--- a/Nominal/Abs.thy Wed Apr 21 10:13:17 2010 +0200
+++ b/Nominal/Abs.thy Wed Apr 21 10:20:48 2010 +0200
@@ -423,15 +423,50 @@
apply(simp)
done
-
+lemma
+ fixes t1 s1::"'a::fs"
+ and t2 s2::"'b::fs"
+ shows "Abs as (t1, t2) = Abs bs (s1, s2) \<longrightarrow> (Abs as t1 = Abs bs s1 \<and> Abs as t2 = Abs bs s2)"
+apply(subst abs_eq_iff)
+apply(subst alphas_abs)
+apply(subst alphas)
+apply(rule impI)
+apply(erule exE)
+apply(simp add: supp_Pair)
+apply(simp add: Un_Diff)
+apply(simp add: fresh_star_union)
+apply(erule conjE)+
+apply(rule conjI)
+apply(rule trans)
+apply(rule sym)
+apply(rule_tac p="p" in supp_perm_eq)
+apply(simp add: supp_abs)
+apply(simp)
+apply(rule trans)
+apply(rule sym)
+apply(rule_tac p="p" in supp_perm_eq)
+apply(simp add: supp_abs)
+apply(simp)
+done
-(* support of concrete atom sets *)
+lemma fresh_star_eq:
+ assumes a: "as \<sharp>* p"
+ shows "\<forall>a \<in> as. p \<bullet> a = a"
+using a by (simp add: fresh_star_def fresh_def supp_perm)
+
+lemma fresh_star_set_eq:
+ assumes a: "as \<sharp>* p"
+ shows "p \<bullet> as = as"
+using a
+apply(simp add: fresh_star_def fresh_def supp_perm permute_set_eq)
+apply(auto)
+by (metis permute_atom_def)
lemma
fixes t1 s1::"'a::fs"
and t2 s2::"'b::fs"
assumes asm: "finite as"
- shows "(Abs as t1 = Abs as s1 \<and> Abs as t2 = Abs as s2) \<longrightarrow> Abs as (t1, t2) = Abs as (s1, s2)"
+ shows "(Abs as t1 = Abs bs s1 \<and> Abs as t2 = Abs bs s2) \<longrightarrow> Abs as (t1, t2) = Abs bs (s1, s2)"
apply(subst abs_eq_iff)
apply(subst abs_eq_iff)
apply(subst alphas_abs)
--- a/Nominal/Ex/Ex1.thy Wed Apr 21 10:13:17 2010 +0200
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,36 +0,0 @@
-theory Ex1
-imports "../Parser"
-begin
-
-text {* example 1, equivalent to example 2 from Terms *}
-
-atom_decl name
-
-ML {* val _ = recursive := false *}
-nominal_datatype lam =
- VAR "name"
-| APP "lam" "lam"
-| LAM x::"name" t::"lam" bind x in t
-| LET bp::"bp" t::"lam" bind "bi bp" in t
-and bp =
- BP "name" "lam"
-binder
- bi::"bp \<Rightarrow> atom set"
-where
- "bi (BP x t) = {atom x}"
-
-thm lam_bp.fv
-thm lam_bp.supp
-thm lam_bp.eq_iff
-thm lam_bp.bn
-thm lam_bp.perm
-thm lam_bp.induct
-thm lam_bp.inducts
-thm lam_bp.distinct
-ML {* Sign.of_sort @{theory} (@{typ lam}, @{sort fs}) *}
-thm lam_bp.fv[simplified lam_bp.supp]
-
-end
-
-
-
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Nominal/Ex/SingleLet.thy Wed Apr 21 10:20:48 2010 +0200
@@ -0,0 +1,38 @@
+theory SingleLet
+imports "../Parser"
+begin
+
+atom_decl name
+
+ML {* val _ = recursive := false *}
+
+nominal_datatype trm =
+ Var "name"
+| App "trm" "trm"
+| Lam x::"name" t::"trm" bind x in t
+| Let a::"assg" t::"trm" bind "bn a" in t
+and assg =
+ As "name" "trm"
+binder
+ bn::"assg \<Rightarrow> atom set"
+where
+ "bn (As x t) = {atom x}"
+
+print_theorems
+thm alpha_trm_raw_alpha_assg_raw_alpha_bn_raw.intros[no_vars]
+
+thm trm_assg.fv
+thm trm_assg.supp
+thm trm_assg.eq_iff[simplified alphas_abs[symmetric]]
+thm trm_assg.bn
+thm trm_assg.perm
+thm trm_assg.induct
+thm trm_assg.inducts
+thm trm_assg.distinct
+ML {* Sign.of_sort @{theory} (@{typ trm}, @{sort fs}) *}
+thm trm_assg.fv[simplified trm_assg.supp]
+
+end
+
+
+
--- a/Nominal/FSet.thy Wed Apr 21 10:13:17 2010 +0200
+++ b/Nominal/FSet.thy Wed Apr 21 10:20:48 2010 +0200
@@ -614,7 +614,7 @@
have "fcard_raw l = 0" by fact
then have "\<forall>x. \<not> memb x l" using memb_card_not_0[of _ l] by auto
then have z: "l = []" using no_memb_nil by auto
- then have "r = []" sorry
+ then have "r = []" using `l \<approx> r` by simp
then show ?case using z list_eq2_refl by simp
next
case (Suc m)
--- a/Nominal/Fv.thy Wed Apr 21 10:13:17 2010 +0200
+++ b/Nominal/Fv.thy Wed Apr 21 10:20:48 2010 +0200
@@ -137,7 +137,7 @@
*)
ML {*
-datatype alpha_type = AlphaGen | AlphaRes | AlphaLst;
+datatype alpha_mode = AlphaGen | AlphaRes | AlphaLst;
*}
ML {*
--- a/Nominal/Parser.thy Wed Apr 21 10:13:17 2010 +0200
+++ b/Nominal/Parser.thy Wed Apr 21 10:20:48 2010 +0200
@@ -296,14 +296,19 @@
Parser.thy/raw_nominal_decls
1) define the raw datatype
- 2) define the raw binding functions
+ 2) define the raw binding functions
+
Perm.thy/define_raw_perms
- 3) define permutations of the raw datatype and show that raw type is in the pt typeclass
+ 3) define permutations of the raw datatype and show that the raw type is
+ in the pt typeclass
+
Lift.thy/define_fv_alpha_export, Fv.thy/define_fv & define_alpha
4) define fv and fv_bn
5) define alpha and alpha_bn
+
Perm.thy/distinct_rel
6) prove alpha_distincts (C1 x \<notsimeq> C2 y ...) (Proof by cases; simp)
+
Tacs.thy/build_rel_inj
6) prove alpha_eq_iff (C1 x = C2 y \<leftrightarrow> P x y ...)
(left-to-right by intro rule, right-to-left by cases; simp)
--- a/Nominal/Perm.thy Wed Apr 21 10:13:17 2010 +0200
+++ b/Nominal/Perm.thy Wed Apr 21 10:20:48 2010 +0200
@@ -2,56 +2,11 @@
imports "../Nominal-General/Nominal2_Atoms"
begin
+(* definitions of the permute function for raw nominal datatypes *)
ML {*
-fun prove_perm_zero lthy induct perm_def perm_frees =
-let
- val perm_types = map fastype_of perm_frees;
- val perm_indnames = Datatype_Prop.make_tnames (map body_type perm_types);
- fun glc ((perm, T), x) =
- HOLogic.mk_eq (perm $ @{term "0::perm"} $ Free (x, T), Free (x, T))
- val gl =
- HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
- (map glc (perm_frees ~~ map body_type perm_types ~~ perm_indnames)));
- fun tac _ =
- EVERY [
- Datatype_Aux.indtac induct perm_indnames 1,
- ALLGOALS (asm_full_simp_tac (HOL_ss addsimps (@{thm permute_zero} :: perm_def)))
- ];
-in
- Datatype_Aux.split_conj_thm (Goal.prove lthy perm_indnames [] gl tac)
-end;
-*}
-
-ML {*
-fun prove_perm_plus lthy induct perm_def perm_frees =
-let
- val pi1 = Free ("pi1", @{typ perm});
- val pi2 = Free ("pi2", @{typ perm});
- val perm_types = map fastype_of perm_frees
- val perm_indnames = Datatype_Prop.make_tnames (map body_type perm_types);
- fun glc ((perm, T), x) =
- HOLogic.mk_eq (
- perm $ (mk_plus pi1 pi2) $ Free (x, T),
- perm $ pi1 $ (perm $ pi2 $ Free (x, T)))
- val goal =
- (HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
- (map glc (perm_frees ~~ map body_type perm_types ~~ perm_indnames))))
- fun tac _ =
- EVERY [
- Datatype_Aux.indtac induct perm_indnames 1,
- ALLGOALS (asm_full_simp_tac (HOL_ss addsimps (@{thm permute_plus} :: perm_def)))
- ]
-in
- Datatype_Aux.split_conj_thm (Goal.prove lthy ("pi1" :: "pi2" :: perm_indnames) [] goal tac)
-end;
-*}
-
-
-(* definitions of the permute function for a raw nominal datatype *)
-
-ML {*
+(* returns the type of the nth datatype *)
fun nth_dtyp dt_descr sorts i =
Datatype_Aux.typ_of_dtyp dt_descr sorts (Datatype_Aux.DtRec i);
*}
@@ -93,8 +48,59 @@
*}
ML {*
+fun prove_permute_zero lthy induct perm_defs perm_fns =
+let
+ val perm_types = map (body_type o fastype_of) perm_fns
+ val perm_indnames = Datatype_Prop.make_tnames perm_types
+
+ fun single_goal ((perm_fn, T), x) =
+ HOLogic.mk_eq (perm_fn $ @{term "0::perm"} $ Free (x, T), Free (x, T))
+
+ val goals =
+ HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
+ (map single_goal (perm_fns ~~ perm_types ~~ perm_indnames)))
+
+ val simps = HOL_basic_ss addsimps (@{thm permute_zero} :: perm_defs)
+
+ val tac = (Datatype_Aux.indtac induct perm_indnames
+ THEN_ALL_NEW asm_simp_tac simps) 1
+in
+ Goal.prove lthy perm_indnames [] goals (K tac)
+ |> Datatype_Aux.split_conj_thm
+end
+*}
+
+ML {*
+fun prove_permute_plus lthy induct perm_defs perm_fns =
+let
+ val pi1 = Free ("p", @{typ perm})
+ val pi2 = Free ("q", @{typ perm})
+ val perm_types = map (body_type o fastype_of) perm_fns
+ val perm_indnames = Datatype_Prop.make_tnames perm_types
+
+ fun single_goal ((perm, T), x) = HOLogic.mk_eq
+ (perm $ (mk_plus pi1 pi2) $ Free (x, T), perm $ pi1 $ (perm $ pi2 $ Free (x, T)))
+
+ val goals =
+ HOLogic.mk_Trueprop (foldr1 HOLogic.mk_conj
+ (map single_goal (perm_fns ~~ perm_types ~~ perm_indnames)))
+
+ val simps = HOL_basic_ss addsimps (@{thm permute_plus} :: perm_defs)
+
+ val tac = (Datatype_Aux.indtac induct perm_indnames
+ THEN_ALL_NEW asm_simp_tac simps) 1
+in
+ Goal.prove lthy ("p" :: "q" :: perm_indnames) [] goals (K tac)
+ |> Datatype_Aux.split_conj_thm
+end
+*}
+
+ML {*
(* defines the permutation functions for raw datatypes and
proves that they are instances of pt
+
+ dt_nos refers to the number of "un-unfolded" datatypes
+ given by the user
*)
fun define_raw_perms (dt_info : Datatype_Aux.info) dt_nos thy =
let
@@ -117,12 +123,12 @@
val lthy =
Theory_Target.instantiation (full_tnames, [], @{sort pt}) thy;
- val ((perm_frees, perm_ldef), lthy') =
+ val ((perm_fns, perm_ldef), lthy') =
Primrec.add_primrec
(map (fn s => (Binding.name s, NONE, NoSyn)) perm_fn_names) perm_eqs lthy;
- val perm_zero_thms = prove_perm_zero lthy' induct perm_ldef perm_frees
- val perm_plus_thms = prove_perm_plus lthy' induct perm_ldef perm_frees
+ val perm_zero_thms = prove_permute_zero lthy' induct perm_ldef perm_fns
+ val perm_plus_thms = prove_permute_plus lthy' induct perm_ldef perm_fns
val perm_zero_thms' = List.take (perm_zero_thms, dt_nos);
val perm_plus_thms' = List.take (perm_plus_thms, dt_nos)
val perms_name = space_implode "_" perm_fn_names
@@ -130,42 +136,20 @@
val perms_plus_bind = Binding.name (perms_name ^ "_plus")
fun tac _ (_, simps, _) =
- (Class.intro_classes_tac []) THEN ALLGOALS (resolve_tac simps);
+ Class.intro_classes_tac [] THEN ALLGOALS (resolve_tac simps)
fun morphism phi (dfs, simps, fvs) =
(map (Morphism.thm phi) dfs, map (Morphism.thm phi) simps, map (Morphism.term phi) fvs);
- in
- lthy'
- |> snd o (Local_Theory.note ((perms_zero_bind, []), perm_zero_thms'))
- |> snd o (Local_Theory.note ((perms_plus_bind, []), perm_plus_thms'))
- |> Class_Target.prove_instantiation_exit_result morphism tac
- (perm_ldef, perm_zero_thms' @ perm_plus_thms', perm_frees)
- end
-*}
-
-(* Test *)
-(*atom_decl name
-
-datatype trm =
- Var "name"
-| App "trm" "trm list"
-| Lam "name" "trm"
-| Let "bp" "trm" "trm"
-and bp =
- BUnit
-| BVar "name"
-| BPair "bp" "bp"
-
-setup {* fn thy =>
-let
- val info = Datatype.the_info thy "Perm.trm"
in
- define_raw_perms info 2 thy |> snd
+ lthy'
+ |> snd o (Local_Theory.note ((perms_zero_bind, []), perm_zero_thms'))
+ |> snd o (Local_Theory.note ((perms_plus_bind, []), perm_plus_thms'))
+ |> Class_Target.prove_instantiation_exit_result morphism tac
+ (perm_ldef, perm_zero_thms' @ perm_plus_thms', perm_fns)
end
*}
-print_theorems
-*)
+(* permutations for quotient types *)
ML {*
fun quotient_lift_consts_export qtys spec ctxt =
@@ -228,11 +212,12 @@
(* Test *)
-(*atom_decl name
+(*
+atom_decl name
datatype trm =
Var "name"
-| App "trm" "trm list"
+| App "trm" "(trm list) list"
| Lam "name" "trm"
| Let "bp" "trm" "trm"
and bp =
@@ -242,9 +227,9 @@
setup {* fn thy =>
let
- val inf = Datatype.the_info thy "Perm.trm"
+ val info = Datatype.the_info thy "Perm.trm"
in
- define_raw_perms inf 2 thy |> snd
+ define_raw_perms info 2 thy |> snd
end
*}
--- a/Nominal/ROOT.ML Wed Apr 21 10:13:17 2010 +0200
+++ b/Nominal/ROOT.ML Wed Apr 21 10:20:48 2010 +0200
@@ -3,7 +3,7 @@
no_document use_thys
["Ex/Lambda",
"Ex/ExLF",
- "Ex/Ex1",
+ "Ex/SingleLet",
"Ex/Ex1rec",
"Ex/Ex2",
"Ex/Ex3",