merged
authorChristian Urban <urbanc@in.tum.de>
Thu, 18 Feb 2010 23:07:52 +0100
changeset 1195 6f3b75135638
parent 1194 3d54fcc5f41a (current diff)
parent 1193 a228acf2907e (diff)
child 1197 2f4ce88c2c96
merged
Quot/Nominal/Terms.thy
Quot/Nominal/Terms2.thy
--- a/Quot/Nominal/Fv.thy	Thu Feb 18 23:07:28 2010 +0100
+++ b/Quot/Nominal/Fv.thy	Thu Feb 18 23:07:52 2010 +0100
@@ -1,5 +1,5 @@
 theory Fv
-imports "Nominal2_Atoms"
+imports "Nominal2_Atoms" "Abs"
 begin
 
 (* Bindings are given as a list which has a length being equal
@@ -23,6 +23,35 @@
  [],
  [[], [], [(NONE, 0)]],
  [[], [], [(SOME (Const f), 0), (Some (Const g), 1)]]]
+
+A SOME binding has to have a function returning an atom set,
+and a NONE binding has to be on an argument that is an atom
+or an atom set.
+
+How the procedure works:
+  For each of the defined datatypes,
+  For each of the constructors,
+  It creates a union of free variables for each argument.
+
+  For an argument the free variables are the variables minus
+  bound variables.
+
+  The variables are:
+    For an atom, a singleton set with the atom itself.
+    For an atom set, the atom set itself.
+    For a recursive argument, the appropriate fv function applied to it.
+    (* TODO: This one is not implemented *)
+    For other arguments it should be an appropriate fv function stored
+      in the database.
+  The bound variables are a union of results of all bindings that
+  involve the given argument. For a paricular binding the result is:
+    For a function applied to an argument this function with the argument.
+    For an atom, a singleton set with the atom itself.
+    For an atom set, the atom set itself.
+    For a recursive argument, the appropriate fv function applied to it.
+    (* TODO: This one is not implemented *)
+    For other arguments it should be an appropriate fv function stored
+      in the database.
 *)
 
 ML {*
@@ -40,13 +69,32 @@
     if b = noatoms then a else
     if b = a then noatoms else
     HOLogic.mk_binop @{const_name minus} (a, b);
+  fun mk_atoms t =
+    let
+      val ty = fastype_of t;
+      val atom_ty = HOLogic.dest_setT ty --> @{typ atom};
+      val img_ty = atom_ty --> ty --> @{typ "atom set"};
+    in
+      (Const (@{const_name image}, img_ty) $ Const (@{const_name atom}, atom_ty) $ t)
+    end;
+  (* Copy from Term *)
+  fun is_funtype (Type ("fun", [_, _])) = true
+    | is_funtype _ = false;
+  (* Similar to one in USyntax *)
+  fun mk_pair (fst, snd) =
+    let val ty1 = fastype_of fst
+      val ty2 = fastype_of snd
+      val c = HOLogic.pair_const ty1 ty2
+    in c $ fst $ snd
+    end;
+
 *}
 
 ML {*
 (* Currently needs just one full_tname to access Datatype *)
-fun define_raw_fv full_tname bindsall lthy =
+fun define_fv_alpha full_tname bindsall lthy =
 let
-  val thy = ProofContext.theory_of lthy
+  val thy = ProofContext.theory_of lthy;
   val {descr, ...} = Datatype.the_info thy full_tname;
   val sorts = []; (* TODO *)
   fun nth_dtyp i = typ_of_dtyp descr sorts (DtRec i);
@@ -54,46 +102,92 @@
     "fv_" ^ name_of_typ (nth_dtyp i)) descr);
   val fv_types = map (fn (i, _) => nth_dtyp i --> @{typ "atom set"}) descr;
   val fv_frees = map Free (fv_names ~~ fv_types);
-  fun fv_eq_constr i (cname, dts) bindcs =
+  val alpha_names = Datatype_Prop.indexify_names (map (fn (i, _) =>
+    "alpha_" ^ name_of_typ (nth_dtyp i)) descr);
+  val alpha_types = map (fn (i, _) => nth_dtyp i --> nth_dtyp i --> @{typ bool}) descr;
+  val alpha_frees = map Free (alpha_names ~~ alpha_types);
+  fun fv_alpha_constr i (cname, dts) bindcs =
     let
       val Ts = map (typ_of_dtyp descr sorts) dts;
       val names = Name.variant_list ["pi"] (Datatype_Prop.make_tnames Ts);
       val args = map Free (names ~~ Ts);
+      val names2 = Name.variant_list ("pi" :: names) (Datatype_Prop.make_tnames Ts);
+      val args2 = map Free (names2 ~~ Ts);
       val c = Const (cname, Ts ---> (nth_dtyp i));
-      val fv_c = Free (nth fv_names i, (nth_dtyp i) --> @{typ "atom set"});
-      fun fv_bind (NONE, i) =
+      val fv_c = nth fv_frees i;
+      val alpha = nth alpha_frees i;
+      fun fv_bind args (NONE, i) =
             if is_rec_type (nth dts i) then (nth fv_frees (body_index (nth dts i))) $ (nth args i) else
             (* TODO we assume that all can be 'atomized' *)
+            if (is_funtype o fastype_of) (nth args i) then mk_atoms (nth args i) else
             mk_single_atom (nth args i)
-        | fv_bind (SOME f, i) = f $ (nth args i);
+        | fv_bind args (SOME f, i) = f $ (nth args i);
       fun fv_arg ((dt, x), bindxs) =
         let
           val arg =
             if is_rec_type dt then nth fv_frees (body_index dt) $ x else
             (* TODO: we just assume everything can be 'atomized' *)
-            HOLogic.mk_set @{typ atom} [mk_atom (type_of x) $ x]
-          val sub = mk_union (map fv_bind bindxs)
+            if (is_funtype o fastype_of) x then mk_atoms x else
+            HOLogic.mk_set @{typ atom} [mk_atom (fastype_of x) $ x]
+          val sub = mk_union (map (fv_bind args) bindxs)
         in
           mk_diff arg sub
         end;
-        val _ = tracing ("d" ^ string_of_int (length dts));
-        val _ = tracing (string_of_int (length args));
-        val _ = tracing (string_of_int (length bindcs));
+      val fv_eq = HOLogic.mk_Trueprop (HOLogic.mk_eq
+        (fv_c $ list_comb (c, args), mk_union (map fv_arg (dts ~~ args ~~ bindcs))))
+      val alpha_rhs =
+        HOLogic.mk_Trueprop (alpha $ (list_comb (c, args)) $ (list_comb (c, args2)));
+      fun alpha_arg ((dt, bindxs), (arg, arg2)) =
+        if bindxs = [] then (
+          if is_rec_type dt then (nth alpha_frees (body_index dt) $ arg $ arg2)
+          else (HOLogic.mk_eq (arg, arg2)))
+        else
+          if is_rec_type dt then let
+            (* THE HARD CASE *)
+            val lhs_binds = mk_union (map (fv_bind args) bindxs);
+            val lhs = mk_pair (lhs_binds, arg);
+            val rhs_binds = mk_union (map (fv_bind args2) bindxs);
+            val rhs = mk_pair (rhs_binds, arg2);
+            val alpha = nth alpha_frees (body_index dt);
+            val fv = nth fv_frees (body_index dt);
+            val alpha_gen_pre = Const (@{const_name alpha_gen}, dummyT) $ lhs $ alpha $ fv $ (Free ("pi", @{typ perm})) $ rhs;
+            val alpha_gen_t = Syntax.check_term lthy alpha_gen_pre
+          in
+            HOLogic.mk_exists ("pi", @{typ perm}, alpha_gen_t)
+          (* TODO Add some test that is makes sense *)
+          end else @{term "True"}
+      val alpha_lhss = map (HOLogic.mk_Trueprop o alpha_arg) (dts ~~ bindcs ~~ (args ~~ args2))
+      val alpha_eq = Logic.list_implies (alpha_lhss, alpha_rhs)
     in
-      (Attrib.empty_binding, HOLogic.mk_Trueprop (HOLogic.mk_eq
-        (fv_c $ list_comb (c, args), mk_union (map fv_arg (dts ~~ args ~~ bindcs)))))
+      (fv_eq, alpha_eq)
     end;
-  fun fv_eq (i, (_, _, constrs)) binds = map2 (fv_eq_constr i) constrs binds;
-  val fv_eqs = flat (map2 fv_eq descr bindsall)
+  fun fv_alpha_eq (i, (_, _, constrs)) binds = map2 (fv_alpha_constr i) constrs binds;
+  val (fv_eqs, alpha_eqs) = split_list (flat (map2 fv_alpha_eq descr bindsall))
+  val add_binds = map (fn x => (Attrib.empty_binding, x))
+  val (fvs, lthy') = (Primrec.add_primrec
+    (map (fn s => (Binding.name s, NONE, NoSyn)) fv_names) (add_binds fv_eqs) lthy)
+  val (alphas, lthy'') = (Inductive.add_inductive_i
+     {quiet_mode = false, verbose = true, alt_name = Binding.empty,
+      coind = false, no_elim = false, no_ind = false, skip_mono = true, fork_mono = false}
+     (map2 (fn x => fn y => ((Binding.name x, y), NoSyn)) alpha_names alpha_types) []
+     (add_binds alpha_eqs) [] lthy')
 in
-  snd (Primrec.add_primrec
-    (map (fn s => (Binding.name s, NONE, NoSyn)) fv_names) fv_eqs lthy)
+  ((fvs, alphas), lthy'')
 end
 *}
 
-(* test
+(* tests
 atom_decl name
 
+datatype ty =
+  Var "name set"
+
+ML {* Syntax.check_term @{context} (mk_atoms @{term "a :: name set"}) *}
+
+local_setup {* define_fv_alpha "Fv.ty" [[[[]]]] *}
+print_theorems
+
+
 datatype rtrm1 =
   rVr1 "name"
 | rAp1 "rtrm1" "rtrm1"
@@ -113,11 +207,12 @@
 | "bv1 (BVr x) = {atom x}"
 | "bv1 (BPr bp1 bp2) = (bv1 bp1) \<union> (bv1 bp1)"
 
-local_setup {* define_raw_fv "Fv.rtrm1"
-  [[[[]], [[], []], [[(NONE, 0)], [(NONE, 0)]], [[(NONE, 0)], [], [(SOME @{term bv1}, 0)]]],
+setup {* snd o define_raw_perms ["rtrm1", "bp"] ["Fv.rtrm1", "Fv.bp"] *}
+
+local_setup {* define_fv_alpha "Fv.rtrm1"
+  [[[[]], [[], []], [[(NONE, 0)], [(NONE, 0)]], [[(SOME @{term bv1}, 0)], [], [(SOME @{term bv1}, 0)]]],
    [[], [[]], [[], []]]] *}
 print_theorems
-
 *)
 
 end
--- a/Quot/Nominal/Perm.thy	Thu Feb 18 23:07:28 2010 +0100
+++ b/Quot/Nominal/Perm.thy	Thu Feb 18 23:07:52 2010 +0100
@@ -55,7 +55,7 @@
     val lthy =
       Theory_Target.instantiation (full_tnames, [], @{sort pt}) thy;
     (* TODO: Use the version of prmrec that gives the names explicitely. *)
-    val (perm_ldef, lthy') =
+    val ((_, perm_ldef), lthy') =
       Primrec.add_primrec
         (map (fn s => (Binding.name s, NONE, NoSyn)) perm_names') perm_eqs lthy;
     val perm_frees =
--- a/Quot/Nominal/Terms.thy	Thu Feb 18 23:07:28 2010 +0100
+++ b/Quot/Nominal/Terms.thy	Thu Feb 18 23:07:52 2010 +0100
@@ -25,52 +25,71 @@
 where
   "bv1 (BUnit) = {}"
 | "bv1 (BVr x) = {atom x}"
-| "bv1 (BPr bp1 bp2) = (bv1 bp1) \<union> (bv1 bp1)"
-
-local_setup {* define_raw_fv "Terms.rtrm1"
-  [[[[]], [[], []], [[(NONE, 0)], [(NONE, 0)]], [[(NONE, 0)], [], [(SOME @{term bv1}, 0)]]],
-   [[], [[]], [[], []]]] *}
-print_theorems
+| "bv1 (BPr bp1 bp2) = (bv1 bp1) \<union> (bv1 bp2)"
 
 setup {* snd o define_raw_perms ["rtrm1", "bp"] ["Terms.rtrm1", "Terms.bp"] *}
 
-inductive
-  alpha1 :: "rtrm1 \<Rightarrow> rtrm1 \<Rightarrow> bool" ("_ \<approx>1 _" [100, 100] 100)
-where
-  a1: "a = b \<Longrightarrow> (rVr1 a) \<approx>1 (rVr1 b)"
-| a2: "\<lbrakk>t1 \<approx>1 t2; s1 \<approx>1 s2\<rbrakk> \<Longrightarrow> rAp1 t1 s1 \<approx>1 rAp1 t2 s2"
-| a3: "(\<exists>pi. (({atom aa}, t) \<approx>gen alpha1 fv_rtrm1 pi ({atom ab}, s))) \<Longrightarrow> rLm1 aa t \<approx>1 rLm1 ab s"
-| a4: "t1 \<approx>1 t2 \<Longrightarrow> (\<exists>pi. (((bv1 b1), s1) \<approx>gen alpha1 fv_rtrm1 pi ((bv1 b2), s2))) \<Longrightarrow> rLt1 b1 t1 s1 \<approx>1 rLt1 b2 t2 s2"
+local_setup {* snd o define_fv_alpha "Terms.rtrm1"
+  [[[[]], [[], []], [[(NONE, 0)], [(NONE, 0)]], [[(SOME @{term bv1}, 0)], [], [(SOME @{term bv1}, 0)]]],
+   [[], [[]], [[], []]]] *}
+print_theorems
+notation
+  alpha_rtrm1 ("_ \<approx>1 _" [100, 100] 100) and
+  alpha_bp ("_ \<approx>1b _" [100, 100] 100)
+thm alpha_rtrm1_alpha_bp.intros
 
 lemma alpha1_inj:
 "(rVr1 a \<approx>1 rVr1 b) = (a = b)"
 "(rAp1 t1 s1 \<approx>1 rAp1 t2 s2) = (t1 \<approx>1 t2 \<and> s1 \<approx>1 s2)"
-"(rLm1 aa t \<approx>1 rLm1 ab s) = (\<exists>pi. (({atom aa}, t) \<approx>gen alpha1 fv_rtrm1 pi ({atom ab}, s)))"
-"(rLt1 b1 t1 s1 \<approx>1 rLt1 b2 t2 s2) = (t1 \<approx>1 t2 \<and> (\<exists>pi. (((bv1 b1), s1) \<approx>gen alpha1 fv_rtrm1 pi ((bv1 b2), s2))))"
+"(rLm1 aa t \<approx>1 rLm1 ab s) = (\<exists>pi. (({atom aa}, t) \<approx>gen alpha_rtrm1 fv_rtrm1 pi ({atom ab}, s)))"
+"(rLt1 bp rtrm11 rtrm12 \<approx>1 rLt1 bpa rtrm11a rtrm12a) =
+   ((\<exists>pi. (bv1 bp, bp) \<approx>gen alpha_bp fv_bp pi (bv1 bpa, bpa)) \<and> rtrm11 \<approx>1 rtrm11a \<and>
+   (\<exists>pi. (bv1 bp, rtrm12) \<approx>gen alpha_rtrm1 fv_rtrm1 pi (bv1 bpa, rtrm12a)))"
+"alpha_bp BUnit BUnit"
+"(alpha_bp (BVr name) (BVr namea)) = (name = namea)"
+"(alpha_bp (BPr bp1 bp2) (BPr bp1a bp2a)) = (alpha_bp bp1 bp1a \<and> alpha_bp bp2 bp2a)"
 apply -
-apply rule apply (erule alpha1.cases) apply (simp_all add: alpha1.intros)
-apply rule apply (erule alpha1.cases) apply (simp_all add: alpha1.intros)
-apply rule apply (erule alpha1.cases) apply (simp_all add: alpha1.intros)
-apply rule apply (erule alpha1.cases) apply (simp_all add: alpha1.intros)
+apply rule apply (erule alpha_rtrm1.cases) apply (simp_all add: alpha_rtrm1_alpha_bp.intros)
+apply rule apply (erule alpha_rtrm1.cases) apply (simp_all add: alpha_rtrm1_alpha_bp.intros)
+apply rule apply (erule alpha_rtrm1.cases) apply (simp_all add: alpha_rtrm1_alpha_bp.intros)
+apply rule apply (erule alpha_rtrm1.cases) apply (simp_all add: alpha_rtrm1_alpha_bp.intros)
+apply rule apply (erule alpha_bp.cases) apply (simp_all add: alpha_rtrm1_alpha_bp.intros)
+apply rule apply (erule alpha_bp.cases) apply (simp_all add: alpha_rtrm1_alpha_bp.intros)
 done
 
-(* Shouyld we derive it? But bv is given by the user? *)
+lemma alpha_bp_refl: "alpha_bp a a"
+apply induct
+apply (simp_all  add: alpha1_inj)
+done
+
+lemma alpha_bp_eq_eq: "alpha_bp a b = (a = b)"
+apply rule
+apply (induct a b rule: alpha_rtrm1_alpha_bp.inducts(2))
+apply (simp_all add: alpha_bp_refl)
+done
+
+lemma alpha_bp_eq: "alpha_bp = (op =)"
+apply (rule ext)+
+apply (rule alpha_bp_eq_eq)
+done
+
 lemma bv1_eqvt[eqvt]:
   shows "(pi \<bullet> bv1 x) = bv1 (pi \<bullet> x)"
   apply (induct x)
-apply (simp_all add: empty_eqvt insert_eqvt atom_eqvt)
+apply (simp_all add: empty_eqvt insert_eqvt atom_eqvt eqvts)
 done
 
 lemma fv_rtrm1_eqvt[eqvt]:
-  shows "(pi\<bullet>fv_rtrm1 t) = fv_rtrm1 (pi\<bullet>t)"
-  apply (induct t)
+    "(pi\<bullet>fv_rtrm1 t) = fv_rtrm1 (pi\<bullet>t)"
+    "(pi\<bullet>fv_bp b) = fv_bp (pi\<bullet>b)"
+  apply (induct t and b)
   apply (simp_all add: insert_eqvt atom_eqvt empty_eqvt union_eqvt Diff_eqvt bv1_eqvt)
   done
 
-
 lemma alpha1_eqvt:
-  shows "t \<approx>1 s \<Longrightarrow> (pi \<bullet> t) \<approx>1 (pi \<bullet> s)"
-  apply (induct t s rule: alpha1.inducts)
+  "t \<approx>1 s \<Longrightarrow> (pi \<bullet> t) \<approx>1 (pi \<bullet> s)"
+  "alpha_bp a b \<Longrightarrow> alpha_bp (pi \<bullet> a) (pi \<bullet> b)"
+  apply (induct t s and a b rule: alpha_rtrm1_alpha_bp.inducts)
   apply (simp_all add:eqvts alpha1_inj)
   apply (erule exE)
   apply (rule_tac x="pi \<bullet> pia" in exI)
@@ -84,6 +103,8 @@
   apply(simp add: atom_eqvt Diff_eqvt fv_rtrm1_eqvt insert_eqvt empty_eqvt)
   apply(simp add: permute_eqvt[symmetric])
   apply (erule exE)
+  apply (erule exE)
+  apply (rule conjI)
   apply (rule_tac x="pi \<bullet> pia" in exI)
   apply (simp add: alpha_gen)
   apply(erule conjE)+
@@ -94,63 +115,60 @@
   apply(rule_tac ?p1="- pi" in fresh_star_permute_iff[THEN iffD1])
   apply(simp add: atom_eqvt fv_rtrm1_eqvt Diff_eqvt bv1_eqvt)
   apply(simp add: permute_eqvt[symmetric])
+  apply (rule_tac x="pi \<bullet> piaa" in exI)
+  apply (simp add: alpha_gen)
+  apply(erule conjE)+
+  apply(rule conjI)
+  apply(rule_tac ?p1="- pi" in permute_eq_iff[THEN iffD1])
+  apply(simp add: fv_rtrm1_eqvt Diff_eqvt bv1_eqvt)
+  apply(rule conjI)
+  apply(rule_tac ?p1="- pi" in fresh_star_permute_iff[THEN iffD1])
+  apply(simp add: atom_eqvt fv_rtrm1_eqvt Diff_eqvt bv1_eqvt)
+  apply(simp add: permute_eqvt[symmetric])
   done
 
-lemma alpha1_equivp: "equivp alpha1" 
+lemma alpha1_equivp: "equivp alpha_rtrm1" 
   sorry
 
-quotient_type trm1 = rtrm1 / alpha1
+quotient_type trm1 = rtrm1 / alpha_rtrm1
   by (rule alpha1_equivp)
 
-quotient_definition
-  "Vr1 :: name \<Rightarrow> trm1"
-is
-  "rVr1"
-
-quotient_definition
-  "Ap1 :: trm1 \<Rightarrow> trm1 \<Rightarrow> trm1"
-is
-  "rAp1"
-
-quotient_definition
-  "Lm1 :: name \<Rightarrow> trm1 \<Rightarrow> trm1"
-is
-  "rLm1"
-
-quotient_definition
-  "Lt1 :: bp \<Rightarrow> trm1 \<Rightarrow> trm1 \<Rightarrow> trm1"
-is
-  "rLt1"
-
-quotient_definition
-  "fv_trm1 :: trm1 \<Rightarrow> atom set"
-is
-  "fv_rtrm1"
+local_setup {*
+(fn ctxt => ctxt
+ |> snd o (Quotient_Def.quotient_lift_const ("Vr1", @{term rVr1}))
+ |> snd o (Quotient_Def.quotient_lift_const ("Ap1", @{term rAp1}))
+ |> snd o (Quotient_Def.quotient_lift_const ("Lm1", @{term rLm1}))
+ |> snd o (Quotient_Def.quotient_lift_const ("Lt1", @{term rLt1}))
+ |> snd o (Quotient_Def.quotient_lift_const ("fv_trm1", @{term fv_rtrm1})))
+*}
+print_theorems
 
 lemma alpha_rfv1:
   shows "t \<approx>1 s \<Longrightarrow> fv_rtrm1 t = fv_rtrm1 s"
-  apply(induct rule: alpha1.induct)
+  apply(induct rule: alpha_rtrm1_alpha_bp.inducts(1))
   apply(simp_all add: alpha_gen.simps)
   done
 
 lemma [quot_respect]:
- "(op = ===> alpha1) rVr1 rVr1"
- "(alpha1 ===> alpha1 ===> alpha1) rAp1 rAp1"
- "(op = ===> alpha1 ===> alpha1) rLm1 rLm1"
- "(op = ===> alpha1 ===> alpha1 ===> alpha1) rLt1 rLt1"
+ "(op = ===> alpha_rtrm1) rVr1 rVr1"
+ "(alpha_rtrm1 ===> alpha_rtrm1 ===> alpha_rtrm1) rAp1 rAp1"
+ "(op = ===> alpha_rtrm1 ===> alpha_rtrm1) rLm1 rLm1"
+ "(op = ===> alpha_rtrm1 ===> alpha_rtrm1 ===> alpha_rtrm1) rLt1 rLt1"
 apply (auto simp add: alpha1_inj)
 apply (rule_tac x="0" in exI)
 apply (simp add: fresh_star_def fresh_zero_perm alpha_rfv1 alpha_gen)
 apply (rule_tac x="0" in exI)
+apply (simp add: alpha_gen fresh_star_def fresh_zero_perm alpha_rfv1 alpha_bp_eq)
+apply (rule_tac x="0" in exI)
 apply (simp add: alpha_gen fresh_star_def fresh_zero_perm alpha_rfv1)
 done
 
 lemma [quot_respect]:
-  "(op = ===> alpha1 ===> alpha1) permute permute"
+  "(op = ===> alpha_rtrm1 ===> alpha_rtrm1) permute permute"
   by (simp add: alpha1_eqvt)
 
 lemma [quot_respect]:
-  "(alpha1 ===> op =) fv_rtrm1 fv_rtrm1"
+  "(alpha_rtrm1 ===> op =) fv_rtrm1 fv_rtrm1"
   by (simp add: alpha_rfv1)
 
 lemmas trm1_bp_induct = rtrm1_bp.induct[quot_lifted]
@@ -224,6 +242,17 @@
 apply(simp add: supp_Pair supp_atom bp_supp)
 done
 
+lemma fv_eq_bv: "fv_bp bp = bv1 bp"
+apply(induct bp rule: trm1_bp_inducts(2))
+apply(simp_all)
+done
+
+lemma helper: "{b. \<forall>pi. pi \<bullet> (a \<rightleftharpoons> b) \<bullet> bp \<noteq> bp} = {}"
+apply auto
+apply (rule_tac x="(x \<rightleftharpoons> a)" in exI)
+apply auto
+done
+
 lemma supp_fv:
   shows "supp t = fv_trm1 t"
 apply(induct t rule: trm1_bp_inducts(1))
@@ -240,13 +269,13 @@
 apply(simp add: alpha_gen.simps)
 apply(simp add: supp_eqvt[symmetric] fv_trm1_eqvt[symmetric])
 apply(subgoal_tac "supp (Lt1 bp rtrm11 rtrm12) = supp(rtrm11) \<union> supp (Abs (bv1 bp) rtrm12)")
-apply(simp add: supp_Abs fv_trm1)
+apply(simp add: supp_Abs fv_trm1 fv_eq_bv)
 apply(simp (no_asm) add: supp_def)
-apply(simp add: alpha1_INJ)
+apply(simp add: alpha1_INJ alpha_bp_eq)
 apply(simp add: Abs_eq_iff)
 apply(simp add: alpha_gen)
-apply(simp add: supp_eqvt[symmetric] fv_trm1_eqvt[symmetric] bv1_eqvt)
-apply(simp add: Collect_imp_eq Collect_neg_eq)
+apply(simp add: supp_eqvt[symmetric] fv_trm1_eqvt[symmetric] bv1_eqvt fv_eq_bv)
+apply(simp add: Collect_imp_eq Collect_neg_eq fresh_star_def helper)
 done
 
 lemma trm1_supp:
@@ -254,7 +283,7 @@
   "supp (Ap1 t1 t2) = supp t1 \<union> supp t2"
   "supp (Lm1 x t) = (supp t) - {atom x}"
   "supp (Lt1 b t s) = supp t \<union> (supp s - bv1 b)"
-  by (simp_all only: supp_fv fv_trm1)
+by (simp_all add: supp_fv fv_trm1 fv_eq_bv)
 
 lemma trm1_induct_strong:
   assumes "\<And>name b. P b (Vr1 name)"
@@ -280,37 +309,40 @@
 where
   "rbv2 (rAs x t) = {atom x}"
 
-local_setup {* define_raw_fv "Terms.rtrm2"
-  [[[[]], [[], []], [[(NONE, 0)], [(NONE, 0)]], [[], [(SOME @{term rbv2}, 0)]]],
-   [[[(NONE, 0)], []]]] *}
-print_theorems
-
 setup {* snd o define_raw_perms ["rtrm2", "rassign"] ["Terms.rtrm2", "Terms.rassign"] *}
 
-inductive
-  alpha2 :: "rtrm2 \<Rightarrow> rtrm2 \<Rightarrow> bool" ("_ \<approx>2 _" [100, 100] 100)
-and
-  alpha2a :: "rassign \<Rightarrow> rassign \<Rightarrow> bool" ("_ \<approx>2a _" [100, 100] 100)
-where
-  a1: "a = b \<Longrightarrow> (rVr2 a) \<approx>2 (rVr2 b)"
-| a2: "\<lbrakk>t1 \<approx>2 t2; s1 \<approx>2 s2\<rbrakk> \<Longrightarrow> rAp2 t1 s1 \<approx>2 rAp2 t2 s2"
-| a3: "(\<exists>pi. (({atom a}, t) \<approx>gen alpha2 fv_rtrm2 pi ({atom b}, s))) \<Longrightarrow> rLm2 a t \<approx>2 rLm2 b s"
-| a4: "\<lbrakk>\<exists>pi. ((rbv2 bt, t) \<approx>gen alpha2 fv_rtrm2 pi ((rbv2 bs), s));
-        \<exists>pi. ((rbv2 bt, bt) \<approx>gen alpha2a fv_rassign pi (rbv2 bs, bs))\<rbrakk>
-        \<Longrightarrow> rLt2 bt t \<approx>2 rLt2 bs s"
-| a5: "\<lbrakk>a = b; t \<approx>2 s\<rbrakk> \<Longrightarrow> rAs a t \<approx>2a rAs b s" (* This way rbv2 can be lifted *)
+local_setup {* snd o define_fv_alpha "Terms.rtrm2"
+  [[[[]], [[], []], [[(NONE, 0)], [(NONE, 0)]], [[(SOME @{term rbv2}, 0)], [(SOME @{term rbv2}, 0)]]],
+   [[[], []]]] *}
+print_theorems
+
+notation
+  alpha_rtrm2 ("_ \<approx>2 _" [100, 100] 100) and
+  alpha_rassign ("_ \<approx>2b _" [100, 100] 100)
+thm alpha_rtrm2_alpha_rassign.intros
 
 lemma alpha2_equivp:
-  "equivp alpha2"
-  "equivp alpha2a"
+  "equivp alpha_rtrm2"
+  "equivp alpha_rassign"
   sorry
 
 quotient_type
-  trm2 = rtrm2 / alpha2
+  trm2 = rtrm2 / alpha_rtrm2
 and
-  assign = rassign / alpha2a
+  assign = rassign / alpha_rassign
   by (auto intro: alpha2_equivp)
 
+local_setup {*
+(fn ctxt => ctxt
+ |> snd o (Quotient_Def.quotient_lift_const ("Vr2", @{term rVr2}))
+ |> snd o (Quotient_Def.quotient_lift_const ("Ap2", @{term rAp2}))
+ |> snd o (Quotient_Def.quotient_lift_const ("Lm2", @{term rLm2}))
+ |> snd o (Quotient_Def.quotient_lift_const ("Lt2", @{term rLt2}))
+ |> snd o (Quotient_Def.quotient_lift_const ("As", @{term rAs}))
+ |> snd o (Quotient_Def.quotient_lift_const ("fv_trm2", @{term fv_rtrm2}))
+ |> snd o (Quotient_Def.quotient_lift_const ("bv2", @{term rbv2})))
+*}
+print_theorems
 
 
 section {*** lets with many assignments ***}
@@ -331,36 +363,27 @@
   "bv3 ANil = {}"
 | "bv3 (ACons x t as) = {atom x} \<union> (bv3 as)"
 
-local_setup {* define_raw_fv "Terms.trm3"
-  [[[[]], [[], []], [[(NONE, 0)], [(NONE, 0)]], [[], [(SOME @{term bv3}, 0)]]],
-   [[], [[(NONE, 0)], [], []]]] *}
-print_theorems
-
 setup {* snd o define_raw_perms ["rtrm3", "assigns"] ["Terms.trm3", "Terms.assigns"] *}
 
-inductive
-  alpha3 :: "trm3 \<Rightarrow> trm3 \<Rightarrow> bool" ("_ \<approx>3 _" [100, 100] 100)
-and
-  alpha3a :: "assigns \<Rightarrow> assigns \<Rightarrow> bool" ("_ \<approx>3a _" [100, 100] 100)
-where
-  a1: "a = b \<Longrightarrow> (Vr3 a) \<approx>3 (Vr3 b)"
-| a2: "\<lbrakk>t1 \<approx>3 t2; s1 \<approx>3 s2\<rbrakk> \<Longrightarrow> Ap3 t1 s1 \<approx>3 Ap3 t2 s2"
-| a3: "(\<exists>pi. (({atom a}, t) \<approx>gen alpha3 fv_rtrm3 pi ({atom b}, s))) \<Longrightarrow> Lm3 a t \<approx>3 Lm3 b s"
-| a4: "\<lbrakk>\<exists>pi. ((bv3 bt, t) \<approx>gen alpha3 fv_trm3 pi ((bv3 bs), s));
-        \<exists>pi. ((bv3 bt, bt) \<approx>gen alpha3a fv_assign pi (bv3 bs, bs))\<rbrakk>
-        \<Longrightarrow> Lt3 bt t \<approx>3 Lt3 bs s"
-| a5: "ANil \<approx>3a ANil"
-| a6: "\<lbrakk>a = b; t \<approx>3 s; tt \<approx>3a st\<rbrakk> \<Longrightarrow> ACons a t tt \<approx>3a ACons b s st"
+local_setup {* snd o define_fv_alpha "Terms.trm3"
+  [[[[]], [[], []], [[(NONE, 0)], [(NONE, 0)]], [[(SOME @{term bv3}, 0)], [(SOME @{term bv3}, 0)]]],
+   [[], [[], [], []]]] *}
+print_theorems
+
+notation
+  alpha_trm3 ("_ \<approx>3 _" [100, 100] 100) and
+  alpha_assigns ("_ \<approx>3a _" [100, 100] 100)
+thm alpha_trm3_alpha_assigns.intros
 
 lemma alpha3_equivp:
-  "equivp alpha3"
-  "equivp alpha3a"
+  "equivp alpha_trm3"
+  "equivp alpha_assigns"
   sorry
 
 quotient_type
-  qtrm3 = trm3 / alpha3
+  qtrm3 = trm3 / alpha_trm3
 and
-  qassigns = assigns / alpha3a
+  qassigns = assigns / alpha_assigns
   by (auto intro: alpha3_equivp)
 
 
@@ -374,10 +397,6 @@
 
 thm trm4.recs
 
-local_setup {* define_raw_fv "Terms.trm4" [
-  [[[]], [[], []], [[(NONE, 0)], [(NONE, 0)]]], [[], [[], []]]  ] *}
-print_theorems
-
 (* there cannot be a clause for lists, as *)
 (* permutations are  already defined in Nominal (also functions, options, and so on) *)
 setup {* snd o define_raw_perms ["trm4"] ["Terms.trm4"] *}
@@ -393,22 +412,21 @@
 thm permute_trm4_permute_trm4_list.simps
 thm permute_trm4_permute_trm4_list.simps[simplified repaired]
 
-inductive
-    alpha4 :: "trm4 \<Rightarrow> trm4 \<Rightarrow> bool" ("_ \<approx>4 _" [100, 100] 100)
-and alpha4list :: "trm4 list \<Rightarrow> trm4 list \<Rightarrow> bool" ("_ \<approx>4list _" [100, 100] 100) 
-where
-  a1: "a = b \<Longrightarrow> (Vr4 a) \<approx>4 (Vr4 b)"
-| a2: "\<lbrakk>t1 \<approx>4 t2; s1 \<approx>4list s2\<rbrakk> \<Longrightarrow> Ap4 t1 s1 \<approx>4 Ap4 t2 s2"
-| a3: "(\<exists>pi. (({atom a}, t) \<approx>gen alpha4 fv_rtrm4 pi ({atom b}, s))) \<Longrightarrow> Lm4 a t \<approx>4 Lm4 b s"
-| a5: "[] \<approx>4list []"
-| a6: "\<lbrakk>t \<approx>4 s; ts \<approx>4list ss\<rbrakk> \<Longrightarrow> (t#ts) \<approx>4list (s#ss)"
+local_setup {* snd o define_fv_alpha "Terms.trm4" [
+  [[[]], [[], []], [[(NONE, 0)], [(NONE, 0)]]], [[], [[], []]]  ] *}
+print_theorems
 
-lemma alpha4_equivp: "equivp alpha4" sorry
-lemma alpha4list_equivp: "equivp alpha4list" sorry
+notation
+  alpha_trm4 ("_ \<approx>4 _" [100, 100] 100) and
+  alpha_trm4_list ("_ \<approx>4l _" [100, 100] 100)
+thm alpha_trm4_alpha_trm4_list.intros
+
+lemma alpha4_equivp: "equivp alpha_trm4" sorry
+lemma alpha4list_equivp: "equivp alpha_trm4_list" sorry
 
 quotient_type 
-  qtrm4 = trm4 / alpha4 and
-  qtrm4list = "trm4 list" / alpha4list
+  qtrm4 = trm4 / alpha_trm4 and
+  qtrm4list = "trm4 list" / alpha_trm4_list
   by (simp_all add: alpha4_equivp alpha4list_equivp)
 
 
@@ -426,101 +444,70 @@
   "rbv5 rLnil = {}"
 | "rbv5 (rLcons n t ltl) = {atom n} \<union> (rbv5 ltl)"
 
-local_setup {* define_raw_fv "Terms.rtrm5" [
-  [[[]], [[], []], [[(SOME @{term rbv5}, 0)], [(SOME @{term rbv5}, 0)]]], [[], [[(NONE, 0)], [], []]]  ] *}
-print_theorems
 
 setup {* snd o define_raw_perms ["rtrm5", "rlts"] ["Terms.rtrm5", "Terms.rlts"] *}
 print_theorems
 
-inductive
-  alpha5 :: "rtrm5 \<Rightarrow> rtrm5 \<Rightarrow> bool" ("_ \<approx>5 _" [100, 100] 100)
-and
-  alphalts :: "rlts \<Rightarrow> rlts \<Rightarrow> bool" ("_ \<approx>l _" [100, 100] 100)
-where
-  a1: "a = b \<Longrightarrow> (rVr5 a) \<approx>5 (rVr5 b)"
-| a2: "\<lbrakk>t1 \<approx>5 t2; s1 \<approx>5 s2\<rbrakk> \<Longrightarrow> rAp5 t1 s1 \<approx>5 rAp5 t2 s2"
-| a3: "\<lbrakk>\<exists>pi. ((rbv5 l1, t1) \<approx>gen alpha5 fv_rtrm5 pi (rbv5 l2, t2)); 
-        \<exists>pi. ((rbv5 l1, l1) \<approx>gen alphalts fv_rlts pi (rbv5 l2, l2))\<rbrakk>
-        \<Longrightarrow> rLt5 l1 t1 \<approx>5 rLt5 l2 t2"
-| a4: "rLnil \<approx>l rLnil"
-| a5: "ls1 \<approx>l ls2 \<Longrightarrow> t1 \<approx>5 t2 \<Longrightarrow> n1 = n2 \<Longrightarrow> rLcons n1 t1 ls1 \<approx>l rLcons n2 t2 ls2"
+local_setup {* snd o define_fv_alpha "Terms.rtrm5" [
+  [[[]], [[], []], [[(SOME @{term rbv5}, 0)], [(SOME @{term rbv5}, 0)]]], [[], [[], [], []]]  ] *}
+print_theorems
 
-print_theorems
+(* Alternate version with additional binding of name in rlts in rLcons *)
+(*local_setup {* snd o define_fv_alpha "Terms.rtrm5" [
+  [[[]], [[], []], [[(SOME @{term rbv5}, 0)], [(SOME @{term rbv5}, 0)]]], [[], [[(NONE,0)], [], [(NONE,0)]]]  ] *}
+print_theorems*)
+
+notation
+  alpha_rtrm5 ("_ \<approx>5 _" [100, 100] 100) and
+  alpha_rlts ("_ \<approx>l _" [100, 100] 100)
+thm alpha_rtrm5_alpha_rlts.intros
 
 lemma alpha5_inj:
   "((rVr5 a) \<approx>5 (rVr5 b)) = (a = b)"
   "(rAp5 t1 s1 \<approx>5 rAp5 t2 s2) = (t1 \<approx>5 t2 \<and> s1 \<approx>5 s2)"
-  "(rLt5 l1 t1 \<approx>5 rLt5 l2 t2) = ((\<exists>pi. ((rbv5 l1, t1) \<approx>gen alpha5 fv_rtrm5 pi (rbv5 l2, t2))) \<and>
-         (\<exists>pi. ((rbv5 l1, l1) \<approx>gen alphalts fv_rlts pi (rbv5 l2, l2))))"
+  "(rLt5 l1 t1 \<approx>5 rLt5 l2 t2) = ((\<exists>pi. ((rbv5 l1, t1) \<approx>gen alpha_rtrm5 fv_rtrm5 pi (rbv5 l2, t2))) \<and>
+         (\<exists>pi. ((rbv5 l1, l1) \<approx>gen alpha_rlts fv_rlts pi (rbv5 l2, l2))))"
   "rLnil \<approx>l rLnil"
   "(rLcons n1 t1 ls1 \<approx>l rLcons n2 t2 ls2) = (n1 = n2 \<and> ls1 \<approx>l ls2 \<and> t1 \<approx>5 t2)"
 apply -
-apply (simp_all add: alpha5_alphalts.intros)
+apply (simp_all add: alpha_rtrm5_alpha_rlts.intros)
 apply rule
-apply (erule alpha5.cases)
-apply (simp_all add: alpha5_alphalts.intros)
+apply (erule alpha_rtrm5.cases)
+apply (simp_all add: alpha_rtrm5_alpha_rlts.intros)
 apply rule
-apply (erule alpha5.cases)
-apply (simp_all add: alpha5_alphalts.intros)
+apply (erule alpha_rtrm5.cases)
+apply (simp_all add: alpha_rtrm5_alpha_rlts.intros)
 apply rule
-apply (erule alpha5.cases)
-apply (simp_all add: alpha5_alphalts.intros)
+apply (erule alpha_rtrm5.cases)
+apply (simp_all add: alpha_rtrm5_alpha_rlts.intros)
 apply rule
-apply (erule alphalts.cases)
-apply (simp_all add: alpha5_alphalts.intros)
+apply (erule alpha_rlts.cases)
+apply (simp_all add: alpha_rtrm5_alpha_rlts.intros)
 done
 
 lemma alpha5_equivps:
-  shows "equivp alpha5"
-  and   "equivp alphalts"
+  shows "equivp alpha_rtrm5"
+  and   "equivp alpha_rlts"
 sorry
 
 quotient_type
-  trm5 = rtrm5 / alpha5
+  trm5 = rtrm5 / alpha_rtrm5
 and
-  lts = rlts / alphalts
+  lts = rlts / alpha_rlts
   by (auto intro: alpha5_equivps)
 
-quotient_definition
-  "Vr5 :: name \<Rightarrow> trm5"
-is
-  "rVr5"
-
-quotient_definition
-  "Ap5 :: trm5 \<Rightarrow> trm5 \<Rightarrow> trm5"
-is
-  "rAp5"
-
-quotient_definition
-  "Lt5 :: lts \<Rightarrow> trm5 \<Rightarrow> trm5"
-is
-  "rLt5"
-
-quotient_definition
-  "Lnil :: lts"
-is
-  "rLnil"
-
-quotient_definition
-  "Lcons :: name \<Rightarrow> trm5 \<Rightarrow> lts \<Rightarrow> lts"
-is
-  "rLcons"
-
-quotient_definition
-   "fv_trm5 :: trm5 \<Rightarrow> atom set"
-is
-  "fv_rtrm5"
-
-quotient_definition
-   "fv_lts :: lts \<Rightarrow> atom set"
-is
-  "fv_rlts"
-
-quotient_definition
-   "bv5 :: lts \<Rightarrow> atom set"
-is
-  "rbv5"
+local_setup {*
+(fn ctxt => ctxt
+ |> snd o (Quotient_Def.quotient_lift_const ("Vr5", @{term rVr5}))
+ |> snd o (Quotient_Def.quotient_lift_const ("Ap5", @{term rAp5}))
+ |> snd o (Quotient_Def.quotient_lift_const ("Lt5", @{term rLt5}))
+ |> snd o (Quotient_Def.quotient_lift_const ("Lnil", @{term rLnil}))
+ |> snd o (Quotient_Def.quotient_lift_const ("Lcons", @{term rLcons}))
+ |> snd o (Quotient_Def.quotient_lift_const ("fv_trm5", @{term fv_rtrm5}))
+ |> snd o (Quotient_Def.quotient_lift_const ("fv_lts", @{term fv_rlts}))
+ |> snd o (Quotient_Def.quotient_lift_const ("bv5", @{term rbv5})))
+*}
+print_theorems
 
 lemma rbv5_eqvt:
   "pi \<bullet> (rbv5 x) = rbv5 (pi \<bullet> x)"
@@ -537,13 +524,13 @@
 lemma alpha5_eqvt:
   "xa \<approx>5 y \<Longrightarrow> (x \<bullet> xa) \<approx>5 (x \<bullet> y)"
   "xb \<approx>l ya \<Longrightarrow> (x \<bullet> xb) \<approx>l (x \<bullet> ya)"
-  apply(induct rule: alpha5_alphalts.inducts)
+  apply(induct rule: alpha_rtrm5_alpha_rlts.inducts)
   apply (simp_all add: alpha5_inj)
   apply (erule exE)+
   apply(unfold alpha_gen)
   apply (erule conjE)+
   apply (rule conjI)
-  apply (rule_tac x="x \<bullet> pi" in exI)
+  apply (rule_tac x="x \<bullet> pia" in exI)
   apply (rule conjI)
   apply(rule_tac ?p1="- x" in permute_eq_iff[THEN iffD1])
   apply(simp add: atom_eqvt Diff_eqvt insert_eqvt set_eqvt empty_eqvt rbv5_eqvt fv_rtrm5_eqvt)
@@ -552,7 +539,7 @@
   apply(simp add: atom_eqvt Diff_eqvt insert_eqvt set_eqvt empty_eqvt rbv5_eqvt fv_rtrm5_eqvt)
   apply (subst permute_eqvt[symmetric])
   apply (simp)
-  apply (rule_tac x="x \<bullet> pia" in exI)
+  apply (rule_tac x="x \<bullet> pi" in exI)
   apply (rule conjI)
   apply(rule_tac ?p1="- x" in permute_eq_iff[THEN iffD1])
   apply(simp add: atom_eqvt Diff_eqvt insert_eqvt set_eqvt empty_eqvt rbv5_eqvt fv_rlts_eqvt)
@@ -566,27 +553,27 @@
 lemma alpha5_rfv:
   "(t \<approx>5 s \<Longrightarrow> fv_rtrm5 t = fv_rtrm5 s)"
   "(l \<approx>l m \<Longrightarrow> fv_rlts l = fv_rlts m)"
-  apply(induct rule: alpha5_alphalts.inducts)
+  apply(induct rule: alpha_rtrm5_alpha_rlts.inducts)
   apply(simp_all add: alpha_gen)
   done
 
 lemma bv_list_rsp:
   shows "x \<approx>l y \<Longrightarrow> rbv5 x = rbv5 y"
-  apply(induct rule: alpha5_alphalts.inducts(2))
+  apply(induct rule: alpha_rtrm5_alpha_rlts.inducts(2))
   apply(simp_all)
   done
 
 lemma [quot_respect]:
-  "(alphalts ===> op =) fv_rlts fv_rlts"
-  "(alpha5 ===> op =) fv_rtrm5 fv_rtrm5"
-  "(alphalts ===> op =) rbv5 rbv5"
-  "(op = ===> alpha5) rVr5 rVr5"
-  "(alpha5 ===> alpha5 ===> alpha5) rAp5 rAp5"
-  "(alphalts ===> alpha5 ===> alpha5) rLt5 rLt5"
-  "(alphalts ===> alpha5 ===> alpha5) rLt5 rLt5"
-  "(op = ===> alpha5 ===> alphalts ===> alphalts) rLcons rLcons"
-  "(op = ===> alpha5 ===> alpha5) permute permute"
-  "(op = ===> alphalts ===> alphalts) permute permute"
+  "(alpha_rlts ===> op =) fv_rlts fv_rlts"
+  "(alpha_rtrm5 ===> op =) fv_rtrm5 fv_rtrm5"
+  "(alpha_rlts ===> op =) rbv5 rbv5"
+  "(op = ===> alpha_rtrm5) rVr5 rVr5"
+  "(alpha_rtrm5 ===> alpha_rtrm5 ===> alpha_rtrm5) rAp5 rAp5"
+  "(alpha_rlts ===> alpha_rtrm5 ===> alpha_rtrm5) rLt5 rLt5"
+  "(alpha_rlts ===> alpha_rtrm5 ===> alpha_rtrm5) rLt5 rLt5"
+  "(op = ===> alpha_rtrm5 ===> alpha_rlts ===> alpha_rlts) rLcons rLcons"
+  "(op = ===> alpha_rtrm5 ===> alpha_rtrm5) permute permute"
+  "(op = ===> alpha_rlts ===> alpha_rlts) permute permute"
   apply (simp_all add: alpha5_inj alpha5_rfv alpha5_eqvt bv_list_rsp)
   apply (clarify) apply (rule conjI)
   apply (rule_tac x="0" in exI) apply (simp add: fresh_star_def fresh_zero_perm alpha_gen alpha5_rfv)
@@ -597,7 +584,7 @@
   done
 
 lemma
-  shows "(alphalts ===> op =) rbv5 rbv5"
+  shows "(alpha_rlts ===> op =) rbv5 rbv5"
   by (simp add: bv_list_rsp)
 
 lemmas trm5_lts_inducts = rtrm5_rlts.inducts[quot_lifted]
@@ -686,7 +673,7 @@
 lemma distinct_helper:
   shows "\<not>(rVr5 x \<approx>5 rAp5 y z)"
   apply auto
-  apply (erule alpha5.cases)
+  apply (erule alpha_rtrm5.cases)
   apply (simp_all only: rtrm5.distinct)
   done
 
@@ -719,13 +706,15 @@
 | "rbv6 (rLm6 n t) = {atom n} \<union> rbv6 t"
 | "rbv6 (rLt6 l r) = rbv6 l \<union> rbv6 r"
 
-local_setup {* define_raw_fv "Terms.rtrm6" [
-  [[[]], [[(NONE, 0)], [(NONE, 0)]], [[], [(SOME @{term rbv6}, 0)]]]] *}
-print_theorems 
-
 setup {* snd o define_raw_perms ["rtrm6"] ["Terms.rtrm6"] *}
 print_theorems
 
+local_setup {* snd o define_fv_alpha "Terms.rtrm6" [
+  [[[]], [[(NONE, 0)], [(NONE, 0)]], [[(SOME @{term rbv6}, 0)], [(SOME @{term rbv6}, 0)]]]] *}
+notation alpha_rtrm6 ("_ \<approx>6a _" [100, 100] 100)
+(* HERE THE RULES DIFFER *)
+thm alpha_rtrm6.intros
+
 inductive
   alpha6 :: "rtrm6 \<Rightarrow> rtrm6 \<Rightarrow> bool" ("_ \<approx>6 _" [100, 100] 100)
 where
@@ -741,30 +730,15 @@
   trm6 = rtrm6 / alpha6
   by (auto intro: alpha6_equivps)
 
-quotient_definition
-  "Vr6 :: name \<Rightarrow> trm6"
-is
-  "rVr6"
-
-quotient_definition
-  "Lm6 :: name \<Rightarrow> trm6 \<Rightarrow> trm6"
-is
-  "rLm6"
-
-quotient_definition
-  "Lt6 :: trm6 \<Rightarrow> trm6 \<Rightarrow> trm6"
-is
-  "rLt6"
-
-quotient_definition
-   "fv_trm6 :: trm6 \<Rightarrow> atom set"
-is
-  "fv_rtrm6"
-
-quotient_definition
-   "bv6 :: trm6 \<Rightarrow> atom set"
-is
-  "rbv6"
+local_setup {*
+(fn ctxt => ctxt
+ |> snd o (Quotient_Def.quotient_lift_const ("Vr6", @{term rVr6}))
+ |> snd o (Quotient_Def.quotient_lift_const ("Lm6", @{term rLm6}))
+ |> snd o (Quotient_Def.quotient_lift_const ("Lt6", @{term rLt6}))
+ |> snd o (Quotient_Def.quotient_lift_const ("fv_trm6", @{term fv_rtrm6}))
+ |> snd o (Quotient_Def.quotient_lift_const ("bv6", @{term rbv6})))
+*}
+print_theorems
 
 lemma [quot_respect]:
   "(op = ===> alpha6 ===> alpha6) permute permute"
@@ -772,7 +746,6 @@
 sorry
 
 (* Definitely not true , see lemma below *)
-
 lemma [quot_respect]:"(alpha6 ===> op =) rbv6 rbv6"
 apply simp apply clarify
 apply (erule alpha6.induct)
@@ -875,13 +848,16 @@
 | "rbv7 (rLm7 n t) = rbv7 t - {atom n}"
 | "rbv7 (rLt7 l r) = rbv7 l \<union> rbv7 r"
 
-local_setup {* define_raw_fv "Terms.rtrm7" [
-  [[[]], [[(NONE, 0)], [(NONE, 0)]], [[], [(SOME @{term rbv7}, 0)]]]] *}
-print_theorems 
-
 setup {* snd o define_raw_perms ["rtrm7"] ["Terms.rtrm7"] *}
 print_theorems
 
+local_setup {* snd o define_fv_alpha "Terms.rtrm7" [
+  [[[]], [[(NONE, 0)], [(NONE, 0)]], [[(SOME @{term rbv7}, 0)], [(SOME @{term rbv7}, 0)]]]] *}
+notation
+  alpha_rtrm7 ("_ \<approx>7a _" [100, 100] 100)
+(* HERE THE RULES DIFFER *)
+thm alpha_rtrm7.intros
+
 inductive
   alpha7 :: "rtrm7 \<Rightarrow> rtrm7 \<Rightarrow> bool" ("_ \<approx>7 _" [100, 100] 100)
 where
@@ -889,11 +865,6 @@
 | a2: "(\<exists>pi. (({atom a}, t) \<approx>gen alpha7 fv_rtrm7 pi ({atom b}, s))) \<Longrightarrow> rLm7 a t \<approx>7 rLm7 b s"
 | a3: "(\<exists>pi. (((rbv7 t1), s1) \<approx>gen alpha7 fv_rtrm7 pi ((rbv7 t2), s2))) \<Longrightarrow> rLt7 t1 s1 \<approx>7 rLt7 t2 s2"
 
-lemma bvfv7: "rbv7 x = fv_rtrm7 x"
-  apply induct
-  apply simp_all
-done
-
 lemma "(x::name) \<noteq> y \<Longrightarrow> \<not> (alpha7 ===> op =) rbv7 rbv7"
   apply simp
   apply (rule_tac x="rLt7 (rVr7 x) (rVr7 x)" in exI)
@@ -923,13 +894,18 @@
   "rbv8 (Bar0 x) = {}"
 | "rbv8 (Bar1 v x b) = {atom v}"
 
-local_setup {* define_raw_fv "Terms.rfoo8" [
-  [[[]], [[], [(SOME @{term rbv8}, 0)]]], [[[]], [[], [(NONE, 1)], [(NONE, 1)]]]] *}
-print_theorems 
-
 setup {* snd o define_raw_perms ["rfoo8", "rbar8"] ["Terms.rfoo8", "Terms.rbar8"] *}
 print_theorems
 
+local_setup {* snd o define_fv_alpha "Terms.rfoo8" [
+  [[[]], [[(SOME @{term rbv8}, 0)], [(SOME @{term rbv8}, 0)]]], [[[]], [[], [(NONE, 1)], [(NONE, 1)]]]] *}
+notation
+  alpha_rfoo8 ("_ \<approx>f' _" [100, 100] 100) and
+  alpha_rbar8 ("_ \<approx>b' _" [100, 100] 100)
+(* HERE THE RULE DIFFERS *)
+thm alpha_rfoo8_alpha_rbar8.intros
+
+
 inductive
   alpha8f :: "rfoo8 \<Rightarrow> rfoo8 \<Rightarrow> bool" ("_ \<approx>f _" [100, 100] 100)
 and
@@ -958,6 +934,9 @@
   apply simp apply clarify
   apply (erule alpha8f_alpha8b.inducts(1))
   apply (simp_all add: alpha_gen fv_rbar8_rsp_hlp)
+  apply clarify
+  apply (erule alpha8f_alpha8b.inducts(2))
+  apply (simp_all)
 done
 
 
@@ -977,12 +956,17 @@
   "rbv9 (Var9 x) = {}"
 | "rbv9 (Lam9 x b) = {atom x}"
 
-local_setup {* define_raw_fv "Terms.rlam9" [
-  [[[]], [[(NONE, 0)], [(NONE, 0)]]], [[[], [(SOME @{term rbv9}, 0)]]]] *}
+setup {* snd o define_raw_perms ["rlam9", "rbla9"] ["Terms.rlam9", "Terms.rbla9"] *}
 print_theorems
 
-setup {* snd o define_raw_perms ["rlam9", "rbla9"] ["Terms.rlam9", "Terms.rbla9"] *}
-print_theorems
+local_setup {* snd o define_fv_alpha "Terms.rlam9" [
+  [[[]], [[(NONE, 0)], [(NONE, 0)]]], [[[(SOME @{term rbv9}, 0)], [(SOME @{term rbv9}, 0)]]]] *}
+notation
+  alpha_rlam9 ("_ \<approx>9l' _" [100, 100] 100) and
+  alpha_rbla9 ("_ \<approx>9b' _" [100, 100] 100)
+(* HERE THE RULES DIFFER *)
+thm alpha_rlam9_alpha_rbla9.intros
+
 
 inductive
   alpha9l :: "rlam9 \<Rightarrow> rlam9 \<Rightarrow> bool" ("_ \<approx>9l _" [100, 100] 100)
@@ -997,35 +981,16 @@
   lam9 = rlam9 / alpha9l and bla9 = rbla9 / alpha9b
 sorry
 
-quotient_definition
-  "qVar9 :: name \<Rightarrow> lam9"
-is
-  "Var9"
-
-quotient_definition
-  "qLam :: name \<Rightarrow> lam9 \<Rightarrow> lam9"
-is
-  "Lam9"
-
-quotient_definition
-  "qBla9 :: lam9 \<Rightarrow> lam9 \<Rightarrow> bla9"
-is
-  "Bla9"
-
-quotient_definition
-  "fv_lam9 :: lam9 \<Rightarrow> atom set"
-is
-  "fv_rlam9"
-
-quotient_definition
-  "fv_bla9 :: bla9 \<Rightarrow> atom set"
-is
-  "fv_rbla9"
-
-quotient_definition
-  "bv9 :: lam9 \<Rightarrow> atom set"
-is
-  "rbv9"
+local_setup {*
+(fn ctxt => ctxt
+ |> snd o (Quotient_Def.quotient_lift_const ("qVar9", @{term Var9}))
+ |> snd o (Quotient_Def.quotient_lift_const ("qLam9", @{term Lam9}))
+ |> snd o (Quotient_Def.quotient_lift_const ("qBla9", @{term Bla9}))
+ |> snd o (Quotient_Def.quotient_lift_const ("fv_lam9", @{term fv_rlam9}))
+ |> snd o (Quotient_Def.quotient_lift_const ("fv_bla9", @{term fv_rbla9}))
+ |> snd o (Quotient_Def.quotient_lift_const ("bv9", @{term rbv9})))
+*}
+print_theorems
 
 instantiation lam9 and bla9 :: pt
 begin
@@ -1072,14 +1037,11 @@
 setup {* snd o define_raw_perms ["tyS"] ["Terms.tyS"] *}
 print_theorems
 
-abbreviation
-  "atoms xs \<equiv> {atom x| x. x \<in> xs}"
-
 local_setup {* define_raw_fv "Terms.ty" [[[[]], [[], []]]] *}
 print_theorems 
 
 (*
-doesn't work yet
+Doesnot work yet since we do not refer to fv_ty
 local_setup {* define_raw_fv "Terms.tyS" [[[[], []]]] *}
 print_theorems
 *)
@@ -1087,12 +1049,12 @@
 primrec
   fv_tyS
 where 
-  "fv_tyS (All xs T) = (fv_ty T - atoms xs)"
+  "fv_tyS (All xs T) = (fv_ty T - atom ` xs)"
 
 inductive
   alpha_tyS :: "tyS \<Rightarrow> tyS \<Rightarrow> bool" ("_ \<approx>tyS _" [100, 100] 100)
 where
-  a1: "\<exists>pi. ((atoms xs1, T1) \<approx>gen (op =) fv_ty pi (atoms xs2, T2)) 
+  a1: "\<exists>pi. ((atom ` xs1, T1) \<approx>gen (op =) fv_ty pi (atom ` xs2, T2)) 
         \<Longrightarrow> All xs1 T1 \<approx>tyS All xs2 T2"
 
 lemma
--- a/Quot/Nominal/Terms2.thy	Thu Feb 18 23:07:28 2010 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1141 +0,0 @@
-theory Terms
-imports "Nominal2_Atoms" "Nominal2_Eqvt" "Nominal2_Supp" "Abs" "Perm" "Fv"
-begin
-
-atom_decl name
-
-text {* primrec seems to be genarally faster than fun *}
-
-section {*** lets with binding patterns ***}
-
-datatype rtrm1 =
-  rVr1 "name"
-| rAp1 "rtrm1" "rtrm1"
-| rLm1 "name" "rtrm1"        --"name is bound in trm1"
-| rLt1 "bp" "rtrm1" "rtrm1"   --"all variables in bp are bound in the 2nd trm1"
-and bp =
-  BUnit
-| BVr "name"
-| BPr "bp" "bp"
-
-(* to be given by the user *)
-
-primrec 
-  bv1
-where
-  "bv1 (BUnit) = {}"
-| "bv1 (BVr x) = {atom x}"
-| "bv1 (BPr bp1 bp2) = (bv1 bp1) \<union> (bv1 bp1)"
-
-local_setup {* define_raw_fv "Terms.rtrm1"
-  [[[[]], [[], []], [[(NONE, 0)], [(NONE, 0)]], [[(SOME @{term bv1}, 0)], [], [(SOME @{term bv1}, 0)]]],
-   [[], [[]], [[], []]]] *}
-print_theorems
-
-setup {* snd o define_raw_perms ["rtrm1", "bp"] ["Terms.rtrm1", "Terms.bp"] *}
-
-inductive
-  alpha1 :: "rtrm1 \<Rightarrow> rtrm1 \<Rightarrow> bool" ("_ \<approx>1 _" [100, 100] 100)
-where
-  a1: "a = b \<Longrightarrow> (rVr1 a) \<approx>1 (rVr1 b)"
-| a2: "\<lbrakk>t1 \<approx>1 t2; s1 \<approx>1 s2\<rbrakk> \<Longrightarrow> rAp1 t1 s1 \<approx>1 rAp1 t2 s2"
-| a3: "(\<exists>pi. (({atom aa}, t) \<approx>gen alpha1 fv_rtrm1 pi ({atom ab}, s))) \<Longrightarrow> rLm1 aa t \<approx>1 rLm1 ab s"
-| a4: "t1 \<approx>1 t2 \<Longrightarrow> (\<exists>pi. (((bv1 b1), s1) \<approx>gen alpha1 fv_rtrm1 pi ((bv1 b2), s2))) \<Longrightarrow> rLt1 b1 t1 s1 \<approx>1 rLt1 b2 t2 s2"
-
-lemma alpha1_inj:
-"(rVr1 a \<approx>1 rVr1 b) = (a = b)"
-"(rAp1 t1 s1 \<approx>1 rAp1 t2 s2) = (t1 \<approx>1 t2 \<and> s1 \<approx>1 s2)"
-"(rLm1 aa t \<approx>1 rLm1 ab s) = (\<exists>pi. (({atom aa}, t) \<approx>gen alpha1 fv_rtrm1 pi ({atom ab}, s)))"
-"(rLt1 b1 t1 s1 \<approx>1 rLt1 b2 t2 s2) = (t1 \<approx>1 t2 \<and> (\<exists>pi. (((bv1 b1), s1) \<approx>gen alpha1 fv_rtrm1 pi ((bv1 b2), s2))))"
-apply -
-apply rule apply (erule alpha1.cases) apply (simp_all add: alpha1.intros)
-apply rule apply (erule alpha1.cases) apply (simp_all add: alpha1.intros)
-apply rule apply (erule alpha1.cases) apply (simp_all add: alpha1.intros)
-apply rule apply (erule alpha1.cases) apply (simp_all add: alpha1.intros)
-done
-
-(* Shouyld we derive it? But bv is given by the user? *)
-lemma bv1_eqvt[eqvt]:
-  shows "(pi \<bullet> bv1 x) = bv1 (pi \<bullet> x)"
-  apply (induct x)
-apply (simp_all add: empty_eqvt insert_eqvt atom_eqvt)
-done
-
-lemma fv_rtrm1_eqvt[eqvt]:
-    "(pi\<bullet>fv_rtrm1 t) = fv_rtrm1 (pi\<bullet>t)"
-    "(pi\<bullet>fv_bp b) = fv_bp (pi\<bullet>b)"
-  apply (induct t and b)
-  apply (simp_all add: insert_eqvt atom_eqvt empty_eqvt union_eqvt Diff_eqvt bv1_eqvt)
-  done
-
-
-lemma alpha1_eqvt:
-  shows "t \<approx>1 s \<Longrightarrow> (pi \<bullet> t) \<approx>1 (pi \<bullet> s)"
-  apply (induct t s rule: alpha1.inducts)
-  apply (simp_all add:eqvts alpha1_inj)
-  apply (erule exE)
-  apply (rule_tac x="pi \<bullet> pia" in exI)
-  apply (simp add: alpha_gen)
-  apply(erule conjE)+
-  apply(rule conjI)
-  apply(rule_tac ?p1="- pi" in permute_eq_iff[THEN iffD1])
-  apply(simp add: atom_eqvt Diff_eqvt insert_eqvt empty_eqvt fv_rtrm1_eqvt)
-  apply(rule conjI)
-  apply(rule_tac ?p1="- pi" in fresh_star_permute_iff[THEN iffD1])
-  apply(simp add: atom_eqvt Diff_eqvt fv_rtrm1_eqvt insert_eqvt empty_eqvt)
-  apply(simp add: permute_eqvt[symmetric])
-  apply (erule exE)
-  apply (rule_tac x="pi \<bullet> pia" in exI)
-  apply (simp add: alpha_gen)
-  apply(erule conjE)+
-  apply(rule conjI)
-  apply(rule_tac ?p1="- pi" in permute_eq_iff[THEN iffD1])
-  apply(simp add: fv_rtrm1_eqvt Diff_eqvt bv1_eqvt)
-  apply(rule conjI)
-  apply(rule_tac ?p1="- pi" in fresh_star_permute_iff[THEN iffD1])
-  apply(simp add: atom_eqvt fv_rtrm1_eqvt Diff_eqvt bv1_eqvt)
-  apply(simp add: permute_eqvt[symmetric])
-  done
-
-lemma alpha1_equivp: "equivp alpha1" 
-  sorry
-
-quotient_type trm1 = rtrm1 / alpha1
-  by (rule alpha1_equivp)
-
-quotient_definition
-  "Vr1 :: name \<Rightarrow> trm1"
-is
-  "rVr1"
-
-quotient_definition
-  "Ap1 :: trm1 \<Rightarrow> trm1 \<Rightarrow> trm1"
-is
-  "rAp1"
-
-quotient_definition
-  "Lm1 :: name \<Rightarrow> trm1 \<Rightarrow> trm1"
-is
-  "rLm1"
-
-quotient_definition
-  "Lt1 :: bp \<Rightarrow> trm1 \<Rightarrow> trm1 \<Rightarrow> trm1"
-is
-  "rLt1"
-
-quotient_definition
-  "fv_trm1 :: trm1 \<Rightarrow> atom set"
-is
-  "fv_rtrm1"
-
-lemma alpha_rfv1:
-  shows "t \<approx>1 s \<Longrightarrow> fv_rtrm1 t = fv_rtrm1 s"
-  apply(induct rule: alpha1.induct)
-  apply(simp_all add: alpha_gen.simps)
-  sorry
-
-lemma [quot_respect]:
- "(op = ===> alpha1) rVr1 rVr1"
- "(alpha1 ===> alpha1 ===> alpha1) rAp1 rAp1"
- "(op = ===> alpha1 ===> alpha1) rLm1 rLm1"
- "(op = ===> alpha1 ===> alpha1 ===> alpha1) rLt1 rLt1"
-apply (auto simp add: alpha1_inj)
-apply (rule_tac x="0" in exI)
-apply (simp add: fresh_star_def fresh_zero_perm alpha_rfv1 alpha_gen)
-apply (rule_tac x="0" in exI)
-apply (simp add: alpha_gen fresh_star_def fresh_zero_perm alpha_rfv1)
-done
-
-lemma [quot_respect]:
-  "(op = ===> alpha1 ===> alpha1) permute permute"
-  by (simp add: alpha1_eqvt)
-
-lemma [quot_respect]:
-  "(alpha1 ===> op =) fv_rtrm1 fv_rtrm1"
-  by (simp add: alpha_rfv1)
-
-lemmas trm1_bp_induct = rtrm1_bp.induct[quot_lifted]
-lemmas trm1_bp_inducts = rtrm1_bp.inducts[quot_lifted]
-
-instantiation trm1 and bp :: pt
-begin
-
-quotient_definition
-  "permute_trm1 :: perm \<Rightarrow> trm1 \<Rightarrow> trm1"
-is
-  "permute :: perm \<Rightarrow> rtrm1 \<Rightarrow> rtrm1"
-
-lemmas permute_trm1[simp] = permute_rtrm1_permute_bp.simps[quot_lifted]
-
-instance
-apply default
-apply(induct_tac [!] x rule: trm1_bp_inducts(1))
-apply(simp_all)
-done
-
-end
-
-lemmas fv_trm1 = fv_rtrm1_fv_bp.simps[quot_lifted]
-
-lemmas fv_trm1_eqvt = fv_rtrm1_eqvt[quot_lifted]
-
-lemmas alpha1_INJ = alpha1_inj[unfolded alpha_gen, quot_lifted, folded alpha_gen]
-
-lemma lm1_supp_pre:
-  shows "(supp (atom x, t)) supports (Lm1 x t) "
-apply(simp add: supports_def)
-apply(fold fresh_def)
-apply(simp add: fresh_Pair swap_fresh_fresh)
-apply(clarify)
-apply(subst swap_at_base_simps(3))
-apply(simp_all add: fresh_atom)
-done
-
-lemma lt1_supp_pre:
-  shows "(supp (x, t, s)) supports (Lt1 t x s) "
-apply(simp add: supports_def)
-apply(fold fresh_def)
-apply(simp add: fresh_Pair swap_fresh_fresh)
-done
-
-lemma bp_supp: "finite (supp (bp :: bp))"
-  apply (induct bp)
-  apply(simp_all add: supp_def)
-  apply (fold supp_def)
-  apply (simp add: supp_at_base)
-  apply(simp add: Collect_imp_eq)
-  apply(simp add: Collect_neg_eq[symmetric])
-  apply (fold supp_def)
-  apply (simp)
-  done
-
-instance trm1 :: fs
-apply default
-apply(induct_tac x rule: trm1_bp_inducts(1))
-apply(simp_all)
-apply(simp add: supp_def alpha1_INJ eqvts)
-apply(simp add: supp_def[symmetric] supp_at_base)
-apply(simp only: supp_def alpha1_INJ eqvts permute_trm1)
-apply(simp add: Collect_imp_eq Collect_neg_eq)
-apply(rule supports_finite)
-apply(rule lm1_supp_pre)
-apply(simp add: supp_Pair supp_atom)
-apply(rule supports_finite)
-apply(rule lt1_supp_pre)
-apply(simp add: supp_Pair supp_atom bp_supp)
-done
-
-lemma supp_fv:
-  shows "supp t = fv_trm1 t"
-apply(induct t rule: trm1_bp_inducts(1))
-apply(simp_all)
-apply(simp add: supp_def permute_trm1 alpha1_INJ fv_trm1)
-apply(simp only: supp_at_base[simplified supp_def])
-apply(simp add: supp_def permute_trm1 alpha1_INJ fv_trm1)
-apply(simp add: Collect_imp_eq Collect_neg_eq)
-apply(subgoal_tac "supp (Lm1 name rtrm1) = supp (Abs {atom name} rtrm1)")
-apply(simp add: supp_Abs fv_trm1)
-apply(simp (no_asm) add: supp_def permute_set_eq atom_eqvt)
-apply(simp add: alpha1_INJ)
-apply(simp add: Abs_eq_iff)
-apply(simp add: alpha_gen.simps)
-apply(simp add: supp_eqvt[symmetric] fv_trm1_eqvt[symmetric])
-(*apply(subgoal_tac "supp (Lt1 bp rtrm11 rtrm12) = supp(rtrm11) \<union> supp (Abs (bv1 bp) rtrm12)")
-apply(simp add: supp_Abs fv_trm1)
-apply(simp (no_asm) add: supp_def)
-apply(simp add: alpha1_INJ)
-apply(simp add: Abs_eq_iff)
-apply(simp add: alpha_gen)
-apply(simp add: supp_eqvt[symmetric] fv_trm1_eqvt[symmetric] bv1_eqvt)
-apply(simp add: Collect_imp_eq Collect_neg_eq)
-done*)
-sorry
-
-lemma trm1_supp:
-  "supp (Vr1 x) = {atom x}"
-  "supp (Ap1 t1 t2) = supp t1 \<union> supp t2"
-  "supp (Lm1 x t) = (supp t) - {atom x}"
-  "supp (Lt1 b t s) = supp t \<union> (supp s - bv1 b)"
-sorry (*  by (simp_all only: supp_fv fv_trm1)
-
-lemma trm1_induct_strong:
-  assumes "\<And>name b. P b (Vr1 name)"
-  and     "\<And>rtrm11 rtrm12 b. \<lbrakk>\<And>c. P c rtrm11; \<And>c. P c rtrm12\<rbrakk> \<Longrightarrow> P b (Ap1 rtrm11 rtrm12)"
-  and     "\<And>name rtrm1 b. \<lbrakk>\<And>c. P c rtrm1; (atom name) \<sharp> b\<rbrakk> \<Longrightarrow> P b (Lm1 name rtrm1)"
-  and     "\<And>bp rtrm11 rtrm12 b. \<lbrakk>\<And>c. P c rtrm11; \<And>c. P c rtrm12; bv1 bp \<sharp>* b\<rbrakk> \<Longrightarrow> P b (Lt1 bp rtrm11 rtrm12)"
-  shows   "P a rtrma"
-sorry *)
-
-section {*** lets with single assignments ***}
-
-datatype rtrm2 =
-  rVr2 "name"
-| rAp2 "rtrm2" "rtrm2"
-| rLm2 "name" "rtrm2" --"bind (name) in (rtrm2)"
-| rLt2 "rassign" "rtrm2" --"bind (bv2 rassign) in (rtrm2)"
-and rassign =
-  rAs "name" "rtrm2"
-
-(* to be given by the user *)
-primrec 
-  rbv2
-where
-  "rbv2 (rAs x t) = {atom x}"
-
-local_setup {* define_raw_fv "Terms.rtrm2"
-  [[[[]], [[], []], [[(NONE, 0)], [(NONE, 0)]], [[(SOME @{term rbv2}, 0)], [(SOME @{term rbv2}, 0)]]],
-   [[[], []]]] *}
-print_theorems
-
-setup {* snd o define_raw_perms ["rtrm2", "rassign"] ["Terms.rtrm2", "Terms.rassign"] *}
-
-inductive
-  alpha2 :: "rtrm2 \<Rightarrow> rtrm2 \<Rightarrow> bool" ("_ \<approx>2 _" [100, 100] 100)
-and
-  alpha2a :: "rassign \<Rightarrow> rassign \<Rightarrow> bool" ("_ \<approx>2a _" [100, 100] 100)
-where
-  a1: "a = b \<Longrightarrow> (rVr2 a) \<approx>2 (rVr2 b)"
-| a2: "\<lbrakk>t1 \<approx>2 t2; s1 \<approx>2 s2\<rbrakk> \<Longrightarrow> rAp2 t1 s1 \<approx>2 rAp2 t2 s2"
-| a3: "(\<exists>pi. (({atom a}, t) \<approx>gen alpha2 fv_rtrm2 pi ({atom b}, s))) \<Longrightarrow> rLm2 a t \<approx>2 rLm2 b s"
-| a4: "\<lbrakk>\<exists>pi. ((rbv2 bt, t) \<approx>gen alpha2 fv_rtrm2 pi ((rbv2 bs), s));
-        \<exists>pi. ((rbv2 bt, bt) \<approx>gen alpha2a fv_rassign pi (rbv2 bs, bs))\<rbrakk>
-        \<Longrightarrow> rLt2 bt t \<approx>2 rLt2 bs s"
-| a5: "\<lbrakk>a = b; t \<approx>2 s\<rbrakk> \<Longrightarrow> rAs a t \<approx>2a rAs b s" (* This way rbv2 can be lifted *)
-
-lemma alpha2_equivp:
-  "equivp alpha2"
-  "equivp alpha2a"
-  sorry
-
-quotient_type
-  trm2 = rtrm2 / alpha2
-and
-  assign = rassign / alpha2a
-  by (auto intro: alpha2_equivp)
-
-
-
-section {*** lets with many assignments ***}
-
-datatype trm3 =
-  Vr3 "name"
-| Ap3 "trm3" "trm3"
-| Lm3 "name" "trm3" --"bind (name) in (trm3)"
-| Lt3 "assigns" "trm3" --"bind (bv3 assigns) in (trm3)"
-and assigns =
-  ANil
-| ACons "name" "trm3" "assigns"
-
-(* to be given by the user *)
-primrec 
-  bv3
-where
-  "bv3 ANil = {}"
-| "bv3 (ACons x t as) = {atom x} \<union> (bv3 as)"
-
-local_setup {* define_raw_fv "Terms.trm3"
-  [[[[]], [[], []], [[(NONE, 0)], [(NONE, 0)]], [[(SOME @{term bv3}, 0)], [(SOME @{term bv3}, 0)]]],
-   [[], [[], [], []]]] *}
-print_theorems
-
-setup {* snd o define_raw_perms ["rtrm3", "assigns"] ["Terms.trm3", "Terms.assigns"] *}
-
-inductive
-  alpha3 :: "trm3 \<Rightarrow> trm3 \<Rightarrow> bool" ("_ \<approx>3 _" [100, 100] 100)
-and
-  alpha3a :: "assigns \<Rightarrow> assigns \<Rightarrow> bool" ("_ \<approx>3a _" [100, 100] 100)
-where
-  a1: "a = b \<Longrightarrow> (Vr3 a) \<approx>3 (Vr3 b)"
-| a2: "\<lbrakk>t1 \<approx>3 t2; s1 \<approx>3 s2\<rbrakk> \<Longrightarrow> Ap3 t1 s1 \<approx>3 Ap3 t2 s2"
-| a3: "(\<exists>pi. (({atom a}, t) \<approx>gen alpha3 fv_rtrm3 pi ({atom b}, s))) \<Longrightarrow> Lm3 a t \<approx>3 Lm3 b s"
-| a4: "\<lbrakk>\<exists>pi. ((bv3 bt, t) \<approx>gen alpha3 fv_trm3 pi ((bv3 bs), s));
-        \<exists>pi. ((bv3 bt, bt) \<approx>gen alpha3a fv_assign pi (bv3 bs, bs))\<rbrakk>
-        \<Longrightarrow> Lt3 bt t \<approx>3 Lt3 bs s"
-| a5: "ANil \<approx>3a ANil"
-| a6: "\<lbrakk>a = b; t \<approx>3 s; tt \<approx>3a st\<rbrakk> \<Longrightarrow> ACons a t tt \<approx>3a ACons b s st"
-
-lemma alpha3_equivp:
-  "equivp alpha3"
-  "equivp alpha3a"
-  sorry
-
-quotient_type
-  qtrm3 = trm3 / alpha3
-and
-  qassigns = assigns / alpha3a
-  by (auto intro: alpha3_equivp)
-
-
-section {*** lam with indirect list recursion ***}
-
-datatype trm4 =
-  Vr4 "name"
-| Ap4 "trm4" "trm4 list"
-| Lm4 "name" "trm4"  --"bind (name) in (trm)"
-print_theorems
-
-thm trm4.recs
-
-local_setup {* define_raw_fv "Terms.trm4" [
-  [[[]], [[], []], [[(NONE, 0)], [(NONE, 0)]]], [[], [[], []]]  ] *}
-print_theorems
-
-(* there cannot be a clause for lists, as *)
-(* permutations are  already defined in Nominal (also functions, options, and so on) *)
-setup {* snd o define_raw_perms ["trm4"] ["Terms.trm4"] *}
-
-(* "repairing" of the permute function *)
-lemma repaired:
-  fixes ts::"trm4 list"
-  shows "permute_trm4_list p ts = p \<bullet> ts"
-  apply(induct ts)
-  apply(simp_all)
-  done
-
-thm permute_trm4_permute_trm4_list.simps
-thm permute_trm4_permute_trm4_list.simps[simplified repaired]
-
-inductive
-    alpha4 :: "trm4 \<Rightarrow> trm4 \<Rightarrow> bool" ("_ \<approx>4 _" [100, 100] 100)
-and alpha4list :: "trm4 list \<Rightarrow> trm4 list \<Rightarrow> bool" ("_ \<approx>4list _" [100, 100] 100) 
-where
-  a1: "a = b \<Longrightarrow> (Vr4 a) \<approx>4 (Vr4 b)"
-| a2: "\<lbrakk>t1 \<approx>4 t2; s1 \<approx>4list s2\<rbrakk> \<Longrightarrow> Ap4 t1 s1 \<approx>4 Ap4 t2 s2"
-| a3: "(\<exists>pi. (({atom a}, t) \<approx>gen alpha4 fv_rtrm4 pi ({atom b}, s))) \<Longrightarrow> Lm4 a t \<approx>4 Lm4 b s"
-| a5: "[] \<approx>4list []"
-| a6: "\<lbrakk>t \<approx>4 s; ts \<approx>4list ss\<rbrakk> \<Longrightarrow> (t#ts) \<approx>4list (s#ss)"
-
-lemma alpha4_equivp: "equivp alpha4" sorry
-lemma alpha4list_equivp: "equivp alpha4list" sorry
-
-quotient_type 
-  qtrm4 = trm4 / alpha4 and
-  qtrm4list = "trm4 list" / alpha4list
-  by (simp_all add: alpha4_equivp alpha4list_equivp)
-
-
-datatype rtrm5 =
-  rVr5 "name"
-| rAp5 "rtrm5" "rtrm5"
-| rLt5 "rlts" "rtrm5" --"bind (bv5 lts) in (rtrm5)"
-and rlts =
-  rLnil
-| rLcons "name" "rtrm5" "rlts"
-
-primrec
-  rbv5
-where
-  "rbv5 rLnil = {}"
-| "rbv5 (rLcons n t ltl) = {atom n} \<union> (rbv5 ltl)"
-
-local_setup {* define_raw_fv "Terms.rtrm5" [
-  [[[]], [[], []], [[(SOME @{term rbv5}, 0)], [(SOME @{term rbv5}, 0)]]], [[], [[], [], []]]  ] *}
-print_theorems
-
-setup {* snd o define_raw_perms ["rtrm5", "rlts"] ["Terms.rtrm5", "Terms.rlts"] *}
-print_theorems
-
-inductive
-  alpha5 :: "rtrm5 \<Rightarrow> rtrm5 \<Rightarrow> bool" ("_ \<approx>5 _" [100, 100] 100)
-and
-  alphalts :: "rlts \<Rightarrow> rlts \<Rightarrow> bool" ("_ \<approx>l _" [100, 100] 100)
-where
-  a1: "a = b \<Longrightarrow> (rVr5 a) \<approx>5 (rVr5 b)"
-| a2: "\<lbrakk>t1 \<approx>5 t2; s1 \<approx>5 s2\<rbrakk> \<Longrightarrow> rAp5 t1 s1 \<approx>5 rAp5 t2 s2"
-| a3: "\<lbrakk>\<exists>pi. ((rbv5 l1, t1) \<approx>gen alpha5 fv_rtrm5 pi (rbv5 l2, t2)); 
-        \<exists>pi. ((rbv5 l1, l1) \<approx>gen alphalts fv_rlts pi (rbv5 l2, l2))\<rbrakk>
-        \<Longrightarrow> rLt5 l1 t1 \<approx>5 rLt5 l2 t2"
-| a4: "rLnil \<approx>l rLnil"
-| a5: "ls1 \<approx>l ls2 \<Longrightarrow> t1 \<approx>5 t2 \<Longrightarrow> n1 = n2 \<Longrightarrow> rLcons n1 t1 ls1 \<approx>l rLcons n2 t2 ls2"
-
-print_theorems
-
-lemma alpha5_inj:
-  "((rVr5 a) \<approx>5 (rVr5 b)) = (a = b)"
-  "(rAp5 t1 s1 \<approx>5 rAp5 t2 s2) = (t1 \<approx>5 t2 \<and> s1 \<approx>5 s2)"
-  "(rLt5 l1 t1 \<approx>5 rLt5 l2 t2) = ((\<exists>pi. ((rbv5 l1, t1) \<approx>gen alpha5 fv_rtrm5 pi (rbv5 l2, t2))) \<and>
-         (\<exists>pi. ((rbv5 l1, l1) \<approx>gen alphalts fv_rlts pi (rbv5 l2, l2))))"
-  "rLnil \<approx>l rLnil"
-  "(rLcons n1 t1 ls1 \<approx>l rLcons n2 t2 ls2) = (n1 = n2 \<and> ls1 \<approx>l ls2 \<and> t1 \<approx>5 t2)"
-apply -
-apply (simp_all add: alpha5_alphalts.intros)
-apply rule
-apply (erule alpha5.cases)
-apply (simp_all add: alpha5_alphalts.intros)
-apply rule
-apply (erule alpha5.cases)
-apply (simp_all add: alpha5_alphalts.intros)
-apply rule
-apply (erule alpha5.cases)
-apply (simp_all add: alpha5_alphalts.intros)
-apply rule
-apply (erule alphalts.cases)
-apply (simp_all add: alpha5_alphalts.intros)
-done
-
-lemma alpha5_equivps:
-  shows "equivp alpha5"
-  and   "equivp alphalts"
-sorry
-
-quotient_type
-  trm5 = rtrm5 / alpha5
-and
-  lts = rlts / alphalts
-  by (auto intro: alpha5_equivps)
-
-quotient_definition
-  "Vr5 :: name \<Rightarrow> trm5"
-is
-  "rVr5"
-
-quotient_definition
-  "Ap5 :: trm5 \<Rightarrow> trm5 \<Rightarrow> trm5"
-is
-  "rAp5"
-
-quotient_definition
-  "Lt5 :: lts \<Rightarrow> trm5 \<Rightarrow> trm5"
-is
-  "rLt5"
-
-quotient_definition
-  "Lnil :: lts"
-is
-  "rLnil"
-
-quotient_definition
-  "Lcons :: name \<Rightarrow> trm5 \<Rightarrow> lts \<Rightarrow> lts"
-is
-  "rLcons"
-
-quotient_definition
-   "fv_trm5 :: trm5 \<Rightarrow> atom set"
-is
-  "fv_rtrm5"
-
-quotient_definition
-   "fv_lts :: lts \<Rightarrow> atom set"
-is
-  "fv_rlts"
-
-quotient_definition
-   "bv5 :: lts \<Rightarrow> atom set"
-is
-  "rbv5"
-
-lemma rbv5_eqvt:
-  "pi \<bullet> (rbv5 x) = rbv5 (pi \<bullet> x)"
-sorry
-
-lemma fv_rtrm5_eqvt:
-  "pi \<bullet> (fv_rtrm5 x) = fv_rtrm5 (pi \<bullet> x)"
-sorry
-
-lemma fv_rlts_eqvt:
-  "pi \<bullet> (fv_rlts x) = fv_rlts (pi \<bullet> x)"
-sorry
-
-lemma alpha5_eqvt:
-  "xa \<approx>5 y \<Longrightarrow> (x \<bullet> xa) \<approx>5 (x \<bullet> y)"
-  "xb \<approx>l ya \<Longrightarrow> (x \<bullet> xb) \<approx>l (x \<bullet> ya)"
-  apply(induct rule: alpha5_alphalts.inducts)
-  apply (simp_all add: alpha5_inj)
-  apply (erule exE)+
-  apply(unfold alpha_gen)
-  apply (erule conjE)+
-  apply (rule conjI)
-  apply (rule_tac x="x \<bullet> pi" in exI)
-  apply (rule conjI)
-  apply(rule_tac ?p1="- x" in permute_eq_iff[THEN iffD1])
-  apply(simp add: atom_eqvt Diff_eqvt insert_eqvt set_eqvt empty_eqvt rbv5_eqvt fv_rtrm5_eqvt)
-  apply(rule conjI)
-  apply(rule_tac ?p1="- x" in fresh_star_permute_iff[THEN iffD1])
-  apply(simp add: atom_eqvt Diff_eqvt insert_eqvt set_eqvt empty_eqvt rbv5_eqvt fv_rtrm5_eqvt)
-  apply (subst permute_eqvt[symmetric])
-  apply (simp)
-  apply (rule_tac x="x \<bullet> pia" in exI)
-  apply (rule conjI)
-  apply(rule_tac ?p1="- x" in permute_eq_iff[THEN iffD1])
-  apply(simp add: atom_eqvt Diff_eqvt insert_eqvt set_eqvt empty_eqvt rbv5_eqvt fv_rlts_eqvt)
-  apply(rule conjI)
-  apply(rule_tac ?p1="- x" in fresh_star_permute_iff[THEN iffD1])
-  apply(simp add: atom_eqvt Diff_eqvt insert_eqvt set_eqvt empty_eqvt rbv5_eqvt fv_rlts_eqvt)
-  apply (subst permute_eqvt[symmetric])
-  apply (simp)
-  done
-
-lemma alpha5_rfv:
-  "(t \<approx>5 s \<Longrightarrow> fv_rtrm5 t = fv_rtrm5 s)"
-  "(l \<approx>l m \<Longrightarrow> fv_rlts l = fv_rlts m)"
-  apply(induct rule: alpha5_alphalts.inducts)
-  apply(simp_all add: alpha_gen)
-  done
-
-lemma bv_list_rsp:
-  shows "x \<approx>l y \<Longrightarrow> rbv5 x = rbv5 y"
-  apply(induct rule: alpha5_alphalts.inducts(2))
-  apply(simp_all)
-  done
-
-lemma [quot_respect]:
-  "(alphalts ===> op =) fv_rlts fv_rlts"
-  "(alpha5 ===> op =) fv_rtrm5 fv_rtrm5"
-  "(alphalts ===> op =) rbv5 rbv5"
-  "(op = ===> alpha5) rVr5 rVr5"
-  "(alpha5 ===> alpha5 ===> alpha5) rAp5 rAp5"
-  "(alphalts ===> alpha5 ===> alpha5) rLt5 rLt5"
-  "(alphalts ===> alpha5 ===> alpha5) rLt5 rLt5"
-  "(op = ===> alpha5 ===> alphalts ===> alphalts) rLcons rLcons"
-  "(op = ===> alpha5 ===> alpha5) permute permute"
-  "(op = ===> alphalts ===> alphalts) permute permute"
-  apply (simp_all add: alpha5_inj alpha5_rfv alpha5_eqvt bv_list_rsp)
-  apply (clarify) apply (rule conjI)
-  apply (rule_tac x="0" in exI) apply (simp add: fresh_star_def fresh_zero_perm alpha_gen alpha5_rfv)
-  apply (rule_tac x="0" in exI) apply (simp add: fresh_star_def fresh_zero_perm alpha_gen alpha5_rfv)
-  apply (clarify) apply (rule conjI)
-  apply (rule_tac x="0" in exI) apply (simp add: fresh_star_def fresh_zero_perm alpha_gen alpha5_rfv)
-  apply (rule_tac x="0" in exI) apply (simp add: fresh_star_def fresh_zero_perm alpha_gen alpha5_rfv)
-  done
-
-lemma
-  shows "(alphalts ===> op =) rbv5 rbv5"
-  by (simp add: bv_list_rsp)
-
-lemmas trm5_lts_inducts = rtrm5_rlts.inducts[quot_lifted]
-
-instantiation trm5 and lts :: pt
-begin
-
-quotient_definition
-  "permute_trm5 :: perm \<Rightarrow> trm5 \<Rightarrow> trm5"
-is
-  "permute :: perm \<Rightarrow> rtrm5 \<Rightarrow> rtrm5"
-
-quotient_definition
-  "permute_lts :: perm \<Rightarrow> lts \<Rightarrow> lts"
-is
-  "permute :: perm \<Rightarrow> rlts \<Rightarrow> rlts"
-
-lemma trm5_lts_zero:
-  "0 \<bullet> (x\<Colon>trm5) = x"
-  "0 \<bullet> (y\<Colon>lts) = y"
-apply(induct x and y rule: trm5_lts_inducts)
-apply(simp_all add: permute_rtrm5_permute_rlts.simps[quot_lifted])
-done
-
-lemma trm5_lts_plus:
-  "(p + q) \<bullet> (x\<Colon>trm5) = p \<bullet> q \<bullet> x"
-  "(p + q) \<bullet> (y\<Colon>lts) = p \<bullet> q \<bullet> y"
-apply(induct x and y rule: trm5_lts_inducts)
-apply(simp_all add: permute_rtrm5_permute_rlts.simps[quot_lifted])
-done
-
-instance
-apply default
-apply (simp_all add: trm5_lts_zero trm5_lts_plus)
-done
-
-end
-
-lemmas permute_trm5_lts = permute_rtrm5_permute_rlts.simps[quot_lifted]
-
-lemmas alpha5_INJ = alpha5_inj[unfolded alpha_gen, quot_lifted, folded alpha_gen]
-
-lemmas bv5[simp] = rbv5.simps[quot_lifted]
-
-lemmas fv_trm5_lts[simp] = fv_rtrm5_fv_rlts.simps[quot_lifted]
-
-lemma lets_ok:
-  "(Lt5 (Lcons x (Vr5 x) Lnil) (Vr5 x)) = (Lt5 (Lcons y (Vr5 y) Lnil) (Vr5 y))"
-apply (subst alpha5_INJ)
-apply (rule conjI)
-apply (rule_tac x="(x \<leftrightarrow> y)" in exI)
-apply (simp only: alpha_gen)
-apply (simp add: permute_trm5_lts fresh_star_def)
-apply (rule_tac x="(x \<leftrightarrow> y)" in exI)
-apply (simp only: alpha_gen)
-apply (simp add: permute_trm5_lts fresh_star_def)
-done
-
-lemma lets_ok2:
-  "(Lt5 (Lcons x (Vr5 x) (Lcons y (Vr5 y) Lnil)) (Ap5 (Vr5 x) (Vr5 y))) =
-   (Lt5 (Lcons y (Vr5 y) (Lcons x (Vr5 x) Lnil)) (Ap5 (Vr5 x) (Vr5 y)))"
-apply (subst alpha5_INJ)
-apply (rule conjI)
-apply (rule_tac x="0 :: perm" in exI)
-apply (simp only: alpha_gen)
-apply (simp add: permute_trm5_lts fresh_star_def)
-apply (rule_tac x="(x \<leftrightarrow> y)" in exI)
-apply (simp only: alpha_gen)
-apply (simp add: permute_trm5_lts fresh_star_def)
-done
-
-
-lemma lets_not_ok1:
-  "x \<noteq> y \<Longrightarrow> (Lt5 (Lcons x (Vr5 x) (Lcons y (Vr5 y) Lnil)) (Ap5 (Vr5 x) (Vr5 y))) \<noteq>
-             (Lt5 (Lcons y (Vr5 x) (Lcons x (Vr5 y) Lnil)) (Ap5 (Vr5 x) (Vr5 y)))"
-apply (subst alpha5_INJ(3))
-apply(clarify)
-apply (simp add: alpha_gen)
-apply (simp add: permute_trm5_lts fresh_star_def)
-apply (simp add: alpha5_INJ(5))
-apply(clarify)
-apply (simp add: alpha5_INJ(2))
-apply (simp only: alpha5_INJ(1))
-done
-
-lemma distinct_helper:
-  shows "\<not>(rVr5 x \<approx>5 rAp5 y z)"
-  apply auto
-  apply (erule alpha5.cases)
-  apply (simp_all only: rtrm5.distinct)
-  done
-
-lemma distinct_helper2:
-  shows "(Vr5 x) \<noteq> (Ap5 y z)"
-  by (lifting distinct_helper)
-
-lemma lets_nok:
-  "x \<noteq> y \<Longrightarrow> x \<noteq> z \<Longrightarrow> z \<noteq> y \<Longrightarrow>
-   (Lt5 (Lcons x (Ap5 (Vr5 z) (Vr5 z)) (Lcons y (Vr5 z) Lnil)) (Ap5 (Vr5 x) (Vr5 y))) \<noteq>
-   (Lt5 (Lcons y (Vr5 z) (Lcons x (Ap5 (Vr5 z) (Vr5 z)) Lnil)) (Ap5 (Vr5 x) (Vr5 y)))"
-apply (subst alpha5_INJ)
-apply (simp only: alpha_gen permute_trm5_lts fresh_star_def)
-apply (subst alpha5_INJ(5))
-apply (subst alpha5_INJ(5))
-apply (simp add: distinct_helper2)
-done
-
-
-(* example with a bn function defined over the type itself *)
-datatype rtrm6 =
-  rVr6 "name"
-| rLm6 "name" "rtrm6"
-| rLt6 "rtrm6" "rtrm6" --"bind (bv6 left) in (right)"
-
-primrec
-  rbv6
-where
-  "rbv6 (rVr6 n) = {}"
-| "rbv6 (rLm6 n t) = {atom n} \<union> rbv6 t"
-| "rbv6 (rLt6 l r) = rbv6 l \<union> rbv6 r"
-
-local_setup {* define_raw_fv "Terms.rtrm6" [
-  [[[]], [[(NONE, 0)], [(NONE, 0)]], [[(SOME @{term rbv6}, 0)], [(SOME @{term rbv6}, 0)]]]] *}
-print_theorems 
-
-setup {* snd o define_raw_perms ["rtrm6"] ["Terms.rtrm6"] *}
-print_theorems
-
-inductive
-  alpha6 :: "rtrm6 \<Rightarrow> rtrm6 \<Rightarrow> bool" ("_ \<approx>6 _" [100, 100] 100)
-where
-  a1: "a = b \<Longrightarrow> (rVr6 a) \<approx>6 (rVr6 b)"
-| a2: "(\<exists>pi. (({atom a}, t) \<approx>gen alpha6 fv_rtrm6 pi ({atom b}, s))) \<Longrightarrow> rLm6 a t \<approx>6 rLm6 b s"
-| a3: "(\<exists>pi. (((rbv6 t1), s1) \<approx>gen alpha6 fv_rtrm6 pi ((rbv6 t2), s2))) \<Longrightarrow> rLt6 t1 s1 \<approx>6 rLt6 t2 s2"
-
-lemma alpha6_equivps:
-  shows "equivp alpha6"
-sorry
-
-quotient_type
-  trm6 = rtrm6 / alpha6
-  by (auto intro: alpha6_equivps)
-
-quotient_definition
-  "Vr6 :: name \<Rightarrow> trm6"
-is
-  "rVr6"
-
-quotient_definition
-  "Lm6 :: name \<Rightarrow> trm6 \<Rightarrow> trm6"
-is
-  "rLm6"
-
-quotient_definition
-  "Lt6 :: trm6 \<Rightarrow> trm6 \<Rightarrow> trm6"
-is
-  "rLt6"
-
-quotient_definition
-   "fv_trm6 :: trm6 \<Rightarrow> atom set"
-is
-  "fv_rtrm6"
-
-quotient_definition
-   "bv6 :: trm6 \<Rightarrow> atom set"
-is
-  "rbv6"
-
-lemma [quot_respect]:
-  "(op = ===> alpha6 ===> alpha6) permute permute"
-apply auto (* will work with eqvt *)
-sorry
-
-(* Definitely not true , see lemma below *)
-
-lemma [quot_respect]:"(alpha6 ===> op =) rbv6 rbv6"
-apply simp apply clarify
-apply (erule alpha6.induct)
-oops
-
-lemma "(a :: name) \<noteq> b \<Longrightarrow> \<not> (alpha6 ===> op =) rbv6 rbv6"
-apply simp
-apply (rule_tac x="rLm6 (a::name) (rVr6 (a :: name))" in  exI)
-apply (rule_tac x="rLm6 (b::name) (rVr6 (b :: name))" in  exI)
-apply simp
-apply (rule a2)
-apply (rule_tac x="(a \<leftrightarrow> b)" in  exI)
-apply (simp add: alpha_gen fresh_star_def)
-apply (rule a1)
-apply (rule refl)
-done
-
-lemma [quot_respect]:"(alpha6 ===> op =) fv_rtrm6 fv_rtrm6"
-apply simp apply clarify
-apply (induct_tac x y rule: alpha6.induct)
-apply simp_all
-apply (erule exE)
-apply (simp_all add: alpha_gen)
-apply (erule conjE)+
-apply (erule exE)
-apply (erule conjE)+
-apply (simp)
-oops
-
-
-lemma [quot_respect]: "(op = ===> alpha6) rVr6 rVr6"
-by (simp_all add: a1)
-
-lemma [quot_respect]:
- "(op = ===> alpha6 ===> alpha6) rLm6 rLm6"
- "(alpha6 ===> alpha6 ===> alpha6) rLt6 rLt6"
-apply simp_all apply (clarify)
-apply (rule a2)
-apply (rule_tac x="0::perm" in exI)
-apply (simp add: alpha_gen)
-(* needs rfv6_rsp *) defer
-apply clarify
-apply (rule a3)
-apply (rule_tac x="0::perm" in exI)
-apply (simp add: alpha_gen)
-(* needs rbv6_rsp *)
-oops
-
-instantiation trm6 :: pt begin
-
-quotient_definition
-  "permute_trm6 :: perm \<Rightarrow> trm6 \<Rightarrow> trm6"
-is
-  "permute :: perm \<Rightarrow> rtrm6 \<Rightarrow> rtrm6"
-
-instance
-apply default
-sorry
-end
-
-lemma lifted_induct:
-"\<lbrakk>x1 = x2; \<And>a b. a = b \<Longrightarrow> P (Vr6 a) (Vr6 b);
- \<And>a t b s.
-   \<exists>pi. fv_trm6 t - {atom a} = fv_trm6 s - {atom b} \<and>
-        (fv_trm6 t - {atom a}) \<sharp>* pi \<and> pi \<bullet> t = s \<and> P (pi \<bullet> t) s \<Longrightarrow>
-   P (Lm6 a t) (Lm6 b s);
- \<And>t1 s1 t2 s2.
-   \<exists>pi. fv_trm6 s1 - bv6 t1 = fv_trm6 s2 - bv6 t2 \<and>
-        (fv_trm6 s1 - bv6 t1) \<sharp>* pi \<and> pi \<bullet> s1 = s2 \<and> P (pi \<bullet> s1) s2 \<Longrightarrow>
-   P (Lt6 t1 s1) (Lt6 t2 s2)\<rbrakk>
- \<Longrightarrow> P x1 x2"
-unfolding alpha_gen
-apply (lifting alpha6.induct[unfolded alpha_gen])
-apply injection
-(* notice unsolvable goals: (alpha6 ===> op =) rbv6 rbv6 *)
-oops
-
-lemma lifted_inject_a3:
- "\<exists>pi. fv_trm6 s1 - bv6 t1 = fv_trm6 s2 - bv6 t2 \<and>
-    (fv_trm6 s1 - bv6 t1) \<sharp>* pi \<and> pi \<bullet> s1 = s2 \<Longrightarrow> Lt6 t1 s1 = Lt6 t2 s2"
-apply(lifting a3[unfolded alpha_gen])
-apply injection
-(* notice unsolvable goals: (alpha6 ===> op =) rbv6 rbv6 *)
-oops
-
-
-
-
-(* example with a respectful bn function defined over the type itself *)
-
-datatype rtrm7 =
-  rVr7 "name"
-| rLm7 "name" "rtrm7"
-| rLt7 "rtrm7" "rtrm7" --"bind (bv7 left) in (right)"
-
-primrec
-  rbv7
-where
-  "rbv7 (rVr7 n) = {atom n}"
-| "rbv7 (rLm7 n t) = rbv7 t - {atom n}"
-| "rbv7 (rLt7 l r) = rbv7 l \<union> rbv7 r"
-
-local_setup {* define_raw_fv "Terms.rtrm7" [
-  [[[]], [[(NONE, 0)], [(NONE, 0)]], [[(SOME @{term rbv7}, 0)], [(SOME @{term rbv7}, 0)]]]] *}
-print_theorems 
-
-setup {* snd o define_raw_perms ["rtrm7"] ["Terms.rtrm7"] *}
-print_theorems
-
-inductive
-  alpha7 :: "rtrm7 \<Rightarrow> rtrm7 \<Rightarrow> bool" ("_ \<approx>7 _" [100, 100] 100)
-where
-  a1: "a = b \<Longrightarrow> (rVr7 a) \<approx>7 (rVr7 b)"
-| a2: "(\<exists>pi. (({atom a}, t) \<approx>gen alpha7 fv_rtrm7 pi ({atom b}, s))) \<Longrightarrow> rLm7 a t \<approx>7 rLm7 b s"
-| a3: "(\<exists>pi. (((rbv7 t1), s1) \<approx>gen alpha7 fv_rtrm7 pi ((rbv7 t2), s2))) \<Longrightarrow> rLt7 t1 s1 \<approx>7 rLt7 t2 s2"
-
-lemma bvfv7: "rbv7 x = fv_rtrm7 x"
-  apply induct
-  apply simp_all
-sorry (*done*)
-
-lemma "(x::name) \<noteq> y \<Longrightarrow> \<not> (alpha7 ===> op =) rbv7 rbv7"
-  apply simp
-  apply (rule_tac x="rLt7 (rVr7 x) (rVr7 x)" in exI)
-  apply (rule_tac x="rLt7 (rVr7 y) (rVr7 y)" in exI)
-  apply simp
-  apply (rule a3)
-  apply (rule_tac x="(x \<leftrightarrow> y)" in exI)
-  apply (simp_all add: alpha_gen fresh_star_def)
-  apply (rule a1)
-  apply (rule refl)
-done
-
-
-
-
-
-datatype rfoo8 =
-  Foo0 "name"
-| Foo1 "rbar8" "rfoo8" --"bind bv(bar) in foo"
-and rbar8 =
-  Bar0 "name"
-| Bar1 "name" "name" "rbar8" --"bind second name in b"
-
-primrec
-  rbv8
-where
-  "rbv8 (Bar0 x) = {}"
-| "rbv8 (Bar1 v x b) = {atom v}"
-
-local_setup {* define_raw_fv "Terms.rfoo8" [
-  [[[]], [[(SOME @{term rbv8}, 0)], [(SOME @{term rbv8}, 0)]]], [[[]], [[], [(NONE, 1)], [(NONE, 1)]]]] *}
-print_theorems 
-
-setup {* snd o define_raw_perms ["rfoo8", "rbar8"] ["Terms.rfoo8", "Terms.rbar8"] *}
-print_theorems
-
-inductive
-  alpha8f :: "rfoo8 \<Rightarrow> rfoo8 \<Rightarrow> bool" ("_ \<approx>f _" [100, 100] 100)
-and
-  alpha8b :: "rbar8 \<Rightarrow> rbar8 \<Rightarrow> bool" ("_ \<approx>b _" [100, 100] 100)
-where
-  a1: "a = b \<Longrightarrow> (Foo0 a) \<approx>f (Foo0 b)"
-| a2: "a = b \<Longrightarrow> (Bar0 a) \<approx>b (Bar0 b)"
-| a3: "b1 \<approx>b b2 \<Longrightarrow> (\<exists>pi. (((rbv8 b1), t1) \<approx>gen alpha8f fv_rfoo8 pi ((rbv8 b2), t2))) \<Longrightarrow> Foo1 b1 t1 \<approx>f Foo1 b2 t2"
-| a4: "v1 = v2 \<Longrightarrow> (\<exists>pi. (({atom x1}, t1) \<approx>gen alpha8b fv_rbar8 pi ({atom x2}, t2))) \<Longrightarrow> Bar1 v1 x1 t1 \<approx>b Bar1 v2 x2 t2"
-
-lemma "(alpha8b ===> op =) rbv8 rbv8"
-  apply simp apply clarify
-  apply (erule alpha8f_alpha8b.inducts(2))
-  apply (simp_all)
-done
-
-lemma fv_rbar8_rsp_hlp: "x \<approx>b y \<Longrightarrow> fv_rbar8 x = fv_rbar8 y"
-  apply (erule alpha8f_alpha8b.inducts(2))
-  apply (simp_all add: alpha_gen)
-done
-lemma "(alpha8b ===> op =) fv_rbar8 fv_rbar8"
-  apply simp apply clarify apply (simp add: fv_rbar8_rsp_hlp)
-done
-
-lemma "(alpha8f ===> op =) fv_rfoo8 fv_rfoo8"
-  apply simp apply clarify
-  apply (erule alpha8f_alpha8b.inducts(1))
-  apply (simp_all add: alpha_gen fv_rbar8_rsp_hlp)
-sorry (*done*)
-
-
-
-
-
-
-datatype rlam9 =
-  Var9 "name"
-| Lam9 "name" "rlam9" --"bind name in rlam"
-and rbla9 =
-  Bla9 "rlam9" "rlam9" --"bind bv(first) in second"
-
-primrec
-  rbv9
-where
-  "rbv9 (Var9 x) = {}"
-| "rbv9 (Lam9 x b) = {atom x}"
-
-local_setup {* define_raw_fv "Terms.rlam9" [
-  [[[]], [[(NONE, 0)], [(NONE, 0)]]], [[[(SOME @{term rbv9}, 0)], [(SOME @{term rbv9}, 0)]]]] *}
-print_theorems
-
-setup {* snd o define_raw_perms ["rlam9", "rbla9"] ["Terms.rlam9", "Terms.rbla9"] *}
-print_theorems
-
-inductive
-  alpha9l :: "rlam9 \<Rightarrow> rlam9 \<Rightarrow> bool" ("_ \<approx>9l _" [100, 100] 100)
-and
-  alpha9b :: "rbla9 \<Rightarrow> rbla9 \<Rightarrow> bool" ("_ \<approx>9b _" [100, 100] 100)
-where
-  a1: "a = b \<Longrightarrow> (Var9 a) \<approx>9l (Var9 b)"
-| a4: "(\<exists>pi. (({atom x1}, t1) \<approx>gen alpha9l fv_rlam9 pi ({atom x2}, t2))) \<Longrightarrow> Lam9 x1 t1 \<approx>9l Lam9 x2 t2"
-| a3: "b1 \<approx>9l b2 \<Longrightarrow> (\<exists>pi. (((rbv9 b1), t1) \<approx>gen alpha9l fv_rlam9 pi ((rbv9 b2), t2))) \<Longrightarrow> Bla9 b1 t1 \<approx>9b Bla9 b2 t2"
-
-quotient_type
-  lam9 = rlam9 / alpha9l and bla9 = rbla9 / alpha9b
-sorry
-
-quotient_definition
-  "qVar9 :: name \<Rightarrow> lam9"
-is
-  "Var9"
-
-quotient_definition
-  "qLam :: name \<Rightarrow> lam9 \<Rightarrow> lam9"
-is
-  "Lam9"
-
-quotient_definition
-  "qBla9 :: lam9 \<Rightarrow> lam9 \<Rightarrow> bla9"
-is
-  "Bla9"
-
-quotient_definition
-  "fv_lam9 :: lam9 \<Rightarrow> atom set"
-is
-  "fv_rlam9"
-
-quotient_definition
-  "fv_bla9 :: bla9 \<Rightarrow> atom set"
-is
-  "fv_rbla9"
-
-quotient_definition
-  "bv9 :: lam9 \<Rightarrow> atom set"
-is
-  "rbv9"
-
-instantiation lam9 and bla9 :: pt
-begin
-
-quotient_definition
-  "permute_lam9 :: perm \<Rightarrow> lam9 \<Rightarrow> lam9"
-is
-  "permute :: perm \<Rightarrow> rlam9 \<Rightarrow> rlam9"
-
-quotient_definition
-  "permute_bla9 :: perm \<Rightarrow> bla9 \<Rightarrow> bla9"
-is
-  "permute :: perm \<Rightarrow> rbla9 \<Rightarrow> rbla9"
-
-instance
-sorry
-
-end
-
-lemma "\<lbrakk>b1 = b2; \<exists>pi. fv_lam9 t1 - bv9 b1 = fv_lam9 t2 - bv9 b2 \<and> (fv_lam9 t1 - bv9 b1) \<sharp>* pi \<and> pi \<bullet> t1 = t2\<rbrakk>
- \<Longrightarrow> qBla9 b1 t1 = qBla9 b2 t2"
-apply (lifting a3[unfolded alpha_gen])
-apply injection
-sorry
-
-
-
-
-
-
-
-
-text {* type schemes *} 
-datatype ty = 
-  Var "name" 
-| Fun "ty" "ty"
-
-setup {* snd o define_raw_perms ["ty"] ["Terms.ty"] *}
-print_theorems
-
-datatype tyS = 
-  All "name set" "ty" 
-
-setup {* snd o define_raw_perms ["tyS"] ["Terms.tyS"] *}
-print_theorems
-
-abbreviation
-  "atoms xs \<equiv> {atom x| x. x \<in> xs}"
-
-local_setup {* define_raw_fv "Terms.ty" [[[[]], [[], []]]] *}
-print_theorems 
-
-(*
-doesn't work yet
-local_setup {* define_raw_fv "Terms.tyS" [[[[], []]]] *}
-print_theorems
-*)
-
-primrec
-  fv_tyS
-where 
-  "fv_tyS (All xs T) = (fv_ty T - atoms xs)"
-
-inductive
-  alpha_tyS :: "tyS \<Rightarrow> tyS \<Rightarrow> bool" ("_ \<approx>tyS _" [100, 100] 100)
-where
-  a1: "\<exists>pi. ((atoms xs1, T1) \<approx>gen (op =) fv_ty pi (atoms xs2, T2)) 
-        \<Longrightarrow> All xs1 T1 \<approx>tyS All xs2 T2"
-
-lemma
-  shows "All {a, b} (Fun (Var a) (Var b)) \<approx>tyS All {b, a} (Fun (Var a) (Var b))"
-  apply(rule a1)
-  apply(simp add: alpha_gen)
-  apply(rule_tac x="0::perm" in exI)
-  apply(simp add: fresh_star_def)
-  done
-
-lemma
-  shows "All {a, b} (Fun (Var a) (Var b)) \<approx>tyS All {a, b} (Fun (Var b) (Var a))"
-  apply(rule a1)
-  apply(simp add: alpha_gen)
-  apply(rule_tac x="(atom a \<rightleftharpoons> atom b)" in exI)
-  apply(simp add: fresh_star_def)
-  done
-
-lemma
-  shows "All {a, b, c} (Fun (Var a) (Var b)) \<approx>tyS All {a, b} (Fun (Var a) (Var b))"
-  apply(rule a1)
-  apply(simp add: alpha_gen)
-  apply(rule_tac x="0::perm" in exI)
-  apply(simp add: fresh_star_def)
-  done
-
-lemma
-  assumes a: "a \<noteq> b"
-  shows "\<not>(All {a, b} (Fun (Var a) (Var b)) \<approx>tyS All {c} (Fun (Var c) (Var c)))"
-  using a
-  apply(clarify)
-  apply(erule alpha_tyS.cases)
-  apply(simp add: alpha_gen)
-  apply(erule conjE)+
-  apply(erule exE)
-  apply(erule conjE)+
-  apply(clarify)
-  apply(simp)
-  apply(simp add: fresh_star_def)
-  apply(auto)
-  done
-
-
-end
--- a/Quot/quotient_def.ML	Thu Feb 18 23:07:28 2010 +0100
+++ b/Quot/quotient_def.ML	Thu Feb 18 23:07:52 2010 +0100
@@ -12,6 +12,8 @@
 
   val quotdef_cmd: (binding option * mixfix) * (Attrib.binding * (string * string)) ->
     local_theory -> (term * thm) * local_theory
+
+  val quotient_lift_const: string * term -> local_theory -> (term * thm) * local_theory
 end;
 
 structure Quotient_Def: QUOTIENT_DEF =
@@ -85,6 +87,10 @@
   quotient_def (decl, (attr, (lhs, rhs))) lthy''
 end
 
+fun quotient_lift_const (b, t) ctxt =
+  quotient_def ((NONE, NoSyn), (Attrib.empty_binding,
+    (Quotient_Term.quotient_lift_const (b, t) ctxt, t))) ctxt
+
 local
   structure P = OuterParse;
 in
--- a/Quot/quotient_term.ML	Thu Feb 18 23:07:28 2010 +0100
+++ b/Quot/quotient_term.ML	Thu Feb 18 23:07:52 2010 +0100
@@ -26,6 +26,7 @@
   val inj_repabs_trm: Proof.context -> term * term -> term
   val inj_repabs_trm_chk: Proof.context -> term * term -> term
 
+  val quotient_lift_const: string * term -> local_theory -> term
   val quotient_lift_all: Proof.context -> term -> term
 end;
 
@@ -732,6 +733,15 @@
   (ty_substs, const_substs @ rel_substs)
 end
 
+fun quotient_lift_const (b, t) ctxt =
+let
+  val thy = ProofContext.theory_of ctxt
+  val (ty_substs, _) = get_ty_trm_substs ctxt;
+  val (_, ty) = dest_Const t;
+  val nty = subst_tys thy ty_substs ty;
+in
+  Free(b, nty)
+end
 
 (*
 Takes a term and