a list"} mk_rep_abs;
+ val cgoal = cterm_of @{theory} goal;
+ val cgoal2 = Thm.rhs_of (MetaSimplifier.rewrite true fset_defs_sym cgoal);
+ val tac = (LocalDefs.unfold_tac @{context} fset_defs) THEN (foo_tac' @{context}) 1;
+ val cthm = Goal.prove_internal [] cgoal2 (fn _ => tac);
+ val nthm = MetaSimplifier.rewrite_rule [symmetric cthm] (snd (no_vars (Context.Theory @{theory}, thm)))
+ val nthm2 = MetaSimplifier.rewrite_rule @{thms QUOT_TYPE_I_fset.REPS_same QUOT_TYPE_I_fset.thm10} nthm;
+ val [nthm3] = ProofContext.export lthy2 lthy [nthm2]
+ in
+ nthm3
+ end
+*}
+
+ML {* lift_theorem_fset_aux @{thm m1} @{context} *}
+
+ML {*
+ fun lift_theorem_fset name thm lthy =
+ let
+ val lifted_thm = lift_theorem_fset_aux thm lthy;
+ val (_, lthy2) = note_thm (name, lifted_thm) lthy;
+ in
+ lthy2
+ end;
+*}
+
+local_setup {* lift_theorem_fset @{binding "m1_lift"} @{thm m1} *}
+local_setup {* lift_theorem_fset @{binding "leqi4_lift"} @{thm list_eq.intros(4)} *}
+local_setup {* lift_theorem_fset @{binding "leqi5_lift"} @{thm list_eq.intros(5)} *}
+local_setup {* lift_theorem_fset @{binding "m2_lift"} @{thm m2} *}
+
+thm m1_lift
+thm leqi4_lift
+thm leqi5_lift
+thm m2_lift
+
+ML Drule.instantiate'
+text {*
+ We lost the schematic variable again :(.
+ Another variable export will still be necessary...
+*}
+ML {*
+ Toplevel.program (fn () =>
+ MetaSimplifier.rewrite_rule @{thms QUOT_TYPE_I_fset.thm10} (
+ Drule.instantiate' [] [NONE, NONE, SOME (@{cpat "REP_fset x"})] @{thm m2_lift}
+ )
+ )
+*}
+
+thm leqi4_lift
+ML {*
+ val (nam, typ) = (hd (Term.add_vars (term_of (#prop (crep_thm @{thm leqi4_lift}))) []))
+ val (_, l) = dest_Type typ
+ val t = Type ("QuotMain.fset", l)
+ val v = Var (nam, t)
+ val cv = cterm_of @{theory} ((term_of @{cpat "REP_fset"}) $ v)
+*}
+
+ML {*
+term_of (#prop (crep_thm @{thm sym}))
+*}
+
+ML {*
+ Toplevel.program (fn () =>
+ MetaSimplifier.rewrite_rule @{thms QUOT_TYPE_I_fset.thm10} (
+ Drule.instantiate' [] [NONE, SOME (cv)] @{thm leqi4_lift}
+ )
+ )
+*}
+
+
+
+
+
+ML {* MRS *}
thm card1_suc
ML {*
@@ -1075,11 +1232,13 @@
*}
ML {*
val cgoal = cterm_of @{theory} goal
- val cgoal2 = Thm.rhs_of (MetaSimplifier.rewrite false fset_defs_sym cgoal)
+ val cgoal2 = Thm.rhs_of (MetaSimplifier.rewrite true fset_defs_sym cgoal)
*}
+ML {* @{term "\<exists>x. P x"} *}
+ML {* Thm.bicompose *}
prove {* (Thm.term_of cgoal2) *}
- apply (tactic {* LocalDefs.unfold_tac @{context} fset_defs *} )
-
+ apply (tactic {* LocalDefs.unfold_tac @{context} fset_defs *} )
+ apply (tactic {* foo_tac' @{context} 1 *})
(*