rearranged directories and updated to new Isabelle
authorChristian Urban <urbanc@in.tum.de>
Tue, 29 Mar 2011 23:52:14 +0200
changeset 2748 6f38e357b337
parent 2747 a5da7b6aff8f
child 2749 7cf2d79d8d5e
rearranged directories and updated to new Isabelle
ESOP-Paper/Appendix.thy
ESOP-Paper/Paper.thy
ESOP-Paper/ROOT.ML
ESOP-Paper/ROOTa.ML
ESOP-Paper/document/llncs.cls
ESOP-Paper/document/proof.sty
ESOP-Paper/document/root.bib
ESOP-Paper/document/root.tex
IsaMakefile
Paper/Paper.thy
Paper/ROOT.ML
Paper/document/llncs.cls
Paper/document/proof.sty
Paper/document/root.bib
Paper/document/root.tex
Slides/ROOT1.ML
Slides/ROOT2.ML
Slides/ROOT3.ML
Slides/ROOT4.ML
Slides/ROOT5.ML
Slides/Slides1.thy
Slides/Slides2.thy
Slides/Slides3.thy
Slides/Slides4.thy
Slides/Slides5.thy
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/ESOP-Paper/Appendix.thy	Tue Mar 29 23:52:14 2011 +0200
@@ -0,0 +1,135 @@
+(*<*)
+theory Appendix
+imports "../Nominal/Nominal2" "~~/src/HOL/Library/LaTeXsugar"
+begin
+
+consts
+  fv :: "'a \<Rightarrow> 'b"
+  abs_set :: "'a \<Rightarrow> 'b \<Rightarrow> 'c"
+  alpha_bn :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
+  abs_set2 :: "'a \<Rightarrow> perm \<Rightarrow> 'b \<Rightarrow> 'c"
+  Abs_dist :: "'a \<Rightarrow> 'b \<Rightarrow> 'c" 
+  Abs_print :: "'a \<Rightarrow> 'b \<Rightarrow> 'c" 
+
+definition
+ "equal \<equiv> (op =)" 
+
+notation (latex output)
+  swap ("'(_ _')" [1000, 1000] 1000) and
+  fresh ("_ # _" [51, 51] 50) and
+  fresh_star ("_ #\<^sup>* _" [51, 51] 50) and
+  supp ("supp _" [78] 73) and
+  uminus ("-_" [78] 73) and
+  If  ("if _ then _ else _" 10) and
+  alpha_set ("_ \<approx>\<^raw:\,\raisebox{-1pt}{\makebox[0mm][l]{$_{\textit{set}}$}}>\<^bsup>_, _, _\<^esup> _") and
+  alpha_lst ("_ \<approx>\<^raw:\,\raisebox{-1pt}{\makebox[0mm][l]{$_{\textit{list}}$}}>\<^bsup>_, _, _\<^esup> _") and
+  alpha_res ("_ \<approx>\<^raw:\,\raisebox{-1pt}{\makebox[0mm][l]{$_{\textit{res}}$}}>\<^bsup>_, _, _\<^esup> _") and
+  abs_set ("_ \<approx>\<^raw:{$\,_{\textit{abs\_set}}$}> _") and
+  abs_set2 ("_ \<approx>\<^raw:\raisebox{-1pt}{\makebox[0mm][l]{$\,_{\textit{list}}$}}>\<^bsup>_\<^esup>  _") and
+  fv ("fa'(_')" [100] 100) and
+  equal ("=") and
+  alpha_abs_set ("_ \<approx>\<^raw:{$\,_{\textit{abs\_set}}$}> _") and 
+  Abs_set ("[_]\<^bsub>set\<^esub>._" [20, 101] 999) and
+  Abs_lst ("[_]\<^bsub>list\<^esub>._") and
+  Abs_dist ("[_]\<^bsub>#list\<^esub>._") and
+  Abs_res ("[_]\<^bsub>res\<^esub>._") and
+  Abs_print ("_\<^bsub>set\<^esub>._") and
+  Cons ("_::_" [78,77] 73) and
+  supp_set ("aux _" [1000] 10) and
+  alpha_bn ("_ \<approx>bn _")
+
+consts alpha_trm ::'a
+consts fa_trm :: 'a
+consts alpha_trm2 ::'a
+consts fa_trm2 :: 'a
+consts ast :: 'a
+consts ast' :: 'a
+notation (latex output) 
+  alpha_trm ("\<approx>\<^bsub>trm\<^esub>") and
+  fa_trm ("fa\<^bsub>trm\<^esub>") and
+  alpha_trm2 ("'(\<approx>\<^bsub>assn\<^esub>, \<approx>\<^bsub>trm\<^esub>')") and
+  fa_trm2 ("'(fa\<^bsub>assn\<^esub>, fa\<^bsub>trm\<^esub>')") and
+  ast ("'(as, t')") and
+  ast' ("'(as', t\<PRIME> ')")
+
+(*>*)
+
+text {*
+\appendix
+\section*{Appendix}
+
+  Details for one case in Theorem \ref{suppabs}, which the reader might like to ignore. 
+  By definition of the abstraction type @{text "abs_set"} 
+  we have 
+  %
+  \begin{equation}\label{abseqiff}
+  @{thm (lhs) Abs_eq_iff(1)[where bs="as" and cs="bs", no_vars]} \;\;\text{if and only if}\;\; 
+  @{thm (rhs) Abs_eq_iff(1)[where bs="as" and cs="bs", no_vars]}
+  \end{equation}
+  
+  \noindent
+  and also
+  
+  \begin{equation}\label{absperm}
+  @{thm permute_Abs(1)[no_vars]}%
+  \end{equation}
+
+  \noindent
+  The second fact derives from the definition of permutations acting on pairs 
+  and $\alpha$-equivalence being equivariant. With these two facts at our disposal, we can show 
+  the following lemma about swapping two atoms in an abstraction.
+  
+  \begin{lemma}
+  @{thm[mode=IfThen] Abs_swap1(1)[where bs="as", no_vars]}
+  \end{lemma}
+  
+  \begin{proof}
+  This lemma is straightforward using \eqref{abseqiff} and observing that
+  the assumptions give us @{term "(a \<rightleftharpoons> b) \<bullet> (supp x - as) = (supp x - as)"}.
+  Moreover @{text supp} and set difference are equivariant (see \cite{HuffmanUrban10}).
+  \end{proof}
+  
+  \noindent
+  Assuming that @{text "x"} has finite support, this lemma together 
+  with \eqref{absperm} allows us to show
+  
+  \begin{equation}\label{halfone}
+  @{thm Abs_supports(1)[no_vars]}
+  \end{equation}
+  
+  \noindent
+  which gives us ``one half'' of
+  Theorem~\ref{suppabs} (the notion of supports is defined in \cite{HuffmanUrban10}). 
+  The ``other half'' is a bit more involved. To establish 
+  it, we use a trick from \cite{Pitts04} and first define an auxiliary 
+  function @{text aux}, taking an abstraction as argument:
+  @{thm supp_set.simps[THEN eq_reflection, no_vars]}.
+  
+  We can show that 
+  @{text "aux"} is equivariant (since @{term "p \<bullet> (supp x - as) = (supp (p \<bullet> x)) - (p \<bullet> as)"}) 
+  and therefore has empty support. 
+  This in turn means
+  
+  \begin{center}
+  @{text "supp (aux ([as]\<^bsub>set\<^esub>. x)) \<subseteq> supp ([as]\<^bsub>set\<^esub> x)"}
+  \end{center}
+  
+  \noindent
+  Assuming @{term "supp x - as"} is a finite set,
+  we further obtain
+  
+  \begin{equation}\label{halftwo}
+  @{thm (concl) Abs_supp_subset1(1)[no_vars]}
+  \end{equation}
+  
+  \noindent
+  since for finite sets of atoms, @{text "bs"}, we have 
+  @{thm (concl) supp_finite_atom_set[where S="bs", no_vars]}.
+  Finally, taking \eqref{halfone} and \eqref{halftwo} together establishes 
+  Theorem~\ref{suppabs}. 
+
+*}
+
+(*<*)
+end
+(*>*)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/ESOP-Paper/Paper.thy	Tue Mar 29 23:52:14 2011 +0200
@@ -0,0 +1,2393 @@
+(*<*)
+theory Paper
+imports "../Nominal/Nominal2" 
+        "~~/src/HOL/Library/LaTeXsugar"
+begin
+
+consts
+  fv :: "'a \<Rightarrow> 'b"
+  abs_set :: "'a \<Rightarrow> 'b \<Rightarrow> 'c"
+  alpha_bn :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
+  abs_set2 :: "'a \<Rightarrow> perm \<Rightarrow> 'b \<Rightarrow> 'c"
+  Abs_dist :: "'a \<Rightarrow> 'b \<Rightarrow> 'c" 
+  Abs_print :: "'a \<Rightarrow> 'b \<Rightarrow> 'c" 
+
+definition
+ "equal \<equiv> (op =)" 
+
+notation (latex output)
+  swap ("'(_ _')" [1000, 1000] 1000) and
+  fresh ("_ # _" [51, 51] 50) and
+  fresh_star ("_ #\<^sup>* _" [51, 51] 50) and
+  supp ("supp _" [78] 73) and
+  uminus ("-_" [78] 73) and
+  If  ("if _ then _ else _" 10) and
+  alpha_set ("_ \<approx>\<^raw:\,\raisebox{-1pt}{\makebox[0mm][l]{$_{\textit{set}}$}}>\<^bsup>_, _, _\<^esup> _") and
+  alpha_lst ("_ \<approx>\<^raw:\,\raisebox{-1pt}{\makebox[0mm][l]{$_{\textit{list}}$}}>\<^bsup>_, _, _\<^esup> _") and
+  alpha_res ("_ \<approx>\<^raw:\,\raisebox{-1pt}{\makebox[0mm][l]{$_{\textit{set+}}$}}>\<^bsup>_, _, _\<^esup> _") and
+  abs_set ("_ \<approx>\<^raw:{$\,_{\textit{abs\_set}}$}> _") and
+  abs_set2 ("_ \<approx>\<^raw:\raisebox{-1pt}{\makebox[0mm][l]{$\,_{\textit{list}}$}}>\<^bsup>_\<^esup>  _") and
+  fv ("fa'(_')" [100] 100) and
+  equal ("=") and
+  alpha_abs_set ("_ \<approx>\<^raw:{$\,_{\textit{abs\_set}}$}> _") and 
+  Abs_set ("[_]\<^bsub>set\<^esub>._" [20, 101] 999) and
+  Abs_lst ("[_]\<^bsub>list\<^esub>._") and
+  Abs_dist ("[_]\<^bsub>#list\<^esub>._") and
+  Abs_res ("[_]\<^bsub>set+\<^esub>._") and
+  Abs_print ("_\<^bsub>set\<^esub>._") and
+  Cons ("_::_" [78,77] 73) and
+  supp_set ("aux _" [1000] 10) and
+  alpha_bn ("_ \<approx>bn _")
+
+consts alpha_trm ::'a
+consts fa_trm :: 'a
+consts alpha_trm2 ::'a
+consts fa_trm2 :: 'a
+consts ast :: 'a
+consts ast' :: 'a
+notation (latex output) 
+  alpha_trm ("\<approx>\<^bsub>trm\<^esub>") and
+  fa_trm ("fa\<^bsub>trm\<^esub>") and
+  alpha_trm2 ("'(\<approx>\<^bsub>assn\<^esub>, \<approx>\<^bsub>trm\<^esub>')") and
+  fa_trm2 ("'(fa\<^bsub>assn\<^esub>, fa\<^bsub>trm\<^esub>')") and
+  ast ("'(as, t')") and
+  ast' ("'(as', t\<PRIME> ')")
+
+(*>*)
+
+
+section {* Introduction *}
+
+text {*
+
+  So far, Nominal Isabelle provided a mechanism for constructing
+  $\alpha$-equated terms, for example lambda-terms,
+  @{text "t ::= x | t t | \<lambda>x. t"},
+  where free and bound variables have names.  For such $\alpha$-equated terms,
+  Nominal Isabelle derives automatically a reasoning infrastructure that has
+  been used successfully in formalisations of an equivalence checking
+  algorithm for LF \cite{UrbanCheneyBerghofer08}, Typed
+  Scheme~\cite{TobinHochstadtFelleisen08}, several calculi for concurrency
+  \cite{BengtsonParow09} and a strong normalisation result for cut-elimination
+  in classical logic \cite{UrbanZhu08}. It has also been used by Pollack for
+  formalisations in the locally-nameless approach to binding
+  \cite{SatoPollack10}.
+
+  However, Nominal Isabelle has fared less well in a formalisation of
+  the algorithm W \cite{UrbanNipkow09}, where types and type-schemes are,
+  respectively, of the form
+  %
+  \begin{equation}\label{tysch}
+  \begin{array}{l}
+  @{text "T ::= x | T \<rightarrow> T"}\hspace{9mm}
+  @{text "S ::= \<forall>{x\<^isub>1,\<dots>, x\<^isub>n}. T"}
+  \end{array}
+  \end{equation}
+  %
+  \noindent
+  and the @{text "\<forall>"}-quantification binds a finite (possibly empty) set of
+  type-variables.  While it is possible to implement this kind of more general
+  binders by iterating single binders, this leads to a rather clumsy
+  formalisation of W. 
+  %The need of iterating single binders is also one reason
+  %why Nominal Isabelle 
+  % and similar theorem provers that only provide
+  %mechanisms for binding single variables 
+  %has not fared extremely well with the
+  %more advanced tasks in the POPLmark challenge \cite{challenge05}, because
+  %also there one would like to bind multiple variables at once. 
+
+  Binding multiple variables has interesting properties that cannot be captured
+  easily by iterating single binders. For example in the case of type-schemes we do not
+  want to make a distinction about the order of the bound variables. Therefore
+  we would like to regard the first pair of type-schemes as $\alpha$-equivalent,
+  but assuming that @{text x}, @{text y} and @{text z} are distinct variables,
+  the second pair should \emph{not} be $\alpha$-equivalent:
+  %
+  \begin{equation}\label{ex1}
+  @{text "\<forall>{x, y}. x \<rightarrow> y  \<approx>\<^isub>\<alpha>  \<forall>{y, x}. y \<rightarrow> x"}\hspace{10mm}
+  @{text "\<forall>{x, y}. x \<rightarrow> y  \<notapprox>\<^isub>\<alpha>  \<forall>{z}. z \<rightarrow> z"}
+  \end{equation}
+  %
+  \noindent
+  Moreover, we like to regard type-schemes as $\alpha$-equivalent, if they differ
+  only on \emph{vacuous} binders, such as
+  %
+  \begin{equation}\label{ex3}
+  @{text "\<forall>{x}. x \<rightarrow> y  \<approx>\<^isub>\<alpha>  \<forall>{x, z}. x \<rightarrow> y"}
+  \end{equation}
+  %
+  \noindent
+  where @{text z} does not occur freely in the type.  In this paper we will
+  give a general binding mechanism and associated notion of $\alpha$-equivalence
+  that can be used to faithfully represent this kind of binding in Nominal
+  Isabelle.  
+  %The difficulty of finding the right notion for $\alpha$-equivalence
+  %can be appreciated in this case by considering that the definition given by
+  %Leroy in \cite{Leroy92} is incorrect (it omits a side-condition). 
+
+  However, the notion of $\alpha$-equivalence that is preserved by vacuous
+  binders is not always wanted. For example in terms like
+  %
+  \begin{equation}\label{one}
+  @{text "\<LET> x = 3 \<AND> y = 2 \<IN> x - y \<END>"}
+  \end{equation}
+
+  \noindent
+  we might not care in which order the assignments @{text "x = 3"} and
+  \mbox{@{text "y = 2"}} are given, but it would be often unusual to regard
+  \eqref{one} as $\alpha$-equivalent with
+  %
+  \begin{center}
+  @{text "\<LET> x = 3 \<AND> y = 2 \<AND> z = foo \<IN> x - y \<END>"}
+  \end{center}
+  %
+  \noindent
+  Therefore we will also provide a separate binding mechanism for cases in
+  which the order of binders does not matter, but the ``cardinality'' of the
+  binders has to agree.
+
+  However, we found that this is still not sufficient for dealing with
+  language constructs frequently occurring in programming language
+  research. For example in @{text "\<LET>"}s containing patterns like
+  %
+  \begin{equation}\label{two}
+  @{text "\<LET> (x, y) = (3, 2) \<IN> x - y \<END>"}
+  \end{equation}
+  %
+  \noindent
+  we want to bind all variables from the pattern inside the body of the
+  $\mathtt{let}$, but we also care about the order of these variables, since
+  we do not want to regard \eqref{two} as $\alpha$-equivalent with
+  %
+  \begin{center}
+  @{text "\<LET> (y, x) = (3, 2) \<IN> x - y \<END>"}
+  \end{center}
+  %
+  \noindent
+  As a result, we provide three general binding mechanisms each of which binds
+  multiple variables at once, and let the user chose which one is intended
+  in a formalisation.
+  %%when formalising a term-calculus.
+
+  By providing these general binding mechanisms, however, we have to work
+  around a problem that has been pointed out by Pottier \cite{Pottier06} and
+  Cheney \cite{Cheney05}: in @{text "\<LET>"}-constructs of the form
+  %
+  \begin{center}
+  @{text "\<LET> x\<^isub>1 = t\<^isub>1 \<AND> \<dots> \<AND> x\<^isub>n = t\<^isub>n \<IN> s \<END>"}
+  \end{center}
+  %
+  \noindent
+  we care about the 
+  information that there are as many bound variables @{text
+  "x\<^isub>i"} as there are @{text "t\<^isub>i"}. We lose this information if
+  we represent the @{text "\<LET>"}-constructor by something like
+  %
+  \begin{center}
+  @{text "\<LET> (\<lambda>x\<^isub>1\<dots>x\<^isub>n . s)  [t\<^isub>1,\<dots>,t\<^isub>n]"}
+  \end{center}
+  %
+  \noindent
+  where the notation @{text "\<lambda>_ . _"} indicates that the list of @{text
+  "x\<^isub>i"} becomes bound in @{text s}. In this representation the term
+  \mbox{@{text "\<LET> (\<lambda>x . s)  [t\<^isub>1, t\<^isub>2]"}} is a perfectly legal
+  instance, but the lengths of the two lists do not agree. To exclude such
+  terms, additional predicates about well-formed terms are needed in order to
+  ensure that the two lists are of equal length. This can result in very messy
+  reasoning (see for example~\cite{BengtsonParow09}). To avoid this, we will
+  allow type specifications for @{text "\<LET>"}s as follows
+  %
+  \begin{center}
+  \begin{tabular}{r@ {\hspace{2mm}}r@ {\hspace{2mm}}cl}
+  @{text trm} & @{text "::="}  & @{text "\<dots>"} 
+              & @{text "|"}  @{text "\<LET>  as::assn  s::trm"}\hspace{2mm} 
+                                 \isacommand{bind} @{text "bn(as)"} \isacommand{in} @{text "s"}\\%%%[1mm]
+  @{text assn} & @{text "::="} & @{text "\<ANIL>"}
+               &  @{text "|"}  @{text "\<ACONS>  name  trm  assn"}
+  \end{tabular}
+  \end{center}
+  %
+  \noindent
+  where @{text assn} is an auxiliary type representing a list of assignments
+  and @{text bn} an auxiliary function identifying the variables to be bound
+  by the @{text "\<LET>"}. This function can be defined by recursion over @{text
+  assn} as follows
+  %
+  \begin{center}
+  @{text "bn(\<ANIL>) ="} @{term "{}"} \hspace{5mm} 
+  @{text "bn(\<ACONS> x t as) = {x} \<union> bn(as)"} 
+  \end{center}
+  %
+  \noindent
+  The scope of the binding is indicated by labels given to the types, for
+  example @{text "s::trm"}, and a binding clause, in this case
+  \isacommand{bind} @{text "bn(as)"} \isacommand{in} @{text "s"}. This binding
+  clause states that all the names the function @{text
+  "bn(as)"} returns should be bound in @{text s}.  This style of specifying terms and bindings is heavily
+  inspired by the syntax of the Ott-tool \cite{ott-jfp}. 
+
+  %Though, Ott
+  %has only one binding mode, namely the one where the order of
+  %binders matters. Consequently, type-schemes with binding sets
+  %of names cannot be modelled in Ott.
+
+  However, we will not be able to cope with all specifications that are
+  allowed by Ott. One reason is that Ott lets the user specify ``empty'' 
+  types like @{text "t ::= t t | \<lambda>x. t"}
+  where no clause for variables is given. Arguably, such specifications make
+  some sense in the context of Coq's type theory (which Ott supports), but not
+  at all in a HOL-based environment where every datatype must have a non-empty
+  set-theoretic model. % \cite{Berghofer99}.
+
+  Another reason is that we establish the reasoning infrastructure
+  for $\alpha$-\emph{equated} terms. In contrast, Ott produces  a reasoning 
+  infrastructure in Isabelle/HOL for
+  \emph{non}-$\alpha$-equated, or ``raw'', terms. While our $\alpha$-equated terms
+  and the raw terms produced by Ott use names for bound variables,
+  there is a key difference: working with $\alpha$-equated terms means, for example,  
+  that the two type-schemes
+
+  \begin{center}
+  @{text "\<forall>{x}. x \<rightarrow> y  = \<forall>{x, z}. x \<rightarrow> y"} 
+  \end{center}
+  
+  \noindent
+  are not just $\alpha$-equal, but actually \emph{equal}! As a result, we can
+  only support specifications that make sense on the level of $\alpha$-equated
+  terms (offending specifications, which for example bind a variable according
+  to a variable bound somewhere else, are not excluded by Ott, but we have
+  to).  
+
+  %Our insistence on reasoning with $\alpha$-equated terms comes from the
+  %wealth of experience we gained with the older version of Nominal Isabelle:
+  %for non-trivial properties, reasoning with $\alpha$-equated terms is much
+  %easier than reasoning with raw terms. The fundamental reason for this is
+  %that the HOL-logic underlying Nominal Isabelle allows us to replace
+  %``equals-by-equals''. In contrast, replacing
+  %``$\alpha$-equals-by-$\alpha$-equals'' in a representation based on raw terms
+  %requires a lot of extra reasoning work.
+
+  Although in informal settings a reasoning infrastructure for $\alpha$-equated
+  terms is nearly always taken for granted, establishing it automatically in
+  Isabelle/HOL is a rather non-trivial task. For every
+  specification we will need to construct type(s) containing as elements the
+  $\alpha$-equated terms. To do so, we use the standard HOL-technique of defining
+  a new type by identifying a non-empty subset of an existing type.  The
+  construction we perform in Isabelle/HOL can be illustrated by the following picture:
+  %
+  \begin{center}
+  \begin{tikzpicture}[scale=0.89]
+  %\draw[step=2mm] (-4,-1) grid (4,1);
+  
+  \draw[very thick] (0.7,0.4) circle (4.25mm);
+  \draw[rounded corners=1mm, very thick] ( 0.0,-0.8) rectangle ( 1.8, 0.9);
+  \draw[rounded corners=1mm, very thick] (-1.95,0.85) rectangle (-2.85,-0.05);
+  
+  \draw (-2.0, 0.845) --  (0.7,0.845);
+  \draw (-2.0,-0.045)  -- (0.7,-0.045);
+
+  \draw ( 0.7, 0.4) node {\footnotesize\begin{tabular}{@ {}c@ {}}$\alpha$-\\[-1mm]clas.\end{tabular}};
+  \draw (-2.4, 0.4) node {\footnotesize\begin{tabular}{@ {}c@ {}}$\alpha$-eq.\\[-1mm]terms\end{tabular}};
+  \draw (1.8, 0.48) node[right=-0.1mm]
+    {\footnotesize\begin{tabular}{@ {}l@ {}}existing\\[-1mm] type\\ (sets of raw terms)\end{tabular}};
+  \draw (0.9, -0.35) node {\footnotesize\begin{tabular}{@ {}l@ {}}non-empty\\[-1mm]subset\end{tabular}};
+  \draw (-3.25, 0.55) node {\footnotesize\begin{tabular}{@ {}l@ {}}new\\[-1mm]type\end{tabular}};
+  
+  \draw[<->, very thick] (-1.8, 0.3) -- (-0.1,0.3);
+  \draw (-0.95, 0.3) node[above=0mm] {\footnotesize{}isomorphism};
+
+  \end{tikzpicture}
+  \end{center}
+  %
+  \noindent
+  We take as the starting point a definition of raw terms (defined as a
+  datatype in Isabelle/HOL); then identify the $\alpha$-equivalence classes in
+  the type of sets of raw terms according to our $\alpha$-equivalence relation,
+  and finally define the new type as these $\alpha$-equivalence classes
+  (non-emptiness is satisfied whenever the raw terms are definable as datatype
+  in Isabelle/HOL and our relation for $\alpha$-equivalence is
+  an equivalence relation).
+
+  %The fact that we obtain an isomorphism between the new type and the
+  %non-empty subset shows that the new type is a faithful representation of
+  %$\alpha$-equated terms. That is not the case for example for terms using the
+  %locally nameless representation of binders \cite{McKinnaPollack99}: in this
+  %representation there are ``junk'' terms that need to be excluded by
+  %reasoning about a well-formedness predicate.
+
+  The problem with introducing a new type in Isabelle/HOL is that in order to
+  be useful, a reasoning infrastructure needs to be ``lifted'' from the
+  underlying subset to the new type. This is usually a tricky and arduous
+  task. To ease it, we re-implemented in Isabelle/HOL \cite{KaliszykUrban11} the quotient package
+  described by Homeier \cite{Homeier05} for the HOL4 system. This package
+  allows us to lift definitions and theorems involving raw terms to
+  definitions and theorems involving $\alpha$-equated terms. For example if we
+  define the free-variable function over raw lambda-terms
+
+  \begin{center}
+  @{text "fv(x) = {x}"}\hspace{8mm}
+  @{text "fv(t\<^isub>1 t\<^isub>2) = fv(t\<^isub>1) \<union> fv(t\<^isub>2)"}\hspace{8mm}
+  @{text "fv(\<lambda>x.t) = fv(t) - {x}"}
+  \end{center}
+  
+  \noindent
+  then with the help of the quotient package we can obtain a function @{text "fv\<^sup>\<alpha>"}
+  operating on quotients, or $\alpha$-equivalence classes of lambda-terms. This
+  lifted function is characterised by the equations
+
+  \begin{center}
+  @{text "fv\<^sup>\<alpha>(x) = {x}"}\hspace{8mm}
+  @{text "fv\<^sup>\<alpha>(t\<^isub>1 t\<^isub>2) = fv\<^sup>\<alpha>(t\<^isub>1) \<union> fv\<^sup>\<alpha>(t\<^isub>2)"}\hspace{8mm}
+  @{text "fv\<^sup>\<alpha>(\<lambda>x.t) = fv\<^sup>\<alpha>(t) - {x}"}
+  \end{center}
+
+  \noindent
+  (Note that this means also the term-constructors for variables, applications
+  and lambda are lifted to the quotient level.)  This construction, of course,
+  only works if $\alpha$-equivalence is indeed an equivalence relation, and the
+  ``raw'' definitions and theorems are respectful w.r.t.~$\alpha$-equivalence.
+  %For example, we will not be able to lift a bound-variable function. Although
+  %this function can be defined for raw terms, it does not respect
+  %$\alpha$-equivalence and therefore cannot be lifted. 
+  To sum up, every lifting
+  of theorems to the quotient level needs proofs of some respectfulness
+  properties (see \cite{Homeier05}). In the paper we show that we are able to
+  automate these proofs and as a result can automatically establish a reasoning 
+  infrastructure for $\alpha$-equated terms.\smallskip
+
+  %The examples we have in mind where our reasoning infrastructure will be
+  %helpful includes the term language of Core-Haskell. This term language
+  %involves patterns that have lists of type-, coercion- and term-variables,
+  %all of which are bound in @{text "\<CASE>"}-expressions. In these
+  %patterns we do not know in advance how many variables need to
+  %be bound. Another example is the specification of SML, which includes
+  %includes bindings as in type-schemes.\medskip
+
+  \noindent
+  {\bf Contributions:}  We provide three new definitions for when terms
+  involving general binders are $\alpha$-equivalent. These definitions are
+  inspired by earlier work of Pitts \cite{Pitts04}. By means of automatic
+  proofs, we establish a reasoning infrastructure for $\alpha$-equated
+  terms, including properties about support, freshness and equality
+  conditions for $\alpha$-equated terms. We are also able to derive strong 
+  induction principles that have the variable convention already built in.
+  The method behind our specification of general binders is taken 
+  from the Ott-tool, but we introduce crucial restrictions, and also extensions, so 
+  that our specifications make sense for reasoning about $\alpha$-equated terms.  
+  The main improvement over Ott is that we introduce three binding modes
+  (only one is present in Ott), provide formalised definitions for $\alpha$-equivalence and 
+  for free variables of our terms, and also derive a reasoning infrastructure
+  for our specifications from ``first principles''.
+
+
+  %\begin{figure}
+  %\begin{boxedminipage}{\linewidth}
+  %%\begin{center}
+  %\begin{tabular}{r@ {\hspace{1mm}}r@ {\hspace{2mm}}l}
+  %\multicolumn{3}{@ {}l}{Type Kinds}\\
+  %@{text "\<kappa>"} & @{text "::="} & @{text "\<star> | \<kappa>\<^isub>1 \<rightarrow> \<kappa>\<^isub>2"}\smallskip\\
+  %\multicolumn{3}{@ {}l}{Coercion Kinds}\\
+  %@{text "\<iota>"} & @{text "::="} & @{text "\<sigma>\<^isub>1 \<sim> \<sigma>\<^isub>2"}\smallskip\\
+  %\multicolumn{3}{@ {}l}{Types}\\
+  %@{text "\<sigma>"} & @{text "::="} & @{text "a | T | \<sigma>\<^isub>1 \<sigma>\<^isub>2 | S\<^isub>n"}$\;\overline{@{text "\<sigma>"}}$@{text "\<^sup>n"} 
+  %@{text "| \<forall>a:\<kappa>. \<sigma> | \<iota> \<Rightarrow> \<sigma>"}\smallskip\\
+  %\multicolumn{3}{@ {}l}{Coercion Types}\\
+  %@{text "\<gamma>"} & @{text "::="} & @{text "c | C | \<gamma>\<^isub>1 \<gamma>\<^isub>2 | S\<^isub>n"}$\;\overline{@{text "\<gamma>"}}$@{text "\<^sup>n"}
+  %@{text "| \<forall>c:\<iota>. \<gamma> | \<iota> \<Rightarrow> \<gamma> "}\\
+  %& @{text "|"} & @{text "refl \<sigma> | sym \<gamma> | \<gamma>\<^isub>1 \<circ> \<gamma>\<^isub>2 | \<gamma> @ \<sigma> | left \<gamma> | right \<gamma>"}\\
+  %& @{text "|"} & @{text "\<gamma>\<^isub>1 \<sim> \<gamma>\<^isub>2 | rightc \<gamma> | leftc \<gamma> | \<gamma>\<^isub>1 \<triangleright> \<gamma>\<^isub>2"}\smallskip\\
+  %\multicolumn{3}{@ {}l}{Terms}\\
+  %@{text "e"} & @{text "::="} & @{text "x | K | \<Lambda>a:\<kappa>. e | \<Lambda>c:\<iota>. e | e \<sigma> | e \<gamma>"}\\
+  %& @{text "|"} & @{text "\<lambda>x:\<sigma>. e | e\<^isub>1 e\<^isub>2 | \<LET> x:\<sigma> = e\<^isub>1 \<IN> e\<^isub>2"}\\
+  %& @{text "|"} & @{text "\<CASE> e\<^isub>1 \<OF>"}$\;\overline{@{text "p \<rightarrow> e\<^isub>2"}}$ @{text "| e \<triangleright> \<gamma>"}\smallskip\\
+  %\multicolumn{3}{@ {}l}{Patterns}\\
+  %@{text "p"} & @{text "::="} & @{text "K"}$\;\overline{@{text "a:\<kappa>"}}\;\overline{@{text "c:\<iota>"}}\;\overline{@{text "x:\<sigma>"}}$\smallskip\\
+  %\multicolumn{3}{@ {}l}{Constants}\\
+  %& @{text C} & coercion constants\\
+  %& @{text T} & value type constructors\\
+  %& @{text "S\<^isub>n"} & n-ary type functions (which need to be fully applied)\\
+  %& @{text K} & data constructors\smallskip\\
+  %\multicolumn{3}{@ {}l}{Variables}\\
+  %& @{text a} & type variables\\
+  %& @{text c} & coercion variables\\
+  %& @{text x} & term variables\\
+  %\end{tabular}
+  %\end{center}
+  %\end{boxedminipage}
+  %\caption{The System @{text "F\<^isub>C"}
+  %\cite{CoreHaskell}, also often referred to as \emph{Core-Haskell}. In this
+  %version of @{text "F\<^isub>C"} we made a modification by separating the
+  %grammars for type kinds and coercion kinds, as well as for types and coercion
+  %types. For this paper the interesting term-constructor is @{text "\<CASE>"},
+  %which binds multiple type-, coercion- and term-variables.\label{corehas}}
+  %\end{figure}
+*}
+
+section {* A Short Review of the Nominal Logic Work *}
+
+text {*
+  At its core, Nominal Isabelle is an adaption of the nominal logic work by
+  Pitts \cite{Pitts03}. This adaptation for Isabelle/HOL is described in
+  \cite{HuffmanUrban10} (including proofs). We shall briefly review this work
+  to aid the description of what follows. 
+
+  Two central notions in the nominal logic work are sorted atoms and
+  sort-respecting permutations of atoms. We will use the letters @{text "a,
+  b, c, \<dots>"} to stand for atoms and @{text "p, q, \<dots>"} to stand for
+  permutations. The purpose of atoms is to represent variables, be they bound or free. 
+  %The sorts of atoms can be used to represent different kinds of
+  %variables, such as the term-, coercion- and type-variables in Core-Haskell.
+  It is assumed that there is an infinite supply of atoms for each
+  sort. In the interest of brevity, we shall restrict ourselves 
+  in what follows to only one sort of atoms.
+
+  Permutations are bijective functions from atoms to atoms that are 
+  the identity everywhere except on a finite number of atoms. There is a 
+  two-place permutation operation written
+  @{text "_ \<bullet> _  ::  perm \<Rightarrow> \<beta> \<Rightarrow> \<beta>"}
+  where the generic type @{text "\<beta>"} is the type of the object 
+  over which the permutation 
+  acts. In Nominal Isabelle, the identity permutation is written as @{term "0::perm"},
+  the composition of two permutations @{term p} and @{term q} as \mbox{@{term "p + q"}}, 
+  and the inverse permutation of @{term p} as @{text "- p"}. The permutation
+  operation is defined over the type-hierarchy \cite{HuffmanUrban10};
+  for example permutations acting on products, lists, sets, functions and booleans are
+  given by:
+  %
+  %\begin{equation}\label{permute}
+  %\mbox{\begin{tabular}{@ {}c@ {\hspace{10mm}}c@ {}}
+  %\begin{tabular}{@ {}l@ {}}
+  %@{thm permute_prod.simps[no_vars, THEN eq_reflection]}\\[2mm]
+  %@{thm permute_list.simps(1)[no_vars, THEN eq_reflection]}\\
+  %@{thm permute_list.simps(2)[no_vars, THEN eq_reflection]}\\
+  %\end{tabular} &
+  %\begin{tabular}{@ {}l@ {}}
+  %@{thm permute_set_eq[no_vars, THEN eq_reflection]}\\
+  %@{text "p \<bullet> f \<equiv> \<lambda>x. p \<bullet> (f (- p \<bullet> x))"}\\
+  %@{thm permute_bool_def[no_vars, THEN eq_reflection]}
+  %\end{tabular}
+  %\end{tabular}}
+  %\end{equation}
+  %
+  \begin{center}
+  \mbox{\begin{tabular}{@ {}c@ {\hspace{4mm}}c@ {\hspace{4mm}}c@ {}}
+  \begin{tabular}{@ {}l@ {}}
+  @{thm permute_prod.simps[no_vars, THEN eq_reflection]}\\
+  @{thm permute_bool_def[no_vars, THEN eq_reflection]}
+  \end{tabular} &
+  \begin{tabular}{@ {}l@ {}}
+  @{thm permute_list.simps(1)[no_vars, THEN eq_reflection]}\\
+  @{thm permute_list.simps(2)[no_vars, THEN eq_reflection]}\\
+  \end{tabular} &
+  \begin{tabular}{@ {}l@ {}}
+  @{thm permute_set_eq[no_vars, THEN eq_reflection]}\\
+  @{text "p \<bullet> f \<equiv> \<lambda>x. p \<bullet> (f (- p \<bullet> x))"}\\
+  \end{tabular}
+  \end{tabular}}
+  \end{center}
+
+  \noindent
+  Concrete permutations in Nominal Isabelle are built up from swappings, 
+  written as \mbox{@{text "(a b)"}}, which are permutations that behave 
+  as follows:
+  %
+  \begin{center}
+  @{text "(a b) = \<lambda>c. if a = c then b else if b = c then a else c"}
+  \end{center}
+
+  The most original aspect of the nominal logic work of Pitts is a general
+  definition for the notion of the ``set of free variables of an object @{text
+  "x"}''.  This notion, written @{term "supp x"}, is general in the sense that
+  it applies not only to lambda-terms ($\alpha$-equated or not), but also to lists,
+  products, sets and even functions. The definition depends only on the
+  permutation operation and on the notion of equality defined for the type of
+  @{text x}, namely:
+  %
+  \begin{equation}\label{suppdef}
+  @{thm supp_def[no_vars, THEN eq_reflection]}
+  \end{equation}
+
+  \noindent
+  There is also the derived notion for when an atom @{text a} is \emph{fresh}
+  for an @{text x}, defined as @{thm fresh_def[no_vars]}.
+  We use for sets of atoms the abbreviation 
+  @{thm (lhs) fresh_star_def[no_vars]}, defined as 
+  @{thm (rhs) fresh_star_def[no_vars]}.
+  A striking consequence of these definitions is that we can prove
+  without knowing anything about the structure of @{term x} that
+  swapping two fresh atoms, say @{text a} and @{text b}, leaves 
+  @{text x} unchanged, namely if @{text "a \<FRESH> x"} and @{text "b \<FRESH> x"}
+  then @{term "(a \<rightleftharpoons> b) \<bullet> x = x"}.
+  %
+  %\begin{myproperty}\label{swapfreshfresh}
+  %@{thm[mode=IfThen] swap_fresh_fresh[no_vars]}
+  %\end{myproperty}
+  %
+  %While often the support of an object can be relatively easily 
+  %described, for example for atoms, products, lists, function applications, 
+  %booleans and permutations as follows
+  %%
+  %\begin{center}
+  %\begin{tabular}{c@ {\hspace{10mm}}c}
+  %\begin{tabular}{rcl}
+  %@{term "supp a"} & $=$ & @{term "{a}"}\\
+  %@{term "supp (x, y)"} & $=$ & @{term "supp x \<union> supp y"}\\
+  %@{term "supp []"} & $=$ & @{term "{}"}\\
+  %@{term "supp (x#xs)"} & $=$ & @{term "supp x \<union> supp xs"}\\
+  %\end{tabular}
+  %&
+  %\begin{tabular}{rcl}
+  %@{text "supp (f x)"} & @{text "\<subseteq>"} & @{term "supp f \<union> supp x"}\\
+  %@{term "supp b"} & $=$ & @{term "{}"}\\
+  %@{term "supp p"} & $=$ & @{term "{a. p \<bullet> a \<noteq> a}"}
+  %\end{tabular}
+  %\end{tabular}
+  %\end{center}
+  %
+  %\noindent 
+  %in some cases it can be difficult to characterise the support precisely, and
+  %only an approximation can be established (as for functions above). 
+  %
+  %Reasoning about
+  %such approximations can be simplified with the notion \emph{supports}, defined 
+  %as follows:
+  %
+  %\begin{definition}
+  %A set @{text S} \emph{supports} @{text x} if for all atoms @{text a} and @{text b}
+  %not in @{text S} we have @{term "(a \<rightleftharpoons> b) \<bullet> x = x"}.
+  %\end{definition}
+  %
+  %\noindent
+  %The main point of @{text supports} is that we can establish the following 
+  %two properties.
+  %
+  %\begin{myproperty}\label{supportsprop}
+  %Given a set @{text "as"} of atoms.
+  %{\it (i)} @{thm[mode=IfThen] supp_is_subset[where S="as", no_vars]}
+  %{\it (ii)} @{thm supp_supports[no_vars]}.
+  %\end{myproperty}
+  %
+  %Another important notion in the nominal logic work is \emph{equivariance}.
+  %For a function @{text f}, say of type @{text "\<alpha> \<Rightarrow> \<beta>"}, to be equivariant 
+  %it is required that every permutation leaves @{text f} unchanged, that is
+  %%
+  %\begin{equation}\label{equivariancedef}
+  %@{term "\<forall>p. p \<bullet> f = f"}
+  %\end{equation}
+  %
+  %\noindent or equivalently that a permutation applied to the application
+  %@{text "f x"} can be moved to the argument @{text x}. That means for equivariant
+  %functions @{text f}, we have for all permutations @{text p}:
+  %%
+  %\begin{equation}\label{equivariance}
+  %@{text "p \<bullet> f = f"} \;\;\;\textit{if and only if}\;\;\;
+  %@{text "p \<bullet> (f x) = f (p \<bullet> x)"}
+  %\end{equation}
+  % 
+  %\noindent
+  %From property \eqref{equivariancedef} and the definition of @{text supp}, we 
+  %can easily deduce that equivariant functions have empty support. There is
+  %also a similar notion for equivariant relations, say @{text R}, namely the property
+  %that
+  %%
+  %\begin{center}
+  %@{text "x R y"} \;\;\textit{implies}\;\; @{text "(p \<bullet> x) R (p \<bullet> y)"}
+  %\end{center}
+  %
+  %Using freshness, the nominal logic work provides us with general means for renaming 
+  %binders. 
+  %
+  %\noindent
+  While in the older version of Nominal Isabelle, we used extensively 
+  %Property~\ref{swapfreshfresh}
+  this property to rename single binders, it %%this property 
+  proved too unwieldy for dealing with multiple binders. For such binders the 
+  following generalisations turned out to be easier to use.
+
+  \begin{myproperty}\label{supppermeq}
+  @{thm[mode=IfThen] supp_perm_eq[no_vars]}
+  \end{myproperty}
+
+  \begin{myproperty}\label{avoiding}
+  For a finite set @{text as} and a finitely supported @{text x} with
+  @{term "as \<sharp>* x"} and also a finitely supported @{text c}, there
+  exists a permutation @{text p} such that @{term "(p \<bullet> as) \<sharp>* c"} and
+  @{term "supp x \<sharp>* p"}.
+  \end{myproperty}
+
+  \noindent
+  The idea behind the second property is that given a finite set @{text as}
+  of binders (being bound, or fresh, in @{text x} is ensured by the
+  assumption @{term "as \<sharp>* x"}), then there exists a permutation @{text p} such that
+  the renamed binders @{term "p \<bullet> as"} avoid @{text c} (which can be arbitrarily chosen
+  as long as it is finitely supported) and also @{text "p"} does not affect anything
+  in the support of @{text x} (that is @{term "supp x \<sharp>* p"}). The last 
+  fact and Property~\ref{supppermeq} allow us to ``rename'' just the binders 
+  @{text as} in @{text x}, because @{term "p \<bullet> x = x"}.
+
+  Most properties given in this section are described in detail in \cite{HuffmanUrban10}
+  and all are formalised in Isabelle/HOL. In the next sections we will make 
+  extensive use of these properties in order to define $\alpha$-equivalence in 
+  the presence of multiple binders.
+*}
+
+
+section {* General Bindings\label{sec:binders} *}
+
+text {*
+  In Nominal Isabelle, the user is expected to write down a specification of a
+  term-calculus and then a reasoning infrastructure is automatically derived
+  from this specification (remember that Nominal Isabelle is a definitional
+  extension of Isabelle/HOL, which does not introduce any new axioms).
+
+  In order to keep our work with deriving the reasoning infrastructure
+  manageable, we will wherever possible state definitions and perform proofs
+  on the ``user-level'' of Isabelle/HOL, as opposed to write custom ML-code. % that
+  %generates them anew for each specification. 
+  To that end, we will consider
+  first pairs @{text "(as, x)"} of type @{text "(atom set) \<times> \<beta>"}.  These pairs
+  are intended to represent the abstraction, or binding, of the set of atoms @{text
+  "as"} in the body @{text "x"}.
+
+  The first question we have to answer is when two pairs @{text "(as, x)"} and
+  @{text "(bs, y)"} are $\alpha$-equivalent? (For the moment we are interested in
+  the notion of $\alpha$-equivalence that is \emph{not} preserved by adding
+  vacuous binders.) To answer this question, we identify four conditions: {\it (i)}
+  given a free-atom function @{text "fa"} of type \mbox{@{text "\<beta> \<Rightarrow> atom
+  set"}}, then @{text x} and @{text y} need to have the same set of free
+  atoms; moreover there must be a permutation @{text p} such that {\it
+  (ii)} @{text p} leaves the free atoms of @{text x} and @{text y} unchanged, but
+  {\it (iii)} ``moves'' their bound names so that we obtain modulo a relation,
+  say \mbox{@{text "_ R _"}}, two equivalent terms. We also require that {\it (iv)}
+  @{text p} makes the sets of abstracted atoms @{text as} and @{text bs} equal. The
+  requirements {\it (i)} to {\it (iv)} can be stated formally as the conjunction of:
+  %
+  \begin{equation}\label{alphaset}
+  \begin{array}{@ {\hspace{10mm}}l@ {\hspace{5mm}}l@ {\hspace{10mm}}l@ {\hspace{5mm}}l}
+  \multicolumn{4}{l}{@{term "(as, x) \<approx>set R fa p (bs, y)"}\hspace{2mm}@{text "\<equiv>"}}\\[1mm]
+       \mbox{\it (i)}   & @{term "fa(x) - as = fa(y) - bs"} &
+       \mbox{\it (iii)} &  @{text "(p \<bullet> x) R y"} \\
+       \mbox{\it (ii)}  & @{term "(fa(x) - as) \<sharp>* p"} & 
+       \mbox{\it (iv)}  & @{term "(p \<bullet> as) = bs"} \\ 
+  \end{array}
+  \end{equation}
+  %
+  \noindent
+  Note that this relation depends on the permutation @{text
+  "p"}; $\alpha$-equivalence between two pairs is then the relation where we
+  existentially quantify over this @{text "p"}. Also note that the relation is
+  dependent on a free-atom function @{text "fa"} and a relation @{text
+  "R"}. The reason for this extra generality is that we will use
+  $\approx_{\,\textit{set}}$ for both ``raw'' terms and $\alpha$-equated terms. In
+  the latter case, @{text R} will be replaced by equality @{text "="} and we
+  will prove that @{text "fa"} is equal to @{text "supp"}.
+
+  The definition in \eqref{alphaset} does not make any distinction between the
+  order of abstracted atoms. If we want this, then we can define $\alpha$-equivalence 
+  for pairs of the form \mbox{@{text "(as, x)"}} with type @{text "(atom list) \<times> \<beta>"} 
+  as follows
+  %
+  \begin{equation}\label{alphalist}
+  \begin{array}{@ {\hspace{10mm}}l@ {\hspace{5mm}}l@ {\hspace{10mm}}l@ {\hspace{5mm}}l}
+  \multicolumn{4}{l}{@{term "(as, x) \<approx>lst R fa p (bs, y)"}\hspace{2mm}@{text "\<equiv>"}}\\[1mm]
+         \mbox{\it (i)}   & @{term "fa(x) - (set as) = fa(y) - (set bs)"} & 
+         \mbox{\it (iii)} & @{text "(p \<bullet> x) R y"}\\
+         \mbox{\it (ii)}  & @{term "(fa(x) - set as) \<sharp>* p"} &
+         \mbox{\it (iv)}  & @{term "(p \<bullet> as) = bs"}\\
+  \end{array}
+  \end{equation}
+  %
+  \noindent
+  where @{term set} is the function that coerces a list of atoms into a set of atoms.
+  Now the last clause ensures that the order of the binders matters (since @{text as}
+  and @{text bs} are lists of atoms).
+
+  If we do not want to make any difference between the order of binders \emph{and}
+  also allow vacuous binders, that means \emph{restrict} names, then we keep sets of binders, but drop 
+  condition {\it (iv)} in \eqref{alphaset}:
+  %
+  \begin{equation}\label{alphares}
+  \begin{array}{@ {\hspace{10mm}}l@ {\hspace{5mm}}l@ {\hspace{10mm}}l@ {\hspace{5mm}}l}
+  \multicolumn{2}{l}{@{term "(as, x) \<approx>res R fa p (bs, y)"}\hspace{2mm}@{text "\<equiv>"}}\\[1mm]
+             \mbox{\it (i)}   & @{term "fa(x) - as = fa(y) - bs"} & 
+             \mbox{\it (iii)} & @{text "(p \<bullet> x) R y"}\\
+             \mbox{\it (ii)}  & @{term "(fa(x) - as) \<sharp>* p"}\\
+  \end{array}
+  \end{equation}
+
+  It might be useful to consider first some examples how these definitions
+  of $\alpha$-equivalence pan out in practice.  For this consider the case of
+  abstracting a set of atoms over types (as in type-schemes). We set
+  @{text R} to be the usual equality @{text "="} and for @{text "fa(T)"} we
+  define
+  %
+  \begin{center}
+  @{text "fa(x) = {x}"}  \hspace{5mm} @{text "fa(T\<^isub>1 \<rightarrow> T\<^isub>2) = fa(T\<^isub>1) \<union> fa(T\<^isub>2)"}
+  \end{center}
+
+  \noindent
+  Now recall the examples shown in \eqref{ex1} and
+  \eqref{ex3}. It can be easily checked that @{text "({x, y}, x \<rightarrow> y)"} and
+  @{text "({y, x}, y \<rightarrow> x)"} are $\alpha$-equivalent according to
+  $\approx_{\,\textit{set}}$ and $\approx_{\,\textit{set+}}$ by taking @{text p} to
+  be the swapping @{term "(x \<rightleftharpoons> y)"}. In case of @{text "x \<noteq> y"}, then @{text
+  "([x, y], x \<rightarrow> y)"} $\not\approx_{\,\textit{list}}$ @{text "([y, x], x \<rightarrow> y)"}
+  since there is no permutation that makes the lists @{text "[x, y]"} and
+  @{text "[y, x]"} equal, and also leaves the type \mbox{@{text "x \<rightarrow> y"}}
+  unchanged. Another example is @{text "({x}, x)"} $\approx_{\,\textit{set+}}$
+  @{text "({x, y}, x)"} which holds by taking @{text p} to be the identity
+  permutation.  However, if @{text "x \<noteq> y"}, then @{text "({x}, x)"}
+  $\not\approx_{\,\textit{set}}$ @{text "({x, y}, x)"} since there is no
+  permutation that makes the sets @{text "{x}"} and @{text "{x, y}"} equal
+  (similarly for $\approx_{\,\textit{list}}$).  It can also relatively easily be
+  shown that all three notions of $\alpha$-equivalence coincide, if we only
+  abstract a single atom.
+
+  In the rest of this section we are going to introduce three abstraction 
+  types. For this we define 
+  %
+  \begin{equation}
+  @{term "abs_set (as, x) (bs, x) \<equiv> \<exists>p. alpha_set (as, x) equal supp p (bs, x)"}
+  \end{equation}
+  
+  \noindent
+  (similarly for $\approx_{\,\textit{abs\_set+}}$ 
+  and $\approx_{\,\textit{abs\_list}}$). We can show that these relations are equivalence 
+  relations. %% and equivariant.
+
+  \begin{lemma}\label{alphaeq} 
+  The relations $\approx_{\,\textit{abs\_set}}$, $\approx_{\,\textit{abs\_list}}$
+  and $\approx_{\,\textit{abs\_set+}}$ are equivalence relations. %, and if 
+  %@{term "abs_set (as, x) (bs, y)"} then also 
+  %@{term "abs_set (p \<bullet> as, p \<bullet> x) (p \<bullet> bs, p \<bullet> y)"} (similarly for the other two relations).
+  \end{lemma}
+
+  \begin{proof}
+  Reflexivity is by taking @{text "p"} to be @{text "0"}. For symmetry we have
+  a permutation @{text p} and for the proof obligation take @{term "-p"}. In case 
+  of transitivity, we have two permutations @{text p} and @{text q}, and for the
+  proof obligation use @{text "q + p"}. All conditions are then by simple
+  calculations. 
+  \end{proof}
+
+  \noindent
+  This lemma allows us to use our quotient package for introducing 
+  new types @{text "\<beta> abs_set"}, @{text "\<beta> abs_set+"} and @{text "\<beta> abs_list"}
+  representing $\alpha$-equivalence classes of pairs of type 
+  @{text "(atom set) \<times> \<beta>"} (in the first two cases) and of type @{text "(atom list) \<times> \<beta>"}
+  (in the third case). 
+  The elements in these types will be, respectively, written as
+  %
+  %\begin{center}
+  @{term "Abs_set as x"}, %\hspace{5mm} 
+  @{term "Abs_res as x"} and %\hspace{5mm}
+  @{term "Abs_lst as x"}, 
+  %\end{center}
+  %
+  %\noindent
+  indicating that a set (or list) of atoms @{text as} is abstracted in @{text x}. We will
+  call the types \emph{abstraction types} and their elements
+  \emph{abstractions}. The important property we need to derive is the support of 
+  abstractions, namely:
+
+  \begin{theorem}[Support of Abstractions]\label{suppabs} 
+  Assuming @{text x} has finite support, then
+
+  \begin{center}
+  \begin{tabular}{l}
+  @{thm (lhs) supp_Abs(1)[no_vars]} $\;\;=\;\;$
+  @{thm (lhs) supp_Abs(2)[no_vars]} $\;\;=\;\;$ @{thm (rhs) supp_Abs(2)[no_vars]}, and\\
+  @{thm (lhs) supp_Abs(3)[where bs="bs", no_vars]} $\;\;=\;\;$
+  @{thm (rhs) supp_Abs(3)[where bs="bs", no_vars]}
+  \end{tabular}
+  \end{center}
+  \end{theorem}
+
+  \noindent
+  This theorem states that the bound names do not appear in the support.
+  For brevity we omit the proof and again refer the reader to
+  our formalisation in Isabelle/HOL.
+
+  %\noindent
+  %Below we will show the first equation. The others 
+  %follow by similar arguments. By definition of the abstraction type @{text "abs_set"} 
+  %we have 
+  %%
+  %\begin{equation}\label{abseqiff}
+  %@{thm (lhs) Abs_eq_iff(1)[where bs="as" and cs="bs", no_vars]} \;\;\text{if and only if}\;\; 
+  %@{thm (rhs) Abs_eq_iff(1)[where bs="as" and cs="bs", no_vars]}
+  %\end{equation}
+  %
+  %\noindent
+  %and also
+  %
+  %\begin{equation}\label{absperm}
+  %%@%{%thm %permute_Abs[no_vars]}%
+  %\end{equation}
+
+  %\noindent
+  %The second fact derives from the definition of permutations acting on pairs 
+  %\eqref{permute} and $\alpha$-equivalence being equivariant 
+  %(see Lemma~\ref{alphaeq}). With these two facts at our disposal, we can show 
+  %the following lemma about swapping two atoms in an abstraction.
+  %
+  %\begin{lemma}
+  %@{thm[mode=IfThen] Abs_swap1(1)[where bs="as", no_vars]}
+  %\end{lemma}
+  %
+  %\begin{proof}
+  %This lemma is straightforward using \eqref{abseqiff} and observing that
+  %the assumptions give us @{term "(a \<rightleftharpoons> b) \<bullet> (supp x - as) = (supp x - as)"}.
+  %Moreover @{text supp} and set difference are equivariant (see \cite{HuffmanUrban10}).
+  %\end{proof}
+  %
+  %\noindent
+  %Assuming that @{text "x"} has finite support, this lemma together 
+  %with \eqref{absperm} allows us to show
+  %
+  %\begin{equation}\label{halfone}
+  %@{thm Abs_supports(1)[no_vars]}
+  %\end{equation}
+  %
+  %\noindent
+  %which by Property~\ref{supportsprop} gives us ``one half'' of
+  %Theorem~\ref{suppabs}. The ``other half'' is a bit more involved. To establish 
+  %it, we use a trick from \cite{Pitts04} and first define an auxiliary 
+  %function @{text aux}, taking an abstraction as argument:
+  %@{thm supp_set.simps[THEN eq_reflection, no_vars]}.
+  %
+  %Using the second equation in \eqref{equivariance}, we can show that 
+  %@{text "aux"} is equivariant (since @{term "p \<bullet> (supp x - as) = (supp (p \<bullet> x)) - (p \<bullet> as)"}) 
+  %and therefore has empty support. 
+  %This in turn means
+  %
+  %\begin{center}
+  %@{term "supp (supp_gen (Abs_set as x)) \<subseteq> supp (Abs_set as x)"}
+  %\end{center}
+  %
+  %\noindent
+  %using \eqref{suppfun}. Assuming @{term "supp x - as"} is a finite set,
+  %we further obtain
+  %
+  %\begin{equation}\label{halftwo}
+  %@{thm (concl) Abs_supp_subset1(1)[no_vars]}
+  %\end{equation}
+  %
+  %\noindent
+  %since for finite sets of atoms, @{text "bs"}, we have 
+  %@{thm (concl) supp_finite_atom_set[where S="bs", no_vars]}.
+  %Finally, taking \eqref{halfone} and \eqref{halftwo} together establishes 
+  %Theorem~\ref{suppabs}. 
+
+  The method of first considering abstractions of the
+  form @{term "Abs_set as x"} etc is motivated by the fact that 
+  we can conveniently establish  at the Isabelle/HOL level
+  properties about them.  It would be
+  laborious to write custom ML-code that derives automatically such properties 
+  for every term-constructor that binds some atoms. Also the generality of
+  the definitions for $\alpha$-equivalence will help us in the next sections.
+*}
+
+section {* Specifying General Bindings\label{sec:spec} *}
+
+text {*
+  Our choice of syntax for specifications is influenced by the existing
+  datatype package of Isabelle/HOL %\cite{Berghofer99} 
+  and by the syntax of the
+  Ott-tool \cite{ott-jfp}. For us a specification of a term-calculus is a
+  collection of (possibly mutual recursive) type declarations, say @{text
+  "ty\<AL>\<^isub>1, \<dots>, ty\<AL>\<^isub>n"}, and an associated collection of
+  binding functions, say @{text "bn\<AL>\<^isub>1, \<dots>, bn\<AL>\<^isub>m"}. The
+  syntax in Nominal Isabelle for such specifications is roughly as follows:
+  %
+  \begin{equation}\label{scheme}
+  \mbox{\begin{tabular}{@ {}p{2.5cm}l}
+  type \mbox{declaration part} &
+  $\begin{cases}
+  \mbox{\small\begin{tabular}{l}
+  \isacommand{nominal\_datatype} @{text "ty\<AL>\<^isub>1 = \<dots>"}\\
+  \isacommand{and} @{text "ty\<AL>\<^isub>2 = \<dots>"}\\
+  \raisebox{2mm}{$\ldots$}\\[-2mm] 
+  \isacommand{and} @{text "ty\<AL>\<^isub>n = \<dots>"}\\ 
+  \end{tabular}}
+  \end{cases}$\\
+  binding \mbox{function part} &
+  $\begin{cases}
+  \mbox{\small\begin{tabular}{l}
+  \isacommand{binder} @{text "bn\<AL>\<^isub>1"} \isacommand{and} \ldots \isacommand{and} @{text "bn\<AL>\<^isub>m"}\\
+  \isacommand{where}\\
+  \raisebox{2mm}{$\ldots$}\\[-2mm]
+  \end{tabular}}
+  \end{cases}$\\
+  \end{tabular}}
+  \end{equation}
+
+  \noindent
+  Every type declaration @{text ty}$^\alpha_{1..n}$ consists of a collection of 
+  term-constructors, each of which comes with a list of labelled 
+  types that stand for the types of the arguments of the term-constructor.
+  For example a term-constructor @{text "C\<^sup>\<alpha>"} might be specified with
+
+  \begin{center}
+  @{text "C\<^sup>\<alpha> label\<^isub>1::ty"}$'_1$ @{text "\<dots> label\<^isub>l::ty"}$'_l\;\;$  @{text "binding_clauses"} 
+  \end{center}
+  
+  \noindent
+  whereby some of the @{text ty}$'_{1..l}$ %%(or their components) 
+  can be contained
+  in the collection of @{text ty}$^\alpha_{1..n}$ declared in
+  \eqref{scheme}. 
+  In this case we will call the corresponding argument a
+  \emph{recursive argument} of @{text "C\<^sup>\<alpha>"}. 
+  %The types of such recursive 
+  %arguments need to satisfy a  ``positivity''
+  %restriction, which ensures that the type has a set-theoretic semantics 
+  %\cite{Berghofer99}.  
+  The labels
+  annotated on the types are optional. Their purpose is to be used in the
+  (possibly empty) list of \emph{binding clauses}, which indicate the binders
+  and their scope in a term-constructor.  They come in three \emph{modes}:
+  %
+  \begin{center}
+  \begin{tabular}{@ {}l@ {}}
+  \isacommand{bind} {\it binders} \isacommand{in} {\it bodies}\;\;\;\,
+  \isacommand{bind (set)} {\it binders} \isacommand{in} {\it bodies}\;\;\;\,
+  \isacommand{bind (set+)} {\it binders} \isacommand{in} {\it bodies}
+  \end{tabular}
+  \end{center}
+  %
+  \noindent
+  The first mode is for binding lists of atoms (the order of binders matters);
+  the second is for sets of binders (the order does not matter, but the
+  cardinality does) and the last is for sets of binders (with vacuous binders
+  preserving $\alpha$-equivalence). As indicated, the labels in the ``\isacommand{in}-part'' of a binding
+  clause will be called \emph{bodies}; the
+  ``\isacommand{bind}-part'' will be called \emph{binders}. In contrast to
+  Ott, we allow multiple labels in binders and bodies. 
+
+  %For example we allow
+  %binding clauses of the form:
+  %
+  %\begin{center}
+  %\begin{tabular}{@ {}ll@ {}}
+  %@{text "Foo\<^isub>1 x::name y::name t::trm s::trm"} &  
+  %    \isacommand{bind} @{text "x y"} \isacommand{in} @{text "t s"}\\
+  %@{text "Foo\<^isub>2 x::name y::name t::trm s::trm"} &  
+  %    \isacommand{bind} @{text "x y"} \isacommand{in} @{text "t"}, 
+  %    \isacommand{bind} @{text "x y"} \isacommand{in} @{text "s"}\\
+  %\end{tabular}
+  %\end{center}
+
+  \noindent
+  %Similarly for the other binding modes. 
+  %Interestingly, in case of \isacommand{bind (set)}
+  %and \isacommand{bind (set+)} the binding clauses above will make a difference to the semantics
+  %of the specifications (the corresponding $\alpha$-equivalence will differ). We will 
+  %show this later with an example.
+  
+  There are also some restrictions we need to impose on our binding clauses in comparison to
+  the ones of Ott. The
+  main idea behind these restrictions is that we obtain a sensible notion of
+  $\alpha$-equivalence where it is ensured that within a given scope an 
+  atom occurrence cannot be both bound and free at the same time.  The first
+  restriction is that a body can only occur in
+  \emph{one} binding clause of a term constructor (this ensures that the bound
+  atoms of a body cannot be free at the same time by specifying an
+  alternative binder for the same body). 
+
+  For binders we distinguish between
+  \emph{shallow} and \emph{deep} binders.  Shallow binders are just
+  labels. The restriction we need to impose on them is that in case of
+  \isacommand{bind (set)} and \isacommand{bind (set+)} the labels must either
+  refer to atom types or to sets of atom types; in case of \isacommand{bind}
+  the labels must refer to atom types or lists of atom types. Two examples for
+  the use of shallow binders are the specification of lambda-terms, where a
+  single name is bound, and type-schemes, where a finite set of names is
+  bound:
+
+  \begin{center}\small
+  \begin{tabular}{@ {}c@ {\hspace{7mm}}c@ {}}
+  \begin{tabular}{@ {}l}
+  \isacommand{nominal\_datatype} @{text lam} $=$\\
+  \hspace{2mm}\phantom{$\mid$}~@{text "Var name"}\\
+  \hspace{2mm}$\mid$~@{text "App lam lam"}\\
+  \hspace{2mm}$\mid$~@{text "Lam x::name t::lam"}~~\isacommand{bind} @{text x} \isacommand{in} @{text t}\\
+  \end{tabular} &
+  \begin{tabular}{@ {}l@ {}}
+  \isacommand{nominal\_datatype}~@{text ty} $=$\\
+  \hspace{5mm}\phantom{$\mid$}~@{text "TVar name"}\\
+  \hspace{5mm}$\mid$~@{text "TFun ty ty"}\\
+  \isacommand{and}~@{text "tsc = All xs::(name fset) T::ty"}~~%
+  \isacommand{bind (set+)} @{text xs} \isacommand{in} @{text T}\\
+  \end{tabular}
+  \end{tabular}
+  \end{center}
+
+  \noindent
+  In these specifications @{text "name"} refers to an atom type, and @{text
+  "fset"} to the type of finite sets.
+  Note that for @{text lam} it does not matter which binding mode we use. The
+  reason is that we bind only a single @{text name}. However, having
+  \isacommand{bind (set)} or \isacommand{bind} in the second case makes a
+  difference to the semantics of the specification (which we will define in the next section).
+
+
+  A \emph{deep} binder uses an auxiliary binding function that ``picks'' out
+  the atoms in one argument of the term-constructor, which can be bound in
+  other arguments and also in the same argument (we will call such binders
+  \emph{recursive}, see below). The binding functions are
+  expected to return either a set of atoms (for \isacommand{bind (set)} and
+  \isacommand{bind (set+)}) or a list of atoms (for \isacommand{bind}). They can
+  be defined by recursion over the corresponding type; the equations
+  must be given in the binding function part of the scheme shown in
+  \eqref{scheme}. For example a term-calculus containing @{text "Let"}s with
+  tuple patterns might be specified as:
+  %
+  \begin{equation}\label{letpat}
+  \mbox{\small%
+  \begin{tabular}{l}
+  \isacommand{nominal\_datatype} @{text trm} $=$\\
+  \hspace{5mm}\phantom{$\mid$}~@{term "Var name"}\\
+  \hspace{5mm}$\mid$~@{term "App trm trm"}\\
+  \hspace{5mm}$\mid$~@{text "Lam x::name t::trm"} 
+     \;\;\isacommand{bind} @{text x} \isacommand{in} @{text t}\\
+  \hspace{5mm}$\mid$~@{text "Let p::pat trm t::trm"} 
+     \;\;\isacommand{bind} @{text "bn(p)"} \isacommand{in} @{text t}\\
+  \isacommand{and} @{text pat} $=$
+  @{text PNil}
+  $\mid$~@{text "PVar name"}
+  $\mid$~@{text "PTup pat pat"}\\ 
+  \isacommand{binder}~@{text "bn::pat \<Rightarrow> atom list"}\\
+  \isacommand{where}~@{text "bn(PNil) = []"}\\
+  \hspace{5mm}$\mid$~@{text "bn(PVar x) = [atom x]"}\\
+  \hspace{5mm}$\mid$~@{text "bn(PTup p\<^isub>1 p\<^isub>2) = bn(p\<^isub>1) @ bn(p\<^isub>2)"}\smallskip\\ 
+  \end{tabular}}
+  \end{equation}
+  %
+  \noindent
+  In this specification the function @{text "bn"} determines which atoms of
+  the pattern @{text p} are bound in the argument @{text "t"}. Note that in the
+  second-last @{text bn}-clause the function @{text "atom"} coerces a name
+  into the generic atom type of Nominal Isabelle \cite{HuffmanUrban10}. This
+  allows us to treat binders of different atom type uniformly.
+
+  As said above, for deep binders we allow binding clauses such as
+  %
+  %\begin{center}
+  %\begin{tabular}{ll}
+  @{text "Bar p::pat t::trm"} %%%&  
+     \isacommand{bind} @{text "bn(p)"} \isacommand{in} @{text "p t"} %%\\
+  %\end{tabular}
+  %\end{center}
+  %
+  %\noindent
+  where the argument of the deep binder also occurs in the body. We call such
+  binders \emph{recursive}.  To see the purpose of such recursive binders,
+  compare ``plain'' @{text "Let"}s and @{text "Let_rec"}s in the following
+  specification:
+  %
+  \begin{equation}\label{letrecs}
+  \mbox{\small%
+  \begin{tabular}{@ {}l@ {}}
+  \isacommand{nominal\_datatype}~@{text "trm ="}~\ldots\\
+  \hspace{5mm}$\mid$~@{text "Let as::assn t::trm"} 
+     \;\;\isacommand{bind} @{text "bn(as)"} \isacommand{in} @{text t}\\
+  \hspace{5mm}$\mid$~@{text "Let_rec as::assn t::trm"}
+     \;\;\isacommand{bind} @{text "bn(as)"} \isacommand{in} @{text "as t"}\\
+  \isacommand{and} @{text "assn"} $=$
+  @{text "ANil"}
+  $\mid$~@{text "ACons name trm assn"}\\
+  \isacommand{binder} @{text "bn::assn \<Rightarrow> atom list"}\\
+  \isacommand{where}~@{text "bn(ANil) = []"}\\
+  \hspace{5mm}$\mid$~@{text "bn(ACons a t as) = [atom a] @ bn(as)"}\\
+  \end{tabular}}
+  \end{equation}
+  %
+  \noindent
+  The difference is that with @{text Let} we only want to bind the atoms @{text
+  "bn(as)"} in the term @{text t}, but with @{text "Let_rec"} we also want to bind the atoms
+  inside the assignment. This difference has consequences for the associated
+  notions of free-atoms and $\alpha$-equivalence.
+  
+  To make sure that atoms bound by deep binders cannot be free at the
+  same time, we cannot have more than one binding function for a deep binder. 
+  Consequently we exclude specifications such as
+  %
+  \begin{center}\small
+  \begin{tabular}{@ {}l@ {\hspace{2mm}}l@ {}}
+  @{text "Baz\<^isub>1 p::pat t::trm"} & 
+     \isacommand{bind} @{text "bn\<^isub>1(p) bn\<^isub>2(p)"} \isacommand{in} @{text t}\\
+  @{text "Baz\<^isub>2 p::pat t\<^isub>1::trm t\<^isub>2::trm"} & 
+     \isacommand{bind} @{text "bn\<^isub>1(p)"} \isacommand{in} @{text "t\<^isub>1"},
+     \isacommand{bind} @{text "bn\<^isub>2(p)"} \isacommand{in} @{text "t\<^isub>2"}\\
+  \end{tabular}
+  \end{center}
+
+  \noindent
+  Otherwise it is possible that @{text "bn\<^isub>1"} and @{text "bn\<^isub>2"}  pick 
+  out different atoms to become bound, respectively be free, in @{text "p"}.
+  (Since the Ott-tool does not derive a reasoning infrastructure for 
+  $\alpha$-equated terms with deep binders, it can permit such specifications.)
+  
+  We also need to restrict the form of the binding functions in order 
+  to ensure the @{text "bn"}-functions can be defined for $\alpha$-equated 
+  terms. The main restriction is that we cannot return an atom in a binding function that is also
+  bound in the corresponding term-constructor. That means in \eqref{letpat} 
+  that the term-constructors @{text PVar} and @{text PTup} may
+  not have a binding clause (all arguments are used to define @{text "bn"}).
+  In contrast, in case of \eqref{letrecs} the term-constructor @{text ACons}
+  may have a binding clause involving the argument @{text trm} (the only one that
+  is \emph{not} used in the definition of the binding function). This restriction
+  is sufficient for lifting the binding function to $\alpha$-equated terms.
+
+  In the version of
+  Nominal Isabelle described here, we also adopted the restriction from the
+  Ott-tool that binding functions can only return: the empty set or empty list
+  (as in case @{text PNil}), a singleton set or singleton list containing an
+  atom (case @{text PVar}), or unions of atom sets or appended atom lists
+  (case @{text PTup}). This restriction will simplify some automatic definitions and proofs
+  later on.
+  
+  In order to simplify our definitions of free atoms and $\alpha$-equivalence, 
+  we shall assume specifications 
+  of term-calculi are implicitly \emph{completed}. By this we mean that  
+  for every argument of a term-constructor that is \emph{not} 
+  already part of a binding clause given by the user, we add implicitly a special \emph{empty} binding
+  clause, written \isacommand{bind}~@{term "{}"}~\isacommand{in}~@{text "labels"}. In case
+  of the lambda-terms, the completion produces
+
+  \begin{center}\small
+  \begin{tabular}{@ {}l@ {\hspace{-1mm}}}
+  \isacommand{nominal\_datatype} @{text lam} =\\
+  \hspace{5mm}\phantom{$\mid$}~@{text "Var x::name"}
+    \;\;\isacommand{bind}~@{term "{}"}~\isacommand{in}~@{text "x"}\\
+  \hspace{5mm}$\mid$~@{text "App t\<^isub>1::lam t\<^isub>2::lam"}
+    \;\;\isacommand{bind}~@{term "{}"}~\isacommand{in}~@{text "t\<^isub>1 t\<^isub>2"}\\
+  \hspace{5mm}$\mid$~@{text "Lam x::name t::lam"}
+    \;\;\isacommand{bind}~@{text x} \isacommand{in} @{text t}\\
+  \end{tabular}
+  \end{center}
+
+  \noindent 
+  The point of completion is that we can make definitions over the binding
+  clauses and be sure to have captured all arguments of a term constructor. 
+*}
+
+section {* Alpha-Equivalence and Free Atoms\label{sec:alpha} *}
+
+text {*
+  Having dealt with all syntax matters, the problem now is how we can turn
+  specifications into actual type definitions in Isabelle/HOL and then
+  establish a reasoning infrastructure for them. As
+  Pottier and Cheney pointed out \cite{Pottier06,Cheney05}, just 
+  re-arranging the arguments of
+  term-constructors so that binders and their bodies are next to each other will 
+  result in inadequate representations in cases like @{text "Let x\<^isub>1 = t\<^isub>1\<dots>x\<^isub>n = t\<^isub>n in s"}. 
+  Therefore we will first
+  extract ``raw'' datatype definitions from the specification and then define 
+  explicitly an $\alpha$-equivalence relation over them. We subsequently
+  construct the quotient of the datatypes according to our $\alpha$-equivalence.
+
+  The ``raw'' datatype definition can be obtained by stripping off the 
+  binding clauses and the labels from the types. We also have to invent
+  new names for the types @{text "ty\<^sup>\<alpha>"} and term-constructors @{text "C\<^sup>\<alpha>"}
+  given by the user. In our implementation we just use the affix ``@{text "_raw"}''.
+  But for the purpose of this paper, we use the superscript @{text "_\<^sup>\<alpha>"} to indicate 
+  that a notion is given for $\alpha$-equivalence classes and leave it out 
+  for the corresponding notion given on the ``raw'' level. So for example 
+  we have @{text "ty\<^sup>\<alpha> \<mapsto> ty"} and @{text "C\<^sup>\<alpha> \<mapsto> C"}
+  where @{term ty} is the type used in the quotient construction for 
+  @{text "ty\<^sup>\<alpha>"} and @{text "C"} is the term-constructor on the ``raw'' type @{text "ty"}. 
+
+  %The resulting datatype definition is legal in Isabelle/HOL provided the datatypes are 
+  %non-empty and the types in the constructors only occur in positive 
+  %position (see \cite{Berghofer99} for an in-depth description of the datatype package
+  %in Isabelle/HOL). 
+  We subsequently define each of the user-specified binding 
+  functions @{term "bn"}$_{1..m}$ by recursion over the corresponding 
+  raw datatype. We can also easily define permutation operations by 
+  recursion so that for each term constructor @{text "C"} we have that
+  %
+  \begin{equation}\label{ceqvt}
+  @{text "p \<bullet> (C z\<^isub>1 \<dots> z\<^isub>n) = C (p \<bullet> z\<^isub>1) \<dots> (p \<bullet> z\<^isub>n)"}
+  \end{equation}
+
+  The first non-trivial step we have to perform is the generation of
+  free-atom functions from the specification. For the 
+  \emph{raw} types @{text "ty"}$_{1..n}$ we define the free-atom functions
+  %
+  %\begin{equation}\label{fvars}
+  @{text "fa_ty\<^isub>"}$_{1..n}$
+  %\end{equation}
+  %
+  %\noindent
+  by recursion.
+  We define these functions together with auxiliary free-atom functions for
+  the binding functions. Given raw binding functions @{text "bn"}$_{1..m}$ 
+  we define
+  %
+  %\begin{center}
+  @{text "fa_bn\<^isub>"}$_{1..m}$.
+  %\end{center}
+  %
+  %\noindent
+  The reason for this setup is that in a deep binder not all atoms have to be
+  bound, as we saw in the example with ``plain'' @{text Let}s. We need therefore a function
+  that calculates those free atoms in a deep binder.
+
+  While the idea behind these free-atom functions is clear (they just
+  collect all atoms that are not bound), because of our rather complicated
+  binding mechanisms their definitions are somewhat involved.  Given
+  a term-constructor @{text "C"} of type @{text ty} and some associated
+  binding clauses @{text "bc\<^isub>1\<dots>bc\<^isub>k"}, the result of @{text
+  "fa_ty (C z\<^isub>1 \<dots> z\<^isub>n)"} will be the union @{text
+  "fa(bc\<^isub>1) \<union> \<dots> \<union> fa(bc\<^isub>k)"} where we will define below what @{text "fa"} for a binding
+  clause means. We only show the details for the mode \isacommand{bind (set)} (the other modes are similar). 
+  Suppose the binding clause @{text bc\<^isub>i} is of the form 
+  %
+  %\begin{center}
+  \mbox{\isacommand{bind (set)} @{text "b\<^isub>1\<dots>b\<^isub>p"} \isacommand{in} @{text "d\<^isub>1\<dots>d\<^isub>q"}}
+  %\end{center}
+  %
+  %\noindent
+  in which the body-labels @{text "d"}$_{1..q}$ refer to types @{text ty}$_{1..q}$,
+  and the binders @{text b}$_{1..p}$
+  either refer to labels of atom types (in case of shallow binders) or to binding 
+  functions taking a single label as argument (in case of deep binders). Assuming 
+  @{text "D"} stands for the set of free atoms of the bodies, @{text B} for the 
+  set of binding atoms in the binders and @{text "B'"} for the set of free atoms in 
+  non-recursive deep binders,
+  then the free atoms of the binding clause @{text bc\<^isub>i} are\\[-2mm]
+  %
+  \begin{equation}\label{fadef}
+  \mbox{@{text "fa(bc\<^isub>i) \<equiv> (D - B) \<union> B'"}}.
+  \end{equation}
+  %
+  \noindent
+  The set @{text D} is formally defined as
+  %
+  %\begin{center}
+  @{text "D \<equiv> fa_ty\<^isub>1 d\<^isub>1 \<union> ... \<union> fa_ty\<^isub>q d\<^isub>q"}
+  %\end{center} 
+  %
+  %\noindent
+  where in case @{text "d\<^isub>i"} refers to one of the raw types @{text "ty"}$_{1..n}$ from the 
+  specification, the function @{text "fa_ty\<^isub>i"} is the corresponding free-atom function 
+  we are defining by recursion; 
+  %(see \eqref{fvars}); 
+  otherwise we set @{text "fa_ty\<^isub>i d\<^isub>i = supp d\<^isub>i"}.
+  
+  In order to formally define the set @{text B} we use the following auxiliary @{text "bn"}-functions
+  for atom types to which shallow binders may refer\\[-4mm]
+  %
+  %\begin{center}
+  %\begin{tabular}{r@ {\hspace{2mm}}c@ {\hspace{2mm}}l}
+  %@{text "bn_atom a"} & @{text "\<equiv>"} & @{text "{atom a}"}\\
+  %@{text "bn_atom_set as"} & @{text "\<equiv>"} & @{text "atoms as"}\\
+  %@{text "bn_atom_list as"} & @{text "\<equiv>"} & @{text "atoms (set as)"}
+  %\end{tabular}
+  %\end{center}
+  %
+  \begin{center}
+  @{text "bn\<^bsub>atom\<^esub> a \<equiv> {atom a}"}\hfill
+  @{text "bn\<^bsub>atom_set\<^esub> as \<equiv> atoms as"}\hfill
+  @{text "bn\<^bsub>atom_list\<^esub> as \<equiv> atoms (set as)"}
+  \end{center}
+  %
+  \noindent 
+  Like the function @{text atom}, the function @{text "atoms"} coerces 
+  a set of atoms to a set of the generic atom type. 
+  %It is defined as  @{text "atoms as \<equiv> {atom a | a \<in> as}"}. 
+  The set @{text B} is then formally defined as\\[-4mm]
+  %
+  \begin{center}
+  @{text "B \<equiv> bn_ty\<^isub>1 b\<^isub>1 \<union> ... \<union> bn_ty\<^isub>p b\<^isub>p"}
+  \end{center} 
+  %
+  \noindent 
+  where we use the auxiliary binding functions for shallow binders. 
+  The set @{text "B'"} collects all free atoms in non-recursive deep
+  binders. Let us assume these binders in @{text "bc\<^isub>i"} are
+  %
+  %\begin{center}
+  \mbox{@{text "bn\<^isub>1 l\<^isub>1, \<dots>, bn\<^isub>r l\<^isub>r"}}
+  %\end{center}
+  %
+  %\noindent
+  with @{text "l"}$_{1..r}$ $\subseteq$ @{text "b"}$_{1..p}$ and none of the 
+  @{text "l"}$_{1..r}$ being among the bodies @{text
+  "d"}$_{1..q}$. The set @{text "B'"} is defined as\\[-5mm]
+  %
+  \begin{center}
+  @{text "B' \<equiv> fa_bn\<^isub>1 l\<^isub>1 \<union> ... \<union> fa_bn\<^isub>r l\<^isub>r"}\\[-9mm]
+  \end{center}
+  %
+  \noindent
+  This completes the definition of the free-atom functions @{text "fa_ty"}$_{1..n}$.
+
+  Note that for non-recursive deep binders, we have to add in \eqref{fadef}
+  the set of atoms that are left unbound by the binding functions @{text
+  "bn"}$_{1..m}$. We used for the definition of
+  this set the functions @{text "fa_bn"}$_{1..m}$, which are also defined by mutual
+  recursion. Assume the user specified a @{text bn}-clause of the form
+  %
+  %\begin{center}
+  @{text "bn (C z\<^isub>1 \<dots> z\<^isub>s) = rhs"}
+  %\end{center}
+  %
+  %\noindent
+  where the @{text "z"}$_{1..s}$ are of types @{text "ty"}$_{1..s}$. For each of
+  the arguments we calculate the free atoms as follows:
+  %
+  \begin{center}
+  \begin{tabular}{c@ {\hspace{2mm}}p{0.9\textwidth}}
+  $\bullet$ & @{term "fa_ty\<^isub>i z\<^isub>i"} provided @{text "z\<^isub>i"} does not occur in @{text "rhs"} 
+  (that means nothing is bound in @{text "z\<^isub>i"} by the binding function),\\
+  $\bullet$ & @{term "fa_bn\<^isub>i z\<^isub>i"} provided @{text "z\<^isub>i"} occurs in  @{text "rhs"}
+  with the recursive call @{text "bn\<^isub>i z\<^isub>i"}, and\\
+  $\bullet$ & @{term "{}"} provided @{text "z\<^isub>i"} occurs in  @{text "rhs"},
+  but without a recursive call.
+  \end{tabular}
+  \end{center}
+  %
+  \noindent
+  For defining @{text "fa_bn (C z\<^isub>1 \<dots> z\<^isub>n)"} we just union up all these sets.
+ 
+  To see how these definitions work in practice, let us reconsider the
+  term-constructors @{text "Let"} and @{text "Let_rec"} shown in
+  \eqref{letrecs} together with the term-constructors for assignments @{text
+  "ANil"} and @{text "ACons"}. Since there is a binding function defined for
+  assignments, we have three free-atom functions, namely @{text
+  "fa\<^bsub>trm\<^esub>"}, @{text "fa\<^bsub>assn\<^esub>"} and @{text
+  "fa\<^bsub>bn\<^esub>"} as follows:
+  %
+  \begin{center}\small
+  \begin{tabular}{@ {}l@ {\hspace{1mm}}c@ {\hspace{1mm}}l@ {}}
+  @{text "fa\<^bsub>trm\<^esub> (Let as t)"} & @{text "="} & @{text "(fa\<^bsub>trm\<^esub> t - set (bn as)) \<union> fa\<^bsub>bn\<^esub> as"}\\
+  @{text "fa\<^bsub>trm\<^esub> (Let_rec as t)"} & @{text "="} & @{text "(fa\<^bsub>assn\<^esub> as \<union> fa\<^bsub>trm\<^esub> t) - set (bn as)"}\\[1mm]
+
+  @{text "fa\<^bsub>assn\<^esub> (ANil)"} & @{text "="} & @{term "{}"}\\
+  @{text "fa\<^bsub>assn\<^esub> (ACons a t as)"} & @{text "="} & @{text "(supp a) \<union> (fa\<^bsub>trm\<^esub> t) \<union> (fa\<^bsub>assn\<^esub> as)"}\\[1mm]
+
+  @{text "fa\<^bsub>bn\<^esub> (ANil)"} & @{text "="} & @{term "{}"}\\
+  @{text "fa\<^bsub>bn\<^esub> (ACons a t as)"} & @{text "="} & @{text "(fa\<^bsub>trm\<^esub> t) \<union> (fa\<^bsub>bn\<^esub> as)"}
+  \end{tabular}
+  \end{center}
+
+  \noindent
+  Recall that @{text ANil} and @{text "ACons"} have no
+  binding clause in the specification. The corresponding free-atom
+  function @{text "fa\<^bsub>assn\<^esub>"} therefore returns all free atoms
+  of an assignment (in case of @{text "ACons"}, they are given in
+  terms of @{text supp}, @{text "fa\<^bsub>trm\<^esub>"} and @{text "fa\<^bsub>assn\<^esub>"}). 
+  The binding only takes place in @{text Let} and
+  @{text "Let_rec"}. In case of @{text "Let"}, the binding clause specifies
+  that all atoms given by @{text "set (bn as)"} have to be bound in @{text
+  t}. Therefore we have to subtract @{text "set (bn as)"} from @{text
+  "fa\<^bsub>trm\<^esub> t"}. However, we also need to add all atoms that are
+  free in @{text "as"}. This is
+  in contrast with @{text "Let_rec"} where we have a recursive
+  binder to bind all occurrences of the atoms in @{text
+  "set (bn as)"} also inside @{text "as"}. Therefore we have to subtract
+  @{text "set (bn as)"} from both @{text "fa\<^bsub>trm\<^esub> t"} and @{text "fa\<^bsub>assn\<^esub> as"}. 
+  %Like the function @{text "bn"}, the function @{text "fa\<^bsub>bn\<^esub>"} traverses the 
+  %list of assignments, but instead returns the free atoms, which means in this 
+  %example the free atoms in the argument @{text "t"}.  
+
+  An interesting point in this
+  example is that a ``naked'' assignment (@{text "ANil"} or @{text "ACons"}) does not bind any
+  atoms, even if the binding function is specified over assignments. 
+  Only in the context of a @{text Let} or @{text "Let_rec"}, where the binding clauses are given, will
+  some atoms actually become bound.  This is a phenomenon that has also been pointed
+  out in \cite{ott-jfp}. For us this observation is crucial, because we would 
+  not be able to lift the @{text "bn"}-functions to $\alpha$-equated terms if they act on 
+  atoms that are bound. In that case, these functions would \emph{not} respect
+  $\alpha$-equivalence.
+
+  Next we define the $\alpha$-equivalence relations for the raw types @{text
+  "ty"}$_{1..n}$ from the specification. We write them as
+  %
+  %\begin{center}
+  @{text "\<approx>ty"}$_{1..n}$.
+  %\end{center}
+  %
+  %\noindent
+  Like with the free-atom functions, we also need to
+  define auxiliary $\alpha$-equivalence relations 
+  %
+  %\begin{center}
+  @{text "\<approx>bn\<^isub>"}$_{1..m}$
+  %\end{center}
+  %
+  %\noindent
+  for the binding functions @{text "bn"}$_{1..m}$, 
+  To simplify our definitions we will use the following abbreviations for
+  \emph{compound equivalence relations} and \emph{compound free-atom functions} acting on tuples.
+  %
+  \begin{center}
+  \begin{tabular}{r@ {\hspace{2mm}}c@ {\hspace{2mm}}l}
+  @{text "(x\<^isub>1,\<dots>, x\<^isub>n) (R\<^isub>1,\<dots>, R\<^isub>n) (x\<PRIME>\<^isub>1,\<dots>, x\<PRIME>\<^isub>n)"} & @{text "\<equiv>"} &
+  @{text "x\<^isub>1 R\<^isub>1 x\<PRIME>\<^isub>1 \<and> \<dots> \<and> x\<^isub>n R\<^isub>n x\<PRIME>\<^isub>n"}\\
+  @{text "(fa\<^isub>1,\<dots>, fa\<^isub>n) (x\<^isub>1,\<dots>, x\<^isub>n)"} & @{text "\<equiv>"} & @{text "fa\<^isub>1 x\<^isub>1 \<union> \<dots> \<union> fa\<^isub>n x\<^isub>n"}\\
+  \end{tabular}
+  \end{center}
+
+
+  The $\alpha$-equivalence relations are defined as inductive predicates
+  having a single clause for each term-constructor. Assuming a
+  term-constructor @{text C} is of type @{text ty} and has the binding clauses
+  @{term "bc"}$_{1..k}$, then the $\alpha$-equivalence clause has the form
+  %
+  \begin{center}
+  \mbox{\infer{@{text "C z\<^isub>1 \<dots> z\<^isub>n  \<approx>ty  C z\<PRIME>\<^isub>1 \<dots> z\<PRIME>\<^isub>n"}}
+  {@{text "prems(bc\<^isub>1) \<dots> prems(bc\<^isub>k)"}}} 
+  \end{center}
+
+  \noindent
+  The task below is to specify what the premises of a binding clause are. As a
+  special instance, we first treat the case where @{text "bc\<^isub>i"} is the
+  empty binding clause of the form
+  %
+  \begin{center}
+  \mbox{\isacommand{bind (set)} @{term "{}"} \isacommand{in} @{text "d\<^isub>1\<dots>d\<^isub>q"}.}
+  \end{center}
+
+  \noindent
+  In this binding clause no atom is bound and we only have to $\alpha$-relate the bodies. For this
+  we build first the tuples @{text "D \<equiv> (d\<^isub>1,\<dots>, d\<^isub>q)"} and @{text "D' \<equiv> (d\<PRIME>\<^isub>1,\<dots>, d\<PRIME>\<^isub>q)"}  
+  whereby the labels @{text "d"}$_{1..q}$ refer to arguments @{text "z"}$_{1..n}$ and
+  respectively @{text "d\<PRIME>"}$_{1..q}$ to @{text "z\<PRIME>"}$_{1..n}$. In order to relate
+  two such tuples we define the compound $\alpha$-equivalence relation @{text "R"} as follows
+  %
+  \begin{equation}\label{rempty}
+  \mbox{@{text "R \<equiv> (R\<^isub>1,\<dots>, R\<^isub>q)"}}
+  \end{equation}
+
+  \noindent
+  with @{text "R\<^isub>i"} being @{text "\<approx>ty\<^isub>i"} if the corresponding labels @{text "d\<^isub>i"} and 
+  @{text "d\<PRIME>\<^isub>i"} refer
+  to a recursive argument of @{text C} with type @{text "ty\<^isub>i"}; otherwise
+  we take @{text "R\<^isub>i"} to be the equality @{text "="}. This lets us define
+  the premise for an empty binding clause succinctly as @{text "prems(bc\<^isub>i) \<equiv> D R D'"},
+  which can be unfolded to the series of premises
+  %
+  %\begin{center}
+  @{text "d\<^isub>1 R\<^isub>1 d\<PRIME>\<^isub>1  \<dots> d\<^isub>q R\<^isub>q d\<PRIME>\<^isub>q"}.
+  %\end{center}
+  %
+  %\noindent
+  We will use the unfolded version in the examples below.
+
+  Now suppose the binding clause @{text "bc\<^isub>i"} is of the general form 
+  %
+  \begin{equation}\label{nonempty}
+  \mbox{\isacommand{bind (set)} @{text "b\<^isub>1\<dots>b\<^isub>p"} \isacommand{in} @{text "d\<^isub>1\<dots>d\<^isub>q"}.}
+  \end{equation}
+
+  \noindent
+  In this case we define a premise @{text P} using the relation
+  $\approx_{\,\textit{set}}$ given in Section~\ref{sec:binders} (similarly
+  $\approx_{\,\textit{set+}}$ and $\approx_{\,\textit{list}}$ for the other
+  binding modes). This premise defines $\alpha$-equivalence of two abstractions
+  involving multiple binders. As above, we first build the tuples @{text "D"} and
+  @{text "D'"} for the bodies @{text "d"}$_{1..q}$, and the corresponding
+  compound $\alpha$-relation @{text "R"} (shown in \eqref{rempty}). 
+  For $\approx_{\,\textit{set}}$  we also need
+  a compound free-atom function for the bodies defined as
+  %
+  \begin{center}
+  \mbox{@{text "fa \<equiv> (fa_ty\<^isub>1,\<dots>, fa_ty\<^isub>q)"}}
+  \end{center}
+
+  \noindent
+  with the assumption that the @{text "d"}$_{1..q}$ refer to arguments of types @{text "ty"}$_{1..q}$.
+  The last ingredient we need are the sets of atoms bound in the bodies.
+  For this we take
+
+  \begin{center}
+  @{text "B \<equiv> bn_ty\<^isub>1 b\<^isub>1 \<union> \<dots> \<union> bn_ty\<^isub>p b\<^isub>p"}\;.\\
+  \end{center}
+
+  \noindent
+  Similarly for @{text "B'"} using the labels @{text "b\<PRIME>"}$_{1..p}$. This 
+  lets us formally define the premise @{text P} for a non-empty binding clause as:
+  %
+  \begin{center}
+  \mbox{@{term "P \<equiv> \<exists>p. (B, D) \<approx>set R fa p (B', D')"}}\;.
+  \end{center}
+
+  \noindent
+  This premise accounts for $\alpha$-equivalence of the bodies of the binding
+  clause. 
+  However, in case the binders have non-recursive deep binders, this premise
+  is not enough:
+  we also have to ``propagate'' $\alpha$-equivalence inside the structure of
+  these binders. An example is @{text "Let"} where we have to make sure the
+  right-hand sides of assignments are $\alpha$-equivalent. For this we use 
+  relations @{text "\<approx>bn"}$_{1..m}$ (which we will formally define shortly).
+  Let us assume the non-recursive deep binders in @{text "bc\<^isub>i"} are
+  %
+  %\begin{center}
+  @{text "bn\<^isub>1 l\<^isub>1, \<dots>, bn\<^isub>r l\<^isub>r"}.
+  %\end{center}
+  %
+  %\noindent
+  The tuple @{text L} is then @{text "(l\<^isub>1,\<dots>,l\<^isub>r)"} (similarly @{text "L'"})
+  and the compound equivalence relation @{text "R'"} is @{text "(\<approx>bn\<^isub>1,\<dots>,\<approx>bn\<^isub>r)"}. 
+  All premises for @{text "bc\<^isub>i"} are then given by
+  %
+  \begin{center}
+  @{text "prems(bc\<^isub>i) \<equiv> P  \<and>   L R' L'"}
+  \end{center} 
+
+  \noindent 
+  The auxiliary $\alpha$-equivalence relations @{text "\<approx>bn"}$_{1..m}$ 
+  in @{text "R'"} are defined as follows: assuming a @{text bn}-clause is of the form
+  %
+  %\begin{center}
+  @{text "bn (C z\<^isub>1 \<dots> z\<^isub>s) = rhs"}
+  %\end{center}
+  %
+  %\noindent
+  where the @{text "z"}$_{1..s}$ are of types @{text "ty"}$_{1..s}$,
+  then the corresponding $\alpha$-equivalence clause for @{text "\<approx>bn"} has the form
+  %
+  \begin{center}
+  \mbox{\infer{@{text "C z\<^isub>1 \<dots> z\<^isub>s \<approx>bn C z\<PRIME>\<^isub>1 \<dots> z\<PRIME>\<^isub>s"}}
+  {@{text "z\<^isub>1 R\<^isub>1 z\<PRIME>\<^isub>1 \<dots> z\<^isub>s R\<^isub>s z\<PRIME>\<^isub>s"}}}
+  \end{center}
+  
+  \noindent
+  In this clause the relations @{text "R"}$_{1..s}$ are given by 
+
+  \begin{center}
+  \begin{tabular}{c@ {\hspace{2mm}}p{0.9\textwidth}}
+  $\bullet$ & @{text "z\<^isub>i \<approx>ty z\<PRIME>\<^isub>i"} provided @{text "z\<^isub>i"} does not occur in @{text rhs} and 
+  is a recursive argument of @{text C},\\
+  $\bullet$ & @{text "z\<^isub>i = z\<PRIME>\<^isub>i"} provided @{text "z\<^isub>i"} does not occur in @{text rhs}
+  and is a non-recursive argument of @{text C},\\
+  $\bullet$ & @{text "z\<^isub>i \<approx>bn\<^isub>i z\<PRIME>\<^isub>i"} provided @{text "z\<^isub>i"} occurs in @{text rhs}
+  with the recursive call @{text "bn\<^isub>i x\<^isub>i"} and\\
+  $\bullet$ & @{text True} provided @{text "z\<^isub>i"} occurs in @{text rhs} but without a
+  recursive call.
+  \end{tabular}
+  \end{center}
+
+  \noindent
+  This completes the definition of $\alpha$-equivalence. As a sanity check, we can show
+  that the premises of empty binding clauses are a special case of the clauses for 
+  non-empty ones (we just have to unfold the definition of $\approx_{\,\textit{set}}$ and take @{text "0"}
+  for the existentially quantified permutation).
+
+  Again let us take a look at a concrete example for these definitions. For \eqref{letrecs}
+  we have three relations $\approx_{\textit{trm}}$, $\approx_{\textit{assn}}$ and
+  $\approx_{\textit{bn}}$ with the following clauses:
+
+  \begin{center}\small
+  \begin{tabular}{@ {}c @ {}}
+  \infer{@{text "Let as t \<approx>\<^bsub>trm\<^esub> Let as' t'"}}
+  {@{term "\<exists>p. (bn as, t) \<approx>lst alpha_trm fa_trm p (bn as', t')"} & @{text "as \<approx>\<^bsub>bn\<^esub> as'"}}\smallskip\\
+  \makebox[0mm]{\infer{@{text "Let_rec as t \<approx>\<^bsub>trm\<^esub> Let_rec as' t'"}}
+  {@{term "\<exists>p. (bn as, ast) \<approx>lst alpha_trm2 fa_trm2 p (bn as', ast')"}}}
+  \end{tabular}
+  \end{center}
+
+  \begin{center}\small
+  \begin{tabular}{@ {}c @ {}}
+  \infer{@{text "ANil \<approx>\<^bsub>assn\<^esub> ANil"}}{}\hspace{9mm}
+  \infer{@{text "ACons a t as \<approx>\<^bsub>assn\<^esub> ACons a' t' as"}}
+  {@{text "a = a'"} & @{text "t \<approx>\<^bsub>trm\<^esub> t'"} & @{text "as \<approx>\<^bsub>assn\<^esub> as'"}}
+  \end{tabular}
+  \end{center}
+
+  \begin{center}\small
+  \begin{tabular}{@ {}c @ {}}
+  \infer{@{text "ANil \<approx>\<^bsub>bn\<^esub> ANil"}}{}\hspace{9mm}
+  \infer{@{text "ACons a t as \<approx>\<^bsub>bn\<^esub> ACons a' t' as"}}
+  {@{text "t \<approx>\<^bsub>trm\<^esub> t'"} & @{text "as \<approx>\<^bsub>bn\<^esub> as'"}}
+  \end{tabular}
+  \end{center}
+
+  \noindent
+  Note the difference between  $\approx_{\textit{assn}}$ and
+  $\approx_{\textit{bn}}$: the latter only ``tracks'' $\alpha$-equivalence of 
+  the components in an assignment that are \emph{not} bound. This is needed in the 
+  clause for @{text "Let"} (which has
+  a non-recursive binder). 
+  %The underlying reason is that the terms inside an assignment are not meant 
+  %to be ``under'' the binder. Such a premise is \emph{not} needed in @{text "Let_rec"}, 
+  %because there all components of an assignment are ``under'' the binder. 
+*}
+
+section {* Establishing the Reasoning Infrastructure *}
+
+text {*
+  Having made all necessary definitions for raw terms, we can start
+  with establishing the reasoning infrastructure for the $\alpha$-equated types
+  @{text "ty\<AL>"}$_{1..n}$, that is the types the user originally specified. We sketch
+  in this section the proofs we need for establishing this infrastructure. One
+  main point of our work is that we have completely automated these proofs in Isabelle/HOL.
+
+  First we establish that the
+  $\alpha$-equivalence relations defined in the previous section are 
+  equivalence relations.
+
+  \begin{lemma}\label{equiv} 
+  Given the raw types @{text "ty"}$_{1..n}$ and binding functions
+  @{text "bn"}$_{1..m}$, the relations @{text "\<approx>ty"}$_{1..n}$ and 
+  @{text "\<approx>bn"}$_{1..m}$ are equivalence relations.%% and equivariant.
+  \end{lemma}
+
+  \begin{proof} 
+  The proof is by mutual induction over the definitions. The non-trivial
+  cases involve premises built up by $\approx_{\textit{set}}$, 
+  $\approx_{\textit{set+}}$ and $\approx_{\textit{list}}$. They 
+  can be dealt with as in Lemma~\ref{alphaeq}.
+  \end{proof}
+
+  \noindent 
+  We can feed this lemma into our quotient package and obtain new types @{text
+  "ty"}$^\alpha_{1..n}$ representing $\alpha$-equated terms of types @{text "ty"}$_{1..n}$. 
+  We also obtain definitions for the term-constructors @{text
+  "C"}$^\alpha_{1..k}$ from the raw term-constructors @{text
+  "C"}$_{1..k}$, and similar definitions for the free-atom functions @{text
+  "fa_ty"}$^\alpha_{1..n}$ and @{text "fa_bn"}$^\alpha_{1..m}$ as well as the binding functions @{text
+  "bn"}$^\alpha_{1..m}$. However, these definitions are not really useful to the 
+  user, since they are given in terms of the isomorphisms we obtained by 
+  creating new types in Isabelle/HOL (recall the picture shown in the 
+  Introduction).
+
+  The first useful property for the user is the fact that distinct 
+  term-constructors are not 
+  equal, that is
+  %
+  \begin{equation}\label{distinctalpha}
+  \mbox{@{text "C"}$^\alpha$~@{text "x\<^isub>1 \<dots> x\<^isub>r"}~@{text "\<noteq>"}~% 
+  @{text "D"}$^\alpha$~@{text "y\<^isub>1 \<dots> y\<^isub>s"}} 
+  \end{equation}
+  
+  \noindent
+  whenever @{text "C"}$^\alpha$~@{text "\<noteq>"}~@{text "D"}$^\alpha$.
+  In order to derive this fact, we use the definition of $\alpha$-equivalence
+  and establish that
+  %
+  \begin{equation}\label{distinctraw}
+  \mbox{@{text "C x\<^isub>1 \<dots> x\<^isub>r"}\;$\not\approx$@{text ty}\;@{text "D y\<^isub>1 \<dots> y\<^isub>s"}}
+  \end{equation}
+
+  \noindent
+  holds for the corresponding raw term-constructors.
+  In order to deduce \eqref{distinctalpha} from \eqref{distinctraw}, our quotient
+  package needs to know that the raw term-constructors @{text "C"} and @{text "D"} 
+  are \emph{respectful} w.r.t.~the $\alpha$-equivalence relations (see \cite{Homeier05}).
+  Assuming, for example, @{text "C"} is of type @{text "ty"} with argument types
+  @{text "ty"}$_{1..r}$, respectfulness amounts to showing that
+  %
+  \begin{center}
+  @{text "C x\<^isub>1 \<dots> x\<^isub>r \<approx>ty C x\<PRIME>\<^isub>1 \<dots> x\<PRIME>\<^isub>r"}
+  \end{center}  
+
+  \noindent
+  holds under the assumptions that we have \mbox{@{text
+  "x\<^isub>i \<approx>ty\<^isub>i x\<PRIME>\<^isub>i"}} whenever @{text "x\<^isub>i"}
+  and @{text "x\<PRIME>\<^isub>i"} are recursive arguments of @{text C} and
+  @{text "x\<^isub>i = x\<PRIME>\<^isub>i"} whenever they are non-recursive arguments. We can prove this
+  implication by applying the corresponding rule in our $\alpha$-equivalence
+  definition and by establishing the following auxiliary implications %facts 
+  %
+  \begin{equation}\label{fnresp}
+  \mbox{%
+  \begin{tabular}{ll@ {\hspace{7mm}}ll}
+  \mbox{\it (i)} & @{text "x \<approx>ty\<^isub>i x\<PRIME>"}~~@{text "\<Rightarrow>"}~~@{text "fa_ty\<^isub>i x = fa_ty\<^isub>i x\<PRIME>"} &
+  \mbox{\it (iii)} & @{text "x \<approx>ty\<^isub>j x\<PRIME>"}~~@{text "\<Rightarrow>"}~~@{text "bn\<^isub>j x = bn\<^isub>j x\<PRIME>"}\\
+
+  \mbox{\it (ii)} & @{text "x \<approx>ty\<^isub>j x\<PRIME>"}~~@{text "\<Rightarrow>"}~~@{text "fa_bn\<^isub>j x = fa_bn\<^isub>j x\<PRIME>"} &
+  \mbox{\it (iv)} & @{text "x \<approx>ty\<^isub>j x\<PRIME>"}~~@{text "\<Rightarrow>"}~~@{text "x \<approx>bn\<^isub>j x\<PRIME>"}\\
+  \end{tabular}}
+  \end{equation}
+
+  \noindent
+  They can be established by induction on @{text "\<approx>ty"}$_{1..n}$. Whereas the first,
+  second and last implication are true by how we stated our definitions, the 
+  third \emph{only} holds because of our restriction
+  imposed on the form of the binding functions---namely \emph{not} returning 
+  any bound atoms. In Ott, in contrast, the user may 
+  define @{text "bn"}$_{1..m}$ so that they return bound
+  atoms and in this case the third implication is \emph{not} true. A 
+  result is that the lifing of the corresponding binding functions in Ott to $\alpha$-equated
+  terms is impossible.
+
+  Having established respectfulness for the raw term-constructors, the 
+  quotient package is able to automatically deduce \eqref{distinctalpha} from 
+  \eqref{distinctraw}. Having the facts \eqref{fnresp} at our disposal, we can 
+  also lift properties that characterise when two raw terms of the form
+  %
+  \begin{center}
+  @{text "C x\<^isub>1 \<dots> x\<^isub>r \<approx>ty C x\<PRIME>\<^isub>1 \<dots> x\<PRIME>\<^isub>r"}
+  \end{center}
+
+  \noindent
+  are $\alpha$-equivalent. This gives us conditions when the corresponding
+  $\alpha$-equated terms are \emph{equal}, namely
+  %
+  %\begin{center}
+  @{text "C\<^sup>\<alpha> x\<^isub>1 \<dots> x\<^isub>r = C\<^sup>\<alpha> x\<PRIME>\<^isub>1 \<dots> x\<PRIME>\<^isub>r"}.
+  %\end{center}
+  %
+  %\noindent
+  We call these conditions as \emph{quasi-injectivity}. They correspond to
+  the premises in our $\alpha$-equivalence relations.
+
+  Next we can lift the permutation 
+  operations defined in \eqref{ceqvt}. In order to make this 
+  lifting to go through, we have to show that the permutation operations are respectful. 
+  This amounts to showing that the 
+  $\alpha$-equivalence relations are equivariant \cite{HuffmanUrban10}.
+  %, which we already established 
+  %in Lemma~\ref{equiv}. 
+  As a result we can add the equations
+  %
+  \begin{equation}\label{calphaeqvt}
+  @{text "p \<bullet> (C\<^sup>\<alpha> x\<^isub>1 \<dots> x\<^isub>r) = C\<^sup>\<alpha> (p \<bullet> x\<^isub>1) \<dots> (p \<bullet> x\<^isub>r)"}
+  \end{equation}
+
+  \noindent
+  to our infrastructure. In a similar fashion we can lift the defining equations
+  of the free-atom functions @{text "fn_ty\<AL>"}$_{1..n}$ and
+  @{text "fa_bn\<AL>"}$_{1..m}$ as well as of the binding functions @{text
+  "bn\<AL>"}$_{1..m}$ and the size functions @{text "size_ty\<AL>"}$_{1..n}$.
+  The latter are defined automatically for the raw types @{text "ty"}$_{1..n}$
+  by the datatype package of Isabelle/HOL.
+
+  Finally we can add to our infrastructure a cases lemma (explained in the next section)
+  and a structural induction principle 
+  for the types @{text "ty\<AL>"}$_{1..n}$. The conclusion of the induction principle is
+  of the form
+  %
+  %\begin{equation}\label{weakinduct}
+  \mbox{@{text "P\<^isub>1 x\<^isub>1 \<and> \<dots> \<and> P\<^isub>n x\<^isub>n "}}
+  %\end{equation} 
+  %
+  %\noindent
+  whereby the @{text P}$_{1..n}$ are predicates and the @{text x}$_{1..n}$ 
+  have types @{text "ty\<AL>"}$_{1..n}$. This induction principle has for each
+  term constructor @{text "C"}$^\alpha$ a premise of the form
+  %
+  \begin{equation}\label{weakprem}
+  \mbox{@{text "\<forall>x\<^isub>1\<dots>x\<^isub>r. P\<^isub>i x\<^isub>i \<and> \<dots> \<and> P\<^isub>j x\<^isub>j \<Rightarrow> P (C\<^sup>\<alpha> x\<^isub>1 \<dots> x\<^isub>r)"}} 
+  \end{equation}
+
+  \noindent 
+  in which the @{text "x"}$_{i..j}$ @{text "\<subseteq>"} @{text "x"}$_{1..r}$ are 
+  the recursive arguments of @{text "C\<AL>"}. 
+
+  By working now completely on the $\alpha$-equated level, we
+  can first show that the free-atom functions and binding functions are
+  equivariant, namely
+  %
+  \begin{center}
+  \begin{tabular}{rcl@ {\hspace{10mm}}rcl}
+  @{text "p \<bullet> (fa_ty\<AL>\<^isub>i  x)"} & $=$ & @{text "fa_ty\<AL>\<^isub>i (p \<bullet> x)"} &
+  @{text "p \<bullet> (bn\<AL>\<^isub>j  x)"}    & $=$ & @{text "bn\<AL>\<^isub>j (p \<bullet> x)"}\\
+  @{text "p \<bullet> (fa_bn\<AL>\<^isub>j  x)"} & $=$ & @{text "fa_bn\<AL>\<^isub>j (p \<bullet> x)"}\\
+  \end{tabular}
+  \end{center}
+  %
+  \noindent
+  These properties can be established using the induction principle for the types @{text "ty\<AL>"}$_{1..n}$.
+  %%in \eqref{weakinduct}.
+  Having these equivariant properties established, we can
+  show that the support of term-constructors @{text "C\<^sup>\<alpha>"} is included in
+  the support of its arguments, that means 
+
+  \begin{center}
+  @{text "supp (C\<^sup>\<alpha> x\<^isub>1 \<dots> x\<^isub>r) \<subseteq> (supp x\<^isub>1 \<union> \<dots> \<union> supp x\<^isub>r)"}
+  \end{center}
+ 
+  \noindent
+  holds. This allows us to prove by induction that
+  every @{text x} of type @{text "ty\<AL>"}$_{1..n}$ is finitely supported. 
+  %This can be again shown by induction 
+  %over @{text "ty\<AL>"}$_{1..n}$. 
+  Lastly, we can show that the support of 
+  elements in  @{text "ty\<AL>"}$_{1..n}$ is the same as @{text "fa_ty\<AL>"}$_{1..n}$.
+  This fact is important in a nominal setting, but also provides evidence 
+  that our notions of free-atoms and $\alpha$-equivalence are correct.
+
+  \begin{theorem} 
+  For @{text "x"}$_{1..n}$ with type @{text "ty\<AL>"}$_{1..n}$, we have
+  @{text "supp x\<^isub>i = fa_ty\<AL>\<^isub>i x\<^isub>i"}.
+  \end{theorem}
+
+  \begin{proof}
+  The proof is by induction. In each case
+  we unfold the definition of @{text "supp"}, move the swapping inside the 
+  term-constructors and then use the quasi-injectivity lemmas in order to complete the
+  proof. For the abstraction cases we use the facts derived in Theorem~\ref{suppabs}.
+  \end{proof}
+
+  \noindent
+  To sum up this section, we can establish automatically a reasoning infrastructure
+  for the types @{text "ty\<AL>"}$_{1..n}$ 
+  by first lifting definitions from the raw level to the quotient level and
+  then by establishing facts about these lifted definitions. All necessary proofs
+  are generated automatically by custom ML-code. 
+
+  %This code can deal with 
+  %specifications such as the one shown in Figure~\ref{nominalcorehas} for Core-Haskell.  
+
+  %\begin{figure}[t!]
+  %\begin{boxedminipage}{\linewidth}
+  %\small
+  %\begin{tabular}{l}
+  %\isacommand{atom\_decl}~@{text "var cvar tvar"}\\[1mm]
+  %\isacommand{nominal\_datatype}~@{text "tkind ="}\\
+  %\phantom{$|$}~@{text "KStar"}~$|$~@{text "KFun tkind tkind"}\\ 
+  %\isacommand{and}~@{text "ckind ="}\\
+  %\phantom{$|$}~@{text "CKSim ty ty"}\\
+  %\isacommand{and}~@{text "ty ="}\\
+  %\phantom{$|$}~@{text "TVar tvar"}~$|$~@{text "T string"}~$|$~@{text "TApp ty ty"}\\
+  %$|$~@{text "TFun string ty_list"}~%
+  %$|$~@{text "TAll tv::tvar tkind ty::ty"}  \isacommand{bind}~@{text "tv"}~\isacommand{in}~@{text ty}\\
+  %$|$~@{text "TArr ckind ty"}\\
+  %\isacommand{and}~@{text "ty_lst ="}\\
+  %\phantom{$|$}~@{text "TNil"}~$|$~@{text "TCons ty ty_lst"}\\
+  %\isacommand{and}~@{text "cty ="}\\
+  %\phantom{$|$}~@{text "CVar cvar"}~%
+  %$|$~@{text "C string"}~$|$~@{text "CApp cty cty"}~$|$~@{text "CFun string co_lst"}\\
+  %$|$~@{text "CAll cv::cvar ckind cty::cty"}  \isacommand{bind}~@{text "cv"}~\isacommand{in}~@{text cty}\\
+  %$|$~@{text "CArr ckind cty"}~$|$~@{text "CRefl ty"}~$|$~@{text "CSym cty"}~$|$~@{text "CCirc cty cty"}\\
+  %$|$~@{text "CAt cty ty"}~$|$~@{text "CLeft cty"}~$|$~@{text "CRight cty"}~$|$~@{text "CSim cty cty"}\\
+  %$|$~@{text "CRightc cty"}~$|$~@{text "CLeftc cty"}~$|$~@{text "Coerce cty cty"}\\
+  %\isacommand{and}~@{text "co_lst ="}\\
+  %\phantom{$|$}@{text "CNil"}~$|$~@{text "CCons cty co_lst"}\\
+  %\isacommand{and}~@{text "trm ="}\\
+  %\phantom{$|$}~@{text "Var var"}~$|$~@{text "K string"}\\
+  %$|$~@{text "LAM_ty tv::tvar tkind t::trm"}  \isacommand{bind}~@{text "tv"}~\isacommand{in}~@{text t}\\
+  %$|$~@{text "LAM_cty cv::cvar ckind t::trm"}   \isacommand{bind}~@{text "cv"}~\isacommand{in}~@{text t}\\
+  %$|$~@{text "App_ty trm ty"}~$|$~@{text "App_cty trm cty"}~$|$~@{text "App trm trm"}\\
+  %$|$~@{text "Lam v::var ty t::trm"}  \isacommand{bind}~@{text "v"}~\isacommand{in}~@{text t}\\
+  %$|$~@{text "Let x::var ty trm t::trm"}  \isacommand{bind}~@{text x}~\isacommand{in}~@{text t}\\
+  %$|$~@{text "Case trm assoc_lst"}~$|$~@{text "Cast trm co"}\\
+  %\isacommand{and}~@{text "assoc_lst ="}\\
+  %\phantom{$|$}~@{text ANil}~%
+  %$|$~@{text "ACons p::pat t::trm assoc_lst"}  \isacommand{bind}~@{text "bv p"}~\isacommand{in}~@{text t}\\
+  %\isacommand{and}~@{text "pat ="}\\
+  %\phantom{$|$}~@{text "Kpat string tvtk_lst tvck_lst vt_lst"}\\
+  %\isacommand{and}~@{text "vt_lst ="}\\
+  %\phantom{$|$}~@{text VTNil}~$|$~@{text "VTCons var ty vt_lst"}\\
+  %\isacommand{and}~@{text "tvtk_lst ="}\\
+  %\phantom{$|$}~@{text TVTKNil}~$|$~@{text "TVTKCons tvar tkind tvtk_lst"}\\
+  %\isacommand{and}~@{text "tvck_lst ="}\\ 
+  %\phantom{$|$}~@{text TVCKNil}~$|$ @{text "TVCKCons cvar ckind tvck_lst"}\\
+  %\isacommand{binder}\\
+  %@{text "bv :: pat \<Rightarrow> atom list"}~\isacommand{and}~%
+  %@{text "bv1 :: vt_lst \<Rightarrow> atom list"}~\isacommand{and}\\
+  %@{text "bv2 :: tvtk_lst \<Rightarrow> atom list"}~\isacommand{and}~%
+  %@{text "bv3 :: tvck_lst \<Rightarrow> atom list"}\\
+  %\isacommand{where}\\
+  %\phantom{$|$}~@{text "bv (K s tvts tvcs vs) = (bv3 tvts) @ (bv2 tvcs) @ (bv1 vs)"}\\
+  %$|$~@{text "bv1 VTNil = []"}\\
+  %$|$~@{text "bv1 (VTCons x ty tl) = (atom x)::(bv1 tl)"}\\
+  %$|$~@{text "bv2 TVTKNil = []"}\\
+  %$|$~@{text "bv2 (TVTKCons a ty tl) = (atom a)::(bv2 tl)"}\\
+  %$|$~@{text "bv3 TVCKNil = []"}\\
+  %$|$~@{text "bv3 (TVCKCons c cty tl) = (atom c)::(bv3 tl)"}\\
+  %\end{tabular}
+  %\end{boxedminipage}
+  %\caption{The nominal datatype declaration for Core-Haskell. For the moment we
+  %do not support nested types; therefore we explicitly have to unfold the 
+  %lists @{text "co_lst"}, @{text "assoc_lst"} and so on. This will be improved
+  %in a future version of Nominal Isabelle. Apart from that, the 
+  %declaration follows closely the original in Figure~\ref{corehas}. The
+  %point of our work is that having made such a declaration in Nominal Isabelle,
+  %one obtains automatically a reasoning infrastructure for Core-Haskell.
+  %\label{nominalcorehas}}
+  %\end{figure}
+*}
+
+
+section {* Strong Induction Principles *}
+
+text {*
+  In the previous section we derived induction principles for $\alpha$-equated terms. 
+  We call such induction principles \emph{weak}, because for a 
+  term-constructor \mbox{@{text "C\<^sup>\<alpha> x\<^isub>1\<dots>x\<^isub>r"}}
+  the induction hypothesis requires us to establish the implications \eqref{weakprem}.
+  The problem with these implications is that in general they are difficult to establish.
+  The reason is that we cannot make any assumption about the bound atoms that might be in @{text "C\<^sup>\<alpha>"}. 
+  %%(for example we cannot assume the variable convention for them).
+
+  In \cite{UrbanTasson05} we introduced a method for automatically
+  strengthening weak induction principles for terms containing single
+  binders. These stronger induction principles allow the user to make additional
+  assumptions about bound atoms. 
+  %These additional assumptions amount to a formal
+  %version of the informal variable convention for binders. 
+  To sketch how this strengthening extends to the case of multiple binders, we use as
+  running example the term-constructors @{text "Lam"} and @{text "Let"}
+  from example \eqref{letpat}. Instead of establishing @{text " P\<^bsub>trm\<^esub> t \<and> P\<^bsub>pat\<^esub> p"},
+  the stronger induction principle for \eqref{letpat} establishes properties @{text " P\<^bsub>trm\<^esub> c t \<and> P\<^bsub>pat\<^esub> c p"}
+  where the additional parameter @{text c} controls
+  which freshness assumptions the binders should satisfy. For the two term constructors 
+  this means that the user has to establish in inductions the implications
+  %
+  \begin{center}
+  \begin{tabular}{l}
+  @{text "\<forall>a t c. {atom a} \<FRESH>\<^sup>* c \<and> (\<forall>d. P\<^bsub>trm\<^esub> d t) \<Rightarrow> P\<^bsub>trm\<^esub> c (Lam a t)"}\\
+  @{text "\<forall>p t c. (set (bn p)) \<FRESH>\<^sup>* c \<and> (\<forall>d. P\<^bsub>pat\<^esub> d p) \<and> (\<forall>d. P\<^bsub>trm\<^esub> d t) \<and> \<Rightarrow> P\<^bsub>trm\<^esub> c (Let p t)"}\\%[-0mm]
+  \end{tabular}
+  \end{center}
+
+  In \cite{UrbanTasson05} we showed how the weaker induction principles imply
+  the stronger ones. This was done by some quite complicated, nevertheless automated,
+  induction proof. In this paper we simplify this work by leveraging the automated proof
+  methods from the function package of Isabelle/HOL. 
+  The reasoning principle these methods employ is well-founded induction. 
+  To use them in our setting, we have to discharge
+  two proof obligations: one is that we have
+  well-founded measures (for each type @{text "ty"}$^\alpha_{1..n}$) that decrease in 
+  every induction step and the other is that we have covered all cases. 
+  As measures we use the size functions 
+  @{text "size_ty"}$^\alpha_{1..n}$, which we lifted in the previous section and which are 
+  all well-founded. %It is straightforward to establish that these measures decrease 
+  %in every induction step.
+  
+  What is left to show is that we covered all cases. To do so, we use 
+  a \emph{cases lemma} derived for each type. For the terms in \eqref{letpat} 
+  this lemma is of the form
+  %
+  \begin{equation}\label{weakcases}
+  \infer{@{text "P\<^bsub>trm\<^esub>"}}
+  {\begin{array}{l@ {\hspace{9mm}}l}
+  @{text "\<forall>x. t = Var x \<Rightarrow> P\<^bsub>trm\<^esub>"} & @{text "\<forall>a t'. t = Lam a t' \<Rightarrow> P\<^bsub>trm\<^esub>"}\\
+  @{text "\<forall>t\<^isub>1 t\<^isub>2. t = App t\<^isub>1 t\<^isub>2 \<Rightarrow> P\<^bsub>trm\<^esub>"} & @{text "\<forall>p t'. t = Let p t' \<Rightarrow> P\<^bsub>trm\<^esub>"}\\
+  \end{array}}\\[-1mm]
+  \end{equation}
+  %
+  where we have a premise for each term-constructor.
+  The idea behind such cases lemmas is that we can conclude with a property @{text "P\<^bsub>trm\<^esub>"},
+  provided we can show that this property holds if we substitute for @{text "t"} all 
+  possible term-constructors. 
+  
+  The only remaining difficulty is that in order to derive the stronger induction
+  principles conveniently, the cases lemma in \eqref{weakcases} is too weak. For this note that
+  in order to apply this lemma, we have to establish @{text "P\<^bsub>trm\<^esub>"} for \emph{all} @{text Lam}- and 
+  \emph{all} @{text Let}-terms. 
+  What we need instead is a cases lemma where we only have to consider terms that have 
+  binders that are fresh w.r.t.~a context @{text "c"}. This gives the implications
+  %
+  \begin{center}
+  \begin{tabular}{l}
+  @{text "\<forall>a t'. t = Lam a t' \<and> {atom a} \<FRESH>\<^sup>* c \<Rightarrow> P\<^bsub>trm\<^esub>"}\\
+  @{text "\<forall>p t'. t = Let p t' \<and> (set (bn p)) \<FRESH>\<^sup>* c \<Rightarrow> P\<^bsub>trm\<^esub>"}\\%[-2mm]
+  \end{tabular}
+  \end{center}
+  %
+  \noindent
+  which however can be relatively easily be derived from the implications in \eqref{weakcases} 
+  by a renaming using Properties \ref{supppermeq} and \ref{avoiding}. In the first case we know
+  that @{text "{atom a} \<FRESH>\<^sup>* Lam a t"}. Property \eqref{avoiding} provides us therefore with 
+  a permutation @{text q}, such that @{text "{atom (q \<bullet> a)} \<FRESH>\<^sup>* c"} and 
+  @{text "supp (Lam a t) \<FRESH>\<^sup>* q"} hold.
+  By using Property \ref{supppermeq}, we can infer from the latter 
+  that @{text "Lam (q \<bullet> a) (q \<bullet> t) = Lam a t"}
+  and we are done with this case.
+
+  The @{text Let}-case involving a (non-recursive) deep binder is a bit more complicated.
+  The reason is that the we cannot apply Property \ref{avoiding} to the whole term @{text "Let p t"},
+  because @{text p} might contain names that are bound (by @{text bn}) and so are 
+  free. To solve this problem we have to introduce a permutation function that only
+  permutes names bound by @{text bn} and leaves the other names unchanged. We do this again
+  by lifting. For a
+  clause @{text "bn (C x\<^isub>1 \<dots> x\<^isub>r) = rhs"}, we define 
+  %
+  \begin{center}
+  @{text "p \<bullet>\<^bsub>bn\<^esub> (C x\<^isub>1 \<dots> x\<^isub>r) \<equiv> C y\<^isub>1 \<dots> y\<^isub>r"}  with
+  $\begin{cases}
+  \text{@{text "y\<^isub>i \<equiv> x\<^isub>i"} provided @{text "x\<^isub>i"} does not occur in @{text "rhs"}}\\
+  \text{@{text "y\<^isub>i \<equiv> p \<bullet>\<^bsub>bn'\<^esub> x\<^isub>i"} provided @{text "bn' x\<^isub>i"} is in @{text "rhs"}}\\
+  \text{@{text "y\<^isub>i \<equiv> p \<bullet> x\<^isub>i"} otherwise}  
+  \end{cases}$
+  \end{center}
+  %
+  %\noindent
+  %with @{text "y\<^isub>i"} determined as follows:
+  %
+  %\begin{center}
+  %\begin{tabular}{c@ {\hspace{2mm}}p{0.9\textwidth}}
+  %$\bullet$ & @{text "y\<^isub>i \<equiv> x\<^isub>i"} provided @{text "x\<^isub>i"} does not occur in @{text "rhs"}\\
+  %$\bullet$ & @{text "y\<^isub>i \<equiv> p \<bullet>\<^bsub>bn'\<^esub> x\<^isub>i"} provided @{text "bn' x\<^isub>i"} is in @{text "rhs"}\\
+  %$\bullet$ & @{text "y\<^isub>i \<equiv> p \<bullet> x\<^isub>i"} otherwise
+  %\end{tabular}
+  %\end{center}
+  %
+  \noindent
+  Now Properties \ref{supppermeq} and \ref{avoiding} give us a permutation @{text q} such that
+  @{text "(set (bn (q \<bullet>\<^bsub>bn\<^esub> p)) \<FRESH>\<^sup>* c"} holds and such that @{text "[q \<bullet>\<^bsub>bn\<^esub> p]\<^bsub>list\<^esub>.(q \<bullet> t)"}
+  is equal to @{text "[p]\<^bsub>list\<^esub>. t"}. We can also show that @{text "(q \<bullet>\<^bsub>bn\<^esub> p) \<approx>\<^bsub>bn\<^esub> p"}. 
+  These facts establish that @{text "Let (q \<bullet>\<^bsub>bn\<^esub> p) (p \<bullet> t) = Let p t"}, as we need. This
+  completes the non-trivial cases in \eqref{letpat} for strengthening the corresponding induction
+  principle.
+  
+
+
+  %A natural question is
+  %whether we can also strengthen the weak induction principles involving
+  %the general binders presented here. We will indeed be able to so, but for this we need an 
+  %additional notion for permuting deep binders. 
+
+  %Given a binding function @{text "bn"} we define an auxiliary permutation 
+  %operation @{text "_ \<bullet>\<^bsub>bn\<^esub> _"} which permutes only bound arguments in a deep binder.
+  %Assuming a clause of @{text bn} is given as 
+  %
+  %\begin{center}
+  %@{text "bn (C x\<^isub>1 \<dots> x\<^isub>r) = rhs"}, 
+  %\end{center}
+
+  %\noindent 
+  %then we define 
+  %
+  %\begin{center}
+  %@{text "p \<bullet>\<^bsub>bn\<^esub> (C x\<^isub>1 \<dots> x\<^isub>r) \<equiv> C y\<^isub>1 \<dots> y\<^isub>r"} 
+  %\end{center}
+  
+  %\noindent
+  %with @{text "y\<^isub>i"} determined as follows:
+  %
+  %\begin{center}
+  %\begin{tabular}{c@ {\hspace{2mm}}p{7cm}}
+  %$\bullet$ & @{text "y\<^isub>i \<equiv> x\<^isub>i"} provided @{text "x\<^isub>i"} does not occur in @{text "rhs"}\\
+  %$\bullet$ & @{text "y\<^isub>i \<equiv> p \<bullet>\<^bsub>bn'\<^esub> x\<^isub>i"} provided @{text "bn' x\<^isub>i"} is in @{text "rhs"}\\
+  %$\bullet$ & @{text "y\<^isub>i \<equiv> p \<bullet> x\<^isub>i"} otherwise
+  %\end{tabular}
+  %\end{center}
+  
+  %\noindent
+  %Using again the quotient package  we can lift the @{text "_ \<bullet>\<^bsub>bn\<^esub> _"} function to 
+  %$\alpha$-equated terms. We can then prove the following two facts
+
+  %\begin{lemma}\label{permutebn} 
+  %Given a binding function @{text "bn\<^sup>\<alpha>"} then for all @{text p}
+  %{\it (i)} @{text "p \<bullet> (bn\<^sup>\<alpha> x) = bn\<^sup>\<alpha> (p \<bullet>\<AL>\<^bsub>bn\<^esub> x)"} and {\it (ii)}
+  %  @{text "fa_bn\<^isup>\<alpha> x = fa_bn\<^isup>\<alpha> (p \<bullet>\<AL>\<^bsub>bn\<^esub> x)"}.
+  %\end{lemma}
+
+  %\begin{proof} 
+  %By induction on @{text x}. The equations follow by simple unfolding 
+  %of the definitions. 
+  %\end{proof}
+
+  %\noindent
+  %The first property states that a permutation applied to a binding function is
+  %equivalent to first permuting the binders and then calculating the bound
+  %atoms. The second amounts to the fact that permuting the binders has no 
+  %effect on the free-atom function. The main point of this permutation
+  %function, however, is that if we have a permutation that is fresh 
+  %for the support of an object @{text x}, then we can use this permutation 
+  %to rename the binders in @{text x}, without ``changing'' @{text x}. In case of the 
+  %@{text "Let"} term-constructor from the example shown 
+  %in \eqref{letpat} this means for a permutation @{text "r"}
+  %%
+  %\begin{equation}\label{renaming}
+  %\begin{array}{l}
+  %\mbox{if @{term "supp (Abs_lst (bn p) t\<^isub>2)  \<sharp>* r"}}\\ 
+  %\qquad\mbox{then @{text "Let p t\<^isub>1 t\<^isub>2 = Let (r \<bullet>\<AL>\<^bsub>bn_pat\<^esub> p) t\<^isub>1 (r \<bullet> t\<^isub>2)"}}
+  %\end{array}
+  %\end{equation}
+
+  %\noindent
+  %This fact will be crucial when establishing the strong induction principles below.
+
+ 
+  %In our running example about @{text "Let"}, the strong induction
+  %principle means that instead 
+  %of establishing the implication 
+  %
+  %\begin{center}
+  %@{text "\<forall>p t\<^isub>1 t\<^isub>2. P\<^bsub>pat\<^esub> p \<and> P\<^bsub>trm\<^esub> t\<^isub>1 \<and> P\<^bsub>trm\<^esub> t\<^isub>2 \<Rightarrow> P\<^bsub>trm\<^esub> (Let p t\<^isub>1 t\<^isub>2)"}
+  %\end{center}
+  %
+  %\noindent
+  %it is sufficient to establish the following implication
+  %
+  %\begin{equation}\label{strong}
+  %\mbox{\begin{tabular}{l}
+  %@{text "\<forall>p t\<^isub>1 t\<^isub>2 c."}\\
+  %\hspace{5mm}@{text "set (bn p) #\<^sup>* c \<and>"}\\
+  %\hspace{5mm}@{text "(\<forall>d. P\<^bsub>pat\<^esub> d p) \<and> (\<forall>d. P\<^bsub>trm\<^esub> d t\<^isub>1) \<and> (\<forall>d. P\<^bsub>trm\<^esub> d t\<^isub>2)"}\\
+  %\hspace{15mm}@{text "\<Rightarrow> P\<^bsub>trm\<^esub> c (Let p t\<^isub>1 t\<^isub>2)"}
+  %\end{tabular}}
+  %\end{equation}
+  %
+  %\noindent 
+  %While this implication contains an additional argument, namely @{text c}, and 
+  %also additional universal quantifications, it is usually easier to establish.
+  %The reason is that we have the freshness 
+  %assumption @{text "set (bn\<^sup>\<alpha> p) #\<^sup>* c"}, whereby @{text c} can be arbitrarily 
+  %chosen by the user as long as it has finite support.
+  %
+  %Let us now show how we derive the strong induction principles from the
+  %weak ones. In case of the @{text "Let"}-example we derive by the weak 
+  %induction the following two properties
+  %
+  %\begin{equation}\label{hyps}
+  %@{text "\<forall>q c. P\<^bsub>trm\<^esub> c (q \<bullet> t)"} \hspace{4mm} 
+  %@{text "\<forall>q\<^isub>1 q\<^isub>2 c. P\<^bsub>pat\<^esub> (q\<^isub>1 \<bullet>\<AL>\<^bsub>bn\<^esub> (q\<^isub>2 \<bullet> p))"}
+  %\end{equation} 
+  %
+  %\noindent
+  %For the @{text Let} term-constructor  we therefore have to establish @{text "P\<^bsub>trm\<^esub> c (q \<bullet> Let p t\<^isub>1 t\<^isub>2)"} 
+  %assuming \eqref{hyps} as induction hypotheses (the first for @{text t\<^isub>1} and @{text t\<^isub>2}). 
+  %By Property~\ref{avoiding} we
+  %obtain a permutation @{text "r"} such that 
+  %
+  %\begin{equation}\label{rprops}
+  %@{term "(r \<bullet> set (bn (q \<bullet> p))) \<sharp>* c "}\hspace{4mm}
+  %@{term "supp (Abs_lst (bn (q \<bullet> p)) (q \<bullet> t\<^isub>2)) \<sharp>* r"}
+  %\end{equation}
+  %
+  %\noindent
+  %hold. The latter fact and \eqref{renaming} give us
+  %%
+  %\begin{center}
+  %\begin{tabular}{l}
+  %@{text "Let (q \<bullet> p) (q \<bullet> t\<^isub>1) (q \<bullet> t\<^isub>2) ="} \\
+  %\hspace{15mm}@{text "Let (r \<bullet>\<AL>\<^bsub>bn\<^esub> (q \<bullet> p)) (q \<bullet> t\<^isub>1) (r \<bullet> (q \<bullet> t\<^isub>2))"}
+  %\end{tabular}
+  %\end{center}
+  %
+  %\noindent
+  %So instead of proving @{text "P\<^bsub>trm\<^esub> c (q \<bullet> Let p t\<^isub>1 t\<^isub>2)"}, we can equally
+  %establish @{text "P\<^bsub>trm\<^esub> c (Let (r \<bullet>\<AL>\<^bsub>bn\<^esub> (q \<bullet> p)) (q \<bullet> t\<^isub>1) (r \<bullet> (q \<bullet> t\<^isub>2)))"}.
+  %To do so, we will use the implication \eqref{strong} of the strong induction
+  %principle, which requires us to discharge
+  %the following four proof obligations:
+  %%
+  %\begin{center}
+  %\begin{tabular}{rl}
+  %{\it (i)} &   @{text "set (bn (r \<bullet>\<AL>\<^bsub>bn\<^esub> (q \<bullet> p))) #\<^sup>* c"}\\
+  %{\it (ii)} &  @{text "\<forall>d. P\<^bsub>pat\<^esub> d (r \<bullet>\<AL>\<^bsub>bn\<^esub> (q \<bullet> p))"}\\
+  %{\it (iii)} & @{text "\<forall>d. P\<^bsub>trm\<^esub> d (q \<bullet> t\<^isub>1)"}\\
+  %{\it (iv)} & @{text "\<forall>d. P\<^bsub>trm\<^esub> d (r \<bullet> (q \<bullet> t\<^isub>2))"}\\
+  %\end{tabular}
+  %\end{center}
+  %
+  %\noindent
+  %The first follows from \eqref{rprops} and Lemma~\ref{permutebn}.{\it (i)}; the 
+  %others from the induction hypotheses in \eqref{hyps} (in the fourth case
+  %we have to use the fact that @{term "(r \<bullet> (q \<bullet> t\<^isub>2)) = (r + q) \<bullet> t\<^isub>2"}).
+  %
+  %Taking now the identity permutation @{text 0} for the permutations in \eqref{hyps},
+  %we can establish our original goals, namely @{text "P\<^bsub>trm\<^esub> c t"} and \mbox{@{text "P\<^bsub>pat\<^esub> c p"}}.
+  %This completes the proof showing that the weak induction principles imply 
+  %the strong induction principles. 
+*}
+
+
+section {* Related Work\label{related} *}
+
+text {*
+  To our knowledge the earliest usage of general binders in a theorem prover
+  is described in \cite{NaraschewskiNipkow99} about a formalisation of the
+  algorithm W. This formalisation implements binding in type-schemes using a
+  de-Bruijn indices representation. Since type-schemes in W contain only a single
+  place where variables are bound, different indices do not refer to different binders (as in the usual
+  de-Bruijn representation), but to different bound variables. A similar idea
+  has been recently explored for general binders in the locally nameless
+  approach to binding \cite{chargueraud09}.  There, de-Bruijn indices consist
+  of two numbers, one referring to the place where a variable is bound, and the
+  other to which variable is bound. The reasoning infrastructure for both
+  representations of bindings comes for free in theorem provers like Isabelle/HOL or
+  Coq, since the corresponding term-calculi can be implemented as ``normal''
+  datatypes.  However, in both approaches it seems difficult to achieve our
+  fine-grained control over the ``semantics'' of bindings (i.e.~whether the
+  order of binders should matter, or vacuous binders should be taken into
+  account). %To do so, one would require additional predicates that filter out
+  %unwanted terms. Our guess is that such predicates result in rather
+  %intricate formal reasoning.
+
+  Another technique for representing binding is higher-order abstract syntax
+  (HOAS). %, which for example is implemented in the Twelf system. 
+  This %%representation
+  technique supports very elegantly many aspects of \emph{single} binding, and
+  impressive work has been done that uses HOAS for mechanising the metatheory
+  of SML~\cite{LeeCraryHarper07}. We are, however, not aware how multiple
+  binders of SML are represented in this work. Judging from the submitted
+  Twelf-solution for the POPLmark challenge, HOAS cannot easily deal with
+  binding constructs where the number of bound variables is not fixed. %For example 
+  In the second part of this challenge, @{text "Let"}s involve
+  patterns that bind multiple variables at once. In such situations, HOAS
+  seems to have to resort to the iterated-single-binders-approach with
+  all the unwanted consequences when reasoning about the resulting terms.
+
+  %Two formalisations involving general binders have been 
+  %performed in older
+  %versions of Nominal Isabelle (one about Psi-calculi and one about algorithm W 
+  %\cite{BengtsonParow09,UrbanNipkow09}).  Both
+  %use the approach based on iterated single binders. Our experience with
+  %the latter formalisation has been disappointing. The major pain arose from
+  %the need to ``unbind'' variables. This can be done in one step with our
+  %general binders described in this paper, but needs a cumbersome
+  %iteration with single binders. The resulting formal reasoning turned out to
+  %be rather unpleasant. The hope is that the extension presented in this paper
+  %is a substantial improvement.
+ 
+  The most closely related work to the one presented here is the Ott-tool
+  \cite{ott-jfp} and the C$\alpha$ml language \cite{Pottier06}. Ott is a nifty
+  front-end for creating \LaTeX{} documents from specifications of
+  term-calculi involving general binders. For a subset of the specifications
+  Ott can also generate theorem prover code using a raw representation of
+  terms, and in Coq also a locally nameless representation. The developers of
+  this tool have also put forward (on paper) a definition for
+  $\alpha$-equivalence of terms that can be specified in Ott.  This definition is
+  rather different from ours, not using any nominal techniques.  To our
+  knowledge there is no concrete mathematical result concerning this
+  notion of $\alpha$-equivalence.  Also the definition for the 
+  notion of free variables
+  is work in progress.
+
+  Although we were heavily inspired by the syntax of Ott,
+  its definition of $\alpha$-equi\-valence is unsuitable for our extension of
+  Nominal Isabelle. First, it is far too complicated to be a basis for
+  automated proofs implemented on the ML-level of Isabelle/HOL. Second, it
+  covers cases of binders depending on other binders, which just do not make
+  sense for our $\alpha$-equated terms. Third, it allows empty types that have no
+  meaning in a HOL-based theorem prover. We also had to generalise slightly Ott's 
+  binding clauses. In Ott you specify binding clauses with a single body; we 
+  allow more than one. We have to do this, because this makes a difference 
+  for our notion of $\alpha$-equivalence in case of \isacommand{bind (set)} and 
+  \isacommand{bind (set+)}. 
+  %
+  %Consider the examples
+  %
+  %\begin{center}
+  %\begin{tabular}{@ {}l@ {\hspace{2mm}}l@ {}}
+  %@{text "Foo\<^isub>1 xs::name fset t::trm s::trm"} &  
+  %    \isacommand{bind (set)} @{text "xs"} \isacommand{in} @{text "t s"}\\
+  %@{text "Foo\<^isub>2 xs::name fset t::trm s::trm"} &  
+  %    \isacommand{bind (set)} @{text "xs"} \isacommand{in} @{text "t"}, 
+  %    \isacommand{bind (set)} @{text "xs"} \isacommand{in} @{text "s"}\\
+  %\end{tabular}
+  %\end{center}
+  %
+  %\noindent
+  %In the first term-constructor we have a single
+  %body that happens to be ``spread'' over two arguments; in the second term-constructor we have
+  %two independent bodies in which the same variables are bound. As a result we 
+  %have
+  % 
+  %\begin{center}
+  %\begin{tabular}{r@ {\hspace{1.5mm}}c@ {\hspace{1.5mm}}l}
+  %@{text "Foo\<^isub>1 {a, b} (a, b) (a, b)"} & $\not=$ & 
+  %@{text "Foo\<^isub>1 {a, b} (a, b) (b, a)"}\\
+  %@{text "Foo\<^isub>2 {a, b} (a, b) (a, b)"} & $=$ & 
+  %@{text "Foo\<^isub>2 {a, b} (a, b) (b, a)"}\\
+  %\end{tabular}
+  %\end{center}
+  %
+  %\noindent
+  %and therefore need the extra generality to be able to distinguish between 
+  %both specifications.
+  Because of how we set up our definitions, we also had to impose some restrictions
+  (like a single binding function for a deep binder) that are not present in Ott. 
+  %Our
+  %expectation is that we can still cover many interesting term-calculi from
+  %programming language research, for example Core-Haskell. 
+
+  Pottier presents in \cite{Pottier06} a language, called C$\alpha$ml, for 
+  representing terms with general binders inside OCaml. This language is
+  implemented as a front-end that can be translated to OCaml with the help of
+  a library. He presents a type-system in which the scope of general binders
+  can be specified using special markers, written @{text "inner"} and 
+  @{text "outer"}. It seems our and his specifications can be
+  inter-translated as long as ours use the binding mode 
+  \isacommand{bind} only.
+  However, we have not proved this. Pottier gives a definition for 
+  $\alpha$-equivalence, which also uses a permutation operation (like ours).
+  Still, this definition is rather different from ours and he only proves that
+  it defines an equivalence relation. A complete
+  reasoning infrastructure is well beyond the purposes of his language. 
+  Similar work for Haskell with similar results was reported by Cheney \cite{Cheney05a}.
+  
+  In a slightly different domain (programming with dependent types), the 
+  paper \cite{Altenkirch10} presents a calculus with a notion of 
+  $\alpha$-equivalence related to our binding mode \isacommand{bind (set+)}.
+  The definition in \cite{Altenkirch10} is similar to the one by Pottier, except that it
+  has a more operational flavour and calculates a partial (renaming) map. 
+  In this way, the definition can deal with vacuous binders. However, to our
+  best knowledge, no concrete mathematical result concerning this
+  definition of $\alpha$-equivalence has been proved.\\[-7mm]    
+*}
+
+section {* Conclusion *}
+
+text {*
+  We have presented an extension of Nominal Isabelle for dealing with
+  general binders, that is term-constructors having multiple bound 
+  variables. For this extension we introduced new definitions of 
+  $\alpha$-equivalence and automated all necessary proofs in Isabelle/HOL.
+  To specify general binders we used the specifications from Ott, but extended them 
+  in some places and restricted
+  them in others so that they make sense in the context of $\alpha$-equated terms. 
+  We also introduced two binding modes (set and set+) that do not 
+  exist in Ott. 
+  We have tried out the extension with calculi such as Core-Haskell, type-schemes 
+  and approximately a  dozen of other typical examples from programming 
+  language research~\cite{SewellBestiary}. 
+  %The code
+  %will eventually become part of the next Isabelle distribution.\footnote{For the moment
+  %it can be downloaded from the Mercurial repository linked at
+  %\href{http://isabelle.in.tum.de/nominal/download}
+  %{http://isabelle.in.tum.de/nominal/download}.}
+
+  We have left out a discussion about how functions can be defined over
+  $\alpha$-equated terms involving general binders. In earlier versions of Nominal
+  Isabelle this turned out to be a thorny issue.  We
+  hope to do better this time by using the function package that has recently
+  been implemented in Isabelle/HOL and also by restricting function
+  definitions to equivariant functions (for them we can
+  provide more automation).
+
+  %There are some restrictions we imposed in this paper that we would like to lift in
+  %future work. One is the exclusion of nested datatype definitions. Nested
+  %datatype definitions allow one to specify, for instance, the function kinds
+  %in Core-Haskell as @{text "TFun string (ty list)"} instead of the unfolded
+  %version @{text "TFun string ty_list"} (see Figure~\ref{nominalcorehas}). To
+  %achieve this, we need a slightly more clever implementation than we have at the moment. 
+
+  %A more interesting line of investigation is whether we can go beyond the 
+  %simple-minded form of binding functions that we adopted from Ott. At the moment, binding
+  %functions can only return the empty set, a singleton atom set or unions
+  %of atom sets (similarly for lists). It remains to be seen whether 
+  %properties like
+  %%
+  %\begin{center}
+  %@{text "fa_ty x  =  bn x \<union> fa_bn x"}.
+  %\end{center}
+  %
+  %\noindent
+  %allow us to support more interesting binding functions. 
+  %
+  %We have also not yet played with other binding modes. For example we can
+  %imagine that there is need for a binding mode 
+  %where instead of lists, we abstract lists of distinct elements.
+  %Once we feel confident about such binding modes, our implementation 
+  %can be easily extended to accommodate them.
+  %
+  \smallskip
+  \noindent
+  {\bf Acknowledgements:} %We are very grateful to Andrew Pitts for  
+  %many discussions about Nominal Isabelle. 
+  We thank Peter Sewell for 
+  making the informal notes \cite{SewellBestiary} available to us and 
+  also for patiently explaining some of the finer points of the Ott-tool.\\[-7mm]    
+  %Stephanie Weirich suggested to separate the subgrammars
+  %of kinds and types in our Core-Haskell example. \\[-6mm] 
+*}
+
+
+(*<*)
+end
+(*>*)
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/ESOP-Paper/ROOT.ML	Tue Mar 29 23:52:14 2011 +0200
@@ -0,0 +1,4 @@
+quick_and_dirty := true;
+no_document use_thys ["~~/src/HOL/Library/LaTeXsugar", 
+                      "../Nominal/Nominal2"];
+use_thys ["Paper"];
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/ESOP-Paper/ROOTa.ML	Tue Mar 29 23:52:14 2011 +0200
@@ -0,0 +1,4 @@
+quick_and_dirty := true;
+no_document use_thys ["~~/src/HOL/Library/LaTeXsugar", 
+                      "../Nominal/Nominal2"];
+use_thys ["Appendix"];
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/ESOP-Paper/document/llncs.cls	Tue Mar 29 23:52:14 2011 +0200
@@ -0,0 +1,1207 @@
+% LLNCS DOCUMENT CLASS -- version 2.17 (12-Jul-2010)
+% Springer Verlag LaTeX2e support for Lecture Notes in Computer Science
+%
+%%
+%% \CharacterTable
+%%  {Upper-case    \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z
+%%   Lower-case    \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z
+%%   Digits        \0\1\2\3\4\5\6\7\8\9
+%%   Exclamation   \!     Double quote  \"     Hash (number) \#
+%%   Dollar        \$     Percent       \%     Ampersand     \&
+%%   Acute accent  \'     Left paren    \(     Right paren   \)
+%%   Asterisk      \*     Plus          \+     Comma         \,
+%%   Minus         \-     Point         \.     Solidus       \/
+%%   Colon         \:     Semicolon     \;     Less than     \<
+%%   Equals        \=     Greater than  \>     Question mark \?
+%%   Commercial at \@     Left bracket  \[     Backslash     \\
+%%   Right bracket \]     Circumflex    \^     Underscore    \_
+%%   Grave accent  \`     Left brace    \{     Vertical bar  \|
+%%   Right brace   \}     Tilde         \~}
+%%
+\NeedsTeXFormat{LaTeX2e}[1995/12/01]
+\ProvidesClass{llncs}[2010/07/12 v2.17
+^^J LaTeX document class for Lecture Notes in Computer Science]
+% Options
+\let\if@envcntreset\iffalse
+\DeclareOption{envcountreset}{\let\if@envcntreset\iftrue}
+\DeclareOption{citeauthoryear}{\let\citeauthoryear=Y}
+\DeclareOption{oribibl}{\let\oribibl=Y}
+\let\if@custvec\iftrue
+\DeclareOption{orivec}{\let\if@custvec\iffalse}
+\let\if@envcntsame\iffalse
+\DeclareOption{envcountsame}{\let\if@envcntsame\iftrue}
+\let\if@envcntsect\iffalse
+\DeclareOption{envcountsect}{\let\if@envcntsect\iftrue}
+\let\if@runhead\iffalse
+\DeclareOption{runningheads}{\let\if@runhead\iftrue}
+
+\let\if@openright\iftrue
+\let\if@openbib\iffalse
+\DeclareOption{openbib}{\let\if@openbib\iftrue}
+
+% languages
+\let\switcht@@therlang\relax
+\def\ds@deutsch{\def\switcht@@therlang{\switcht@deutsch}}
+\def\ds@francais{\def\switcht@@therlang{\switcht@francais}}
+
+\DeclareOption*{\PassOptionsToClass{\CurrentOption}{article}}
+
+\ProcessOptions
+
+\LoadClass[twoside]{article}
+\RequirePackage{multicol} % needed for the list of participants, index
+\RequirePackage{aliascnt}
+
+\setlength{\textwidth}{12.2cm}
+\setlength{\textheight}{19.3cm}
+\renewcommand\@pnumwidth{2em}
+\renewcommand\@tocrmarg{3.5em}
+%
+\def\@dottedtocline#1#2#3#4#5{%
+  \ifnum #1>\c@tocdepth \else
+    \vskip \z@ \@plus.2\p@
+    {\leftskip #2\relax \rightskip \@tocrmarg \advance\rightskip by 0pt plus 2cm
+               \parfillskip -\rightskip \pretolerance=10000
+     \parindent #2\relax\@afterindenttrue
+     \interlinepenalty\@M
+     \leavevmode
+     \@tempdima #3\relax
+     \advance\leftskip \@tempdima \null\nobreak\hskip -\leftskip
+     {#4}\nobreak
+     \leaders\hbox{$\m@th
+        \mkern \@dotsep mu\hbox{.}\mkern \@dotsep
+        mu$}\hfill
+     \nobreak
+     \hb@xt@\@pnumwidth{\hfil\normalfont \normalcolor #5}%
+     \par}%
+  \fi}
+%
+\def\switcht@albion{%
+\def\abstractname{Abstract.}
+\def\ackname{Acknowledgement.}
+\def\andname{and}
+\def\lastandname{\unskip, and}
+\def\appendixname{Appendix}
+\def\chaptername{Chapter}
+\def\claimname{Claim}
+\def\conjecturename{Conjecture}
+\def\contentsname{Table of Contents}
+\def\corollaryname{Corollary}
+\def\definitionname{Definition}
+\def\examplename{Example}
+\def\exercisename{Exercise}
+\def\figurename{Fig.}
+\def\keywordname{{\bf Keywords:}}
+\def\indexname{Index}
+\def\lemmaname{Lemma}
+\def\contriblistname{List of Contributors}
+\def\listfigurename{List of Figures}
+\def\listtablename{List of Tables}
+\def\mailname{{\it Correspondence to\/}:}
+\def\noteaddname{Note added in proof}
+\def\notename{Note}
+\def\partname{Part}
+\def\problemname{Problem}
+\def\proofname{Proof}
+\def\propertyname{Property}
+\def\propositionname{Proposition}
+\def\questionname{Question}
+\def\remarkname{Remark}
+\def\seename{see}
+\def\solutionname{Solution}
+\def\subclassname{{\it Subject Classifications\/}:}
+\def\tablename{Table}
+\def\theoremname{Theorem}}
+\switcht@albion
+% Names of theorem like environments are already defined
+% but must be translated if another language is chosen
+%
+% French section
+\def\switcht@francais{%\typeout{On parle francais.}%
+ \def\abstractname{R\'esum\'e.}%
+ \def\ackname{Remerciements.}%
+ \def\andname{et}%
+ \def\lastandname{ et}%
+ \def\appendixname{Appendice}
+ \def\chaptername{Chapitre}%
+ \def\claimname{Pr\'etention}%
+ \def\conjecturename{Hypoth\`ese}%
+ \def\contentsname{Table des mati\`eres}%
+ \def\corollaryname{Corollaire}%
+ \def\definitionname{D\'efinition}%
+ \def\examplename{Exemple}%
+ \def\exercisename{Exercice}%
+ \def\figurename{Fig.}%
+ \def\keywordname{{\bf Mots-cl\'e:}}
+ \def\indexname{Index}
+ \def\lemmaname{Lemme}%
+ \def\contriblistname{Liste des contributeurs}
+ \def\listfigurename{Liste des figures}%
+ \def\listtablename{Liste des tables}%
+ \def\mailname{{\it Correspondence to\/}:}
+ \def\noteaddname{Note ajout\'ee \`a l'\'epreuve}%
+ \def\notename{Remarque}%
+ \def\partname{Partie}%
+ \def\problemname{Probl\`eme}%
+ \def\proofname{Preuve}%
+ \def\propertyname{Caract\'eristique}%
+%\def\propositionname{Proposition}%
+ \def\questionname{Question}%
+ \def\remarkname{Remarque}%
+ \def\seename{voir}
+ \def\solutionname{Solution}%
+ \def\subclassname{{\it Subject Classifications\/}:}
+ \def\tablename{Tableau}%
+ \def\theoremname{Th\'eor\`eme}%
+}
+%
+% German section
+\def\switcht@deutsch{%\typeout{Man spricht deutsch.}%
+ \def\abstractname{Zusammenfassung.}%
+ \def\ackname{Danksagung.}%
+ \def\andname{und}%
+ \def\lastandname{ und}%
+ \def\appendixname{Anhang}%
+ \def\chaptername{Kapitel}%
+ \def\claimname{Behauptung}%
+ \def\conjecturename{Hypothese}%
+ \def\contentsname{Inhaltsverzeichnis}%
+ \def\corollaryname{Korollar}%
+%\def\definitionname{Definition}%
+ \def\examplename{Beispiel}%
+ \def\exercisename{\"Ubung}%
+ \def\figurename{Abb.}%
+ \def\keywordname{{\bf Schl\"usselw\"orter:}}
+ \def\indexname{Index}
+%\def\lemmaname{Lemma}%
+ \def\contriblistname{Mitarbeiter}
+ \def\listfigurename{Abbildungsverzeichnis}%
+ \def\listtablename{Tabellenverzeichnis}%
+ \def\mailname{{\it Correspondence to\/}:}
+ \def\noteaddname{Nachtrag}%
+ \def\notename{Anmerkung}%
+ \def\partname{Teil}%
+%\def\problemname{Problem}%
+ \def\proofname{Beweis}%
+ \def\propertyname{Eigenschaft}%
+%\def\propositionname{Proposition}%
+ \def\questionname{Frage}%
+ \def\remarkname{Anmerkung}%
+ \def\seename{siehe}
+ \def\solutionname{L\"osung}%
+ \def\subclassname{{\it Subject Classifications\/}:}
+ \def\tablename{Tabelle}%
+%\def\theoremname{Theorem}%
+}
+
+% Ragged bottom for the actual page
+\def\thisbottomragged{\def\@textbottom{\vskip\z@ plus.0001fil
+\global\let\@textbottom\relax}}
+
+\renewcommand\small{%
+   \@setfontsize\small\@ixpt{11}%
+   \abovedisplayskip 8.5\p@ \@plus3\p@ \@minus4\p@
+   \abovedisplayshortskip \z@ \@plus2\p@
+   \belowdisplayshortskip 4\p@ \@plus2\p@ \@minus2\p@
+   \def\@listi{\leftmargin\leftmargini
+               \parsep 0\p@ \@plus1\p@ \@minus\p@
+               \topsep 8\p@ \@plus2\p@ \@minus4\p@
+               \itemsep0\p@}%
+   \belowdisplayskip \abovedisplayskip
+}
+
+\frenchspacing
+\widowpenalty=10000
+\clubpenalty=10000
+
+\setlength\oddsidemargin   {63\p@}
+\setlength\evensidemargin  {63\p@}
+\setlength\marginparwidth  {90\p@}
+
+\setlength\headsep   {16\p@}
+
+\setlength\footnotesep{7.7\p@}
+\setlength\textfloatsep{8mm\@plus 2\p@ \@minus 4\p@}
+\setlength\intextsep   {8mm\@plus 2\p@ \@minus 2\p@}
+
+\setcounter{secnumdepth}{2}
+
+\newcounter {chapter}
+\renewcommand\thechapter      {\@arabic\c@chapter}
+
+\newif\if@mainmatter \@mainmattertrue
+\newcommand\frontmatter{\cleardoublepage
+            \@mainmatterfalse\pagenumbering{Roman}}
+\newcommand\mainmatter{\cleardoublepage
+       \@mainmattertrue\pagenumbering{arabic}}
+\newcommand\backmatter{\if@openright\cleardoublepage\else\clearpage\fi
+      \@mainmatterfalse}
+
+\renewcommand\part{\cleardoublepage
+                 \thispagestyle{empty}%
+                 \if@twocolumn
+                     \onecolumn
+                     \@tempswatrue
+                   \else
+                     \@tempswafalse
+                 \fi
+                 \null\vfil
+                 \secdef\@part\@spart}
+
+\def\@part[#1]#2{%
+    \ifnum \c@secnumdepth >-2\relax
+      \refstepcounter{part}%
+      \addcontentsline{toc}{part}{\thepart\hspace{1em}#1}%
+    \else
+      \addcontentsline{toc}{part}{#1}%
+    \fi
+    \markboth{}{}%
+    {\centering
+     \interlinepenalty \@M
+     \normalfont
+     \ifnum \c@secnumdepth >-2\relax
+       \huge\bfseries \partname~\thepart
+       \par
+       \vskip 20\p@
+     \fi
+     \Huge \bfseries #2\par}%
+    \@endpart}
+\def\@spart#1{%
+    {\centering
+     \interlinepenalty \@M
+     \normalfont
+     \Huge \bfseries #1\par}%
+    \@endpart}
+\def\@endpart{\vfil\newpage
+              \if@twoside
+                \null
+                \thispagestyle{empty}%
+                \newpage
+              \fi
+              \if@tempswa
+                \twocolumn
+              \fi}
+
+\newcommand\chapter{\clearpage
+                    \thispagestyle{empty}%
+                    \global\@topnum\z@
+                    \@afterindentfalse
+                    \secdef\@chapter\@schapter}
+\def\@chapter[#1]#2{\ifnum \c@secnumdepth >\m@ne
+                       \if@mainmatter
+                         \refstepcounter{chapter}%
+                         \typeout{\@chapapp\space\thechapter.}%
+                         \addcontentsline{toc}{chapter}%
+                                  {\protect\numberline{\thechapter}#1}%
+                       \else
+                         \addcontentsline{toc}{chapter}{#1}%
+                       \fi
+                    \else
+                      \addcontentsline{toc}{chapter}{#1}%
+                    \fi
+                    \chaptermark{#1}%
+                    \addtocontents{lof}{\protect\addvspace{10\p@}}%
+                    \addtocontents{lot}{\protect\addvspace{10\p@}}%
+                    \if@twocolumn
+                      \@topnewpage[\@makechapterhead{#2}]%
+                    \else
+                      \@makechapterhead{#2}%
+                      \@afterheading
+                    \fi}
+\def\@makechapterhead#1{%
+% \vspace*{50\p@}%
+  {\centering
+    \ifnum \c@secnumdepth >\m@ne
+      \if@mainmatter
+        \large\bfseries \@chapapp{} \thechapter
+        \par\nobreak
+        \vskip 20\p@
+      \fi
+    \fi
+    \interlinepenalty\@M
+    \Large \bfseries #1\par\nobreak
+    \vskip 40\p@
+  }}
+\def\@schapter#1{\if@twocolumn
+                   \@topnewpage[\@makeschapterhead{#1}]%
+                 \else
+                   \@makeschapterhead{#1}%
+                   \@afterheading
+                 \fi}
+\def\@makeschapterhead#1{%
+% \vspace*{50\p@}%
+  {\centering
+    \normalfont
+    \interlinepenalty\@M
+    \Large \bfseries  #1\par\nobreak
+    \vskip 40\p@
+  }}
+
+\renewcommand\section{\@startsection{section}{1}{\z@}%
+                       {-18\p@ \@plus -4\p@ \@minus -4\p@}%
+                       {12\p@ \@plus 4\p@ \@minus 4\p@}%
+                       {\normalfont\large\bfseries\boldmath
+                        \rightskip=\z@ \@plus 8em\pretolerance=10000 }}
+\renewcommand\subsection{\@startsection{subsection}{2}{\z@}%
+                       {-18\p@ \@plus -4\p@ \@minus -4\p@}%
+                       {8\p@ \@plus 4\p@ \@minus 4\p@}%
+                       {\normalfont\normalsize\bfseries\boldmath
+                        \rightskip=\z@ \@plus 8em\pretolerance=10000 }}
+\renewcommand\subsubsection{\@startsection{subsubsection}{3}{\z@}%
+                       {-18\p@ \@plus -4\p@ \@minus -4\p@}%
+                       {-0.5em \@plus -0.22em \@minus -0.1em}%
+                       {\normalfont\normalsize\bfseries\boldmath}}
+\renewcommand\paragraph{\@startsection{paragraph}{4}{\z@}%
+                       {-12\p@ \@plus -4\p@ \@minus -4\p@}%
+                       {-0.5em \@plus -0.22em \@minus -0.1em}%
+                       {\normalfont\normalsize\itshape}}
+\renewcommand\subparagraph[1]{\typeout{LLNCS warning: You should not use
+                  \string\subparagraph\space with this class}\vskip0.5cm
+You should not use \verb|\subparagraph| with this class.\vskip0.5cm}
+
+\DeclareMathSymbol{\Gamma}{\mathalpha}{letters}{"00}
+\DeclareMathSymbol{\Delta}{\mathalpha}{letters}{"01}
+\DeclareMathSymbol{\Theta}{\mathalpha}{letters}{"02}
+\DeclareMathSymbol{\Lambda}{\mathalpha}{letters}{"03}
+\DeclareMathSymbol{\Xi}{\mathalpha}{letters}{"04}
+\DeclareMathSymbol{\Pi}{\mathalpha}{letters}{"05}
+\DeclareMathSymbol{\Sigma}{\mathalpha}{letters}{"06}
+\DeclareMathSymbol{\Upsilon}{\mathalpha}{letters}{"07}
+\DeclareMathSymbol{\Phi}{\mathalpha}{letters}{"08}
+\DeclareMathSymbol{\Psi}{\mathalpha}{letters}{"09}
+\DeclareMathSymbol{\Omega}{\mathalpha}{letters}{"0A}
+
+\let\footnotesize\small
+
+\if@custvec
+\def\vec#1{\mathchoice{\mbox{\boldmath$\displaystyle#1$}}
+{\mbox{\boldmath$\textstyle#1$}}
+{\mbox{\boldmath$\scriptstyle#1$}}
+{\mbox{\boldmath$\scriptscriptstyle#1$}}}
+\fi
+
+\def\squareforqed{\hbox{\rlap{$\sqcap$}$\sqcup$}}
+\def\qed{\ifmmode\squareforqed\else{\unskip\nobreak\hfil
+\penalty50\hskip1em\null\nobreak\hfil\squareforqed
+\parfillskip=0pt\finalhyphendemerits=0\endgraf}\fi}
+
+\def\getsto{\mathrel{\mathchoice {\vcenter{\offinterlineskip
+\halign{\hfil
+$\displaystyle##$\hfil\cr\gets\cr\to\cr}}}
+{\vcenter{\offinterlineskip\halign{\hfil$\textstyle##$\hfil\cr\gets
+\cr\to\cr}}}
+{\vcenter{\offinterlineskip\halign{\hfil$\scriptstyle##$\hfil\cr\gets
+\cr\to\cr}}}
+{\vcenter{\offinterlineskip\halign{\hfil$\scriptscriptstyle##$\hfil\cr
+\gets\cr\to\cr}}}}}
+\def\lid{\mathrel{\mathchoice {\vcenter{\offinterlineskip\halign{\hfil
+$\displaystyle##$\hfil\cr<\cr\noalign{\vskip1.2pt}=\cr}}}
+{\vcenter{\offinterlineskip\halign{\hfil$\textstyle##$\hfil\cr<\cr
+\noalign{\vskip1.2pt}=\cr}}}
+{\vcenter{\offinterlineskip\halign{\hfil$\scriptstyle##$\hfil\cr<\cr
+\noalign{\vskip1pt}=\cr}}}
+{\vcenter{\offinterlineskip\halign{\hfil$\scriptscriptstyle##$\hfil\cr
+<\cr
+\noalign{\vskip0.9pt}=\cr}}}}}
+\def\gid{\mathrel{\mathchoice {\vcenter{\offinterlineskip\halign{\hfil
+$\displaystyle##$\hfil\cr>\cr\noalign{\vskip1.2pt}=\cr}}}
+{\vcenter{\offinterlineskip\halign{\hfil$\textstyle##$\hfil\cr>\cr
+\noalign{\vskip1.2pt}=\cr}}}
+{\vcenter{\offinterlineskip\halign{\hfil$\scriptstyle##$\hfil\cr>\cr
+\noalign{\vskip1pt}=\cr}}}
+{\vcenter{\offinterlineskip\halign{\hfil$\scriptscriptstyle##$\hfil\cr
+>\cr
+\noalign{\vskip0.9pt}=\cr}}}}}
+\def\grole{\mathrel{\mathchoice {\vcenter{\offinterlineskip
+\halign{\hfil
+$\displaystyle##$\hfil\cr>\cr\noalign{\vskip-1pt}<\cr}}}
+{\vcenter{\offinterlineskip\halign{\hfil$\textstyle##$\hfil\cr
+>\cr\noalign{\vskip-1pt}<\cr}}}
+{\vcenter{\offinterlineskip\halign{\hfil$\scriptstyle##$\hfil\cr
+>\cr\noalign{\vskip-0.8pt}<\cr}}}
+{\vcenter{\offinterlineskip\halign{\hfil$\scriptscriptstyle##$\hfil\cr
+>\cr\noalign{\vskip-0.3pt}<\cr}}}}}
+\def\bbbr{{\rm I\!R}} %reelle Zahlen
+\def\bbbm{{\rm I\!M}}
+\def\bbbn{{\rm I\!N}} %natuerliche Zahlen
+\def\bbbf{{\rm I\!F}}
+\def\bbbh{{\rm I\!H}}
+\def\bbbk{{\rm I\!K}}
+\def\bbbp{{\rm I\!P}}
+\def\bbbone{{\mathchoice {\rm 1\mskip-4mu l} {\rm 1\mskip-4mu l}
+{\rm 1\mskip-4.5mu l} {\rm 1\mskip-5mu l}}}
+\def\bbbc{{\mathchoice {\setbox0=\hbox{$\displaystyle\rm C$}\hbox{\hbox
+to0pt{\kern0.4\wd0\vrule height0.9\ht0\hss}\box0}}
+{\setbox0=\hbox{$\textstyle\rm C$}\hbox{\hbox
+to0pt{\kern0.4\wd0\vrule height0.9\ht0\hss}\box0}}
+{\setbox0=\hbox{$\scriptstyle\rm C$}\hbox{\hbox
+to0pt{\kern0.4\wd0\vrule height0.9\ht0\hss}\box0}}
+{\setbox0=\hbox{$\scriptscriptstyle\rm C$}\hbox{\hbox
+to0pt{\kern0.4\wd0\vrule height0.9\ht0\hss}\box0}}}}
+\def\bbbq{{\mathchoice {\setbox0=\hbox{$\displaystyle\rm
+Q$}\hbox{\raise
+0.15\ht0\hbox to0pt{\kern0.4\wd0\vrule height0.8\ht0\hss}\box0}}
+{\setbox0=\hbox{$\textstyle\rm Q$}\hbox{\raise
+0.15\ht0\hbox to0pt{\kern0.4\wd0\vrule height0.8\ht0\hss}\box0}}
+{\setbox0=\hbox{$\scriptstyle\rm Q$}\hbox{\raise
+0.15\ht0\hbox to0pt{\kern0.4\wd0\vrule height0.7\ht0\hss}\box0}}
+{\setbox0=\hbox{$\scriptscriptstyle\rm Q$}\hbox{\raise
+0.15\ht0\hbox to0pt{\kern0.4\wd0\vrule height0.7\ht0\hss}\box0}}}}
+\def\bbbt{{\mathchoice {\setbox0=\hbox{$\displaystyle\rm
+T$}\hbox{\hbox to0pt{\kern0.3\wd0\vrule height0.9\ht0\hss}\box0}}
+{\setbox0=\hbox{$\textstyle\rm T$}\hbox{\hbox
+to0pt{\kern0.3\wd0\vrule height0.9\ht0\hss}\box0}}
+{\setbox0=\hbox{$\scriptstyle\rm T$}\hbox{\hbox
+to0pt{\kern0.3\wd0\vrule height0.9\ht0\hss}\box0}}
+{\setbox0=\hbox{$\scriptscriptstyle\rm T$}\hbox{\hbox
+to0pt{\kern0.3\wd0\vrule height0.9\ht0\hss}\box0}}}}
+\def\bbbs{{\mathchoice
+{\setbox0=\hbox{$\displaystyle     \rm S$}\hbox{\raise0.5\ht0\hbox
+to0pt{\kern0.35\wd0\vrule height0.45\ht0\hss}\hbox
+to0pt{\kern0.55\wd0\vrule height0.5\ht0\hss}\box0}}
+{\setbox0=\hbox{$\textstyle        \rm S$}\hbox{\raise0.5\ht0\hbox
+to0pt{\kern0.35\wd0\vrule height0.45\ht0\hss}\hbox
+to0pt{\kern0.55\wd0\vrule height0.5\ht0\hss}\box0}}
+{\setbox0=\hbox{$\scriptstyle      \rm S$}\hbox{\raise0.5\ht0\hbox
+to0pt{\kern0.35\wd0\vrule height0.45\ht0\hss}\raise0.05\ht0\hbox
+to0pt{\kern0.5\wd0\vrule height0.45\ht0\hss}\box0}}
+{\setbox0=\hbox{$\scriptscriptstyle\rm S$}\hbox{\raise0.5\ht0\hbox
+to0pt{\kern0.4\wd0\vrule height0.45\ht0\hss}\raise0.05\ht0\hbox
+to0pt{\kern0.55\wd0\vrule height0.45\ht0\hss}\box0}}}}
+\def\bbbz{{\mathchoice {\hbox{$\mathsf\textstyle Z\kern-0.4em Z$}}
+{\hbox{$\mathsf\textstyle Z\kern-0.4em Z$}}
+{\hbox{$\mathsf\scriptstyle Z\kern-0.3em Z$}}
+{\hbox{$\mathsf\scriptscriptstyle Z\kern-0.2em Z$}}}}
+
+\let\ts\,
+
+\setlength\leftmargini  {17\p@}
+\setlength\leftmargin    {\leftmargini}
+\setlength\leftmarginii  {\leftmargini}
+\setlength\leftmarginiii {\leftmargini}
+\setlength\leftmarginiv  {\leftmargini}
+\setlength  \labelsep  {.5em}
+\setlength  \labelwidth{\leftmargini}
+\addtolength\labelwidth{-\labelsep}
+
+\def\@listI{\leftmargin\leftmargini
+            \parsep 0\p@ \@plus1\p@ \@minus\p@
+            \topsep 8\p@ \@plus2\p@ \@minus4\p@
+            \itemsep0\p@}
+\let\@listi\@listI
+\@listi
+\def\@listii {\leftmargin\leftmarginii
+              \labelwidth\leftmarginii
+              \advance\labelwidth-\labelsep
+              \topsep    0\p@ \@plus2\p@ \@minus\p@}
+\def\@listiii{\leftmargin\leftmarginiii
+              \labelwidth\leftmarginiii
+              \advance\labelwidth-\labelsep
+              \topsep    0\p@ \@plus\p@\@minus\p@
+              \parsep    \z@
+              \partopsep \p@ \@plus\z@ \@minus\p@}
+
+\renewcommand\labelitemi{\normalfont\bfseries --}
+\renewcommand\labelitemii{$\m@th\bullet$}
+
+\setlength\arraycolsep{1.4\p@}
+\setlength\tabcolsep{1.4\p@}
+
+\def\tableofcontents{\chapter*{\contentsname\@mkboth{{\contentsname}}%
+                                                    {{\contentsname}}}
+ \def\authcount##1{\setcounter{auco}{##1}\setcounter{@auth}{1}}
+ \def\lastand{\ifnum\value{auco}=2\relax
+                 \unskip{} \andname\
+              \else
+                 \unskip \lastandname\
+              \fi}%
+ \def\and{\stepcounter{@auth}\relax
+          \ifnum\value{@auth}=\value{auco}%
+             \lastand
+          \else
+             \unskip,
+          \fi}%
+ \@starttoc{toc}\if@restonecol\twocolumn\fi}
+
+\def\l@part#1#2{\addpenalty{\@secpenalty}%
+   \addvspace{2em plus\p@}%  % space above part line
+   \begingroup
+     \parindent \z@
+     \rightskip \z@ plus 5em
+     \hrule\vskip5pt
+     \large               % same size as for a contribution heading
+     \bfseries\boldmath   % set line in boldface
+     \leavevmode          % TeX command to enter horizontal mode.
+     #1\par
+     \vskip5pt
+     \hrule
+     \vskip1pt
+     \nobreak             % Never break after part entry
+   \endgroup}
+
+\def\@dotsep{2}
+
+\let\phantomsection=\relax
+
+\def\hyperhrefextend{\ifx\hyper@anchor\@undefined\else
+{}\fi}
+
+\def\addnumcontentsmark#1#2#3{%
+\addtocontents{#1}{\protect\contentsline{#2}{\protect\numberline
+                     {\thechapter}#3}{\thepage}\hyperhrefextend}}%
+\def\addcontentsmark#1#2#3{%
+\addtocontents{#1}{\protect\contentsline{#2}{#3}{\thepage}\hyperhrefextend}}%
+\def\addcontentsmarkwop#1#2#3{%
+\addtocontents{#1}{\protect\contentsline{#2}{#3}{0}\hyperhrefextend}}%
+
+\def\@adcmk[#1]{\ifcase #1 \or
+\def\@gtempa{\addnumcontentsmark}%
+  \or    \def\@gtempa{\addcontentsmark}%
+  \or    \def\@gtempa{\addcontentsmarkwop}%
+  \fi\@gtempa{toc}{chapter}%
+}
+\def\addtocmark{%
+\phantomsection
+\@ifnextchar[{\@adcmk}{\@adcmk[3]}%
+}
+
+\def\l@chapter#1#2{\addpenalty{-\@highpenalty}
+ \vskip 1.0em plus 1pt \@tempdima 1.5em \begingroup
+ \parindent \z@ \rightskip \@tocrmarg
+ \advance\rightskip by 0pt plus 2cm
+ \parfillskip -\rightskip \pretolerance=10000
+ \leavevmode \advance\leftskip\@tempdima \hskip -\leftskip
+ {\large\bfseries\boldmath#1}\ifx0#2\hfil\null
+ \else
+      \nobreak
+      \leaders\hbox{$\m@th \mkern \@dotsep mu.\mkern
+      \@dotsep mu$}\hfill
+      \nobreak\hbox to\@pnumwidth{\hss #2}%
+ \fi\par
+ \penalty\@highpenalty \endgroup}
+
+\def\l@title#1#2{\addpenalty{-\@highpenalty}
+ \addvspace{8pt plus 1pt}
+ \@tempdima \z@
+ \begingroup
+ \parindent \z@ \rightskip \@tocrmarg
+ \advance\rightskip by 0pt plus 2cm
+ \parfillskip -\rightskip \pretolerance=10000
+ \leavevmode \advance\leftskip\@tempdima \hskip -\leftskip
+ #1\nobreak
+ \leaders\hbox{$\m@th \mkern \@dotsep mu.\mkern
+ \@dotsep mu$}\hfill
+ \nobreak\hbox to\@pnumwidth{\hss #2}\par
+ \penalty\@highpenalty \endgroup}
+
+\def\l@author#1#2{\addpenalty{\@highpenalty}
+ \@tempdima=15\p@ %\z@
+ \begingroup
+ \parindent \z@ \rightskip \@tocrmarg
+ \advance\rightskip by 0pt plus 2cm
+ \pretolerance=10000
+ \leavevmode \advance\leftskip\@tempdima %\hskip -\leftskip
+ \textit{#1}\par
+ \penalty\@highpenalty \endgroup}
+
+\setcounter{tocdepth}{0}
+\newdimen\tocchpnum
+\newdimen\tocsecnum
+\newdimen\tocsectotal
+\newdimen\tocsubsecnum
+\newdimen\tocsubsectotal
+\newdimen\tocsubsubsecnum
+\newdimen\tocsubsubsectotal
+\newdimen\tocparanum
+\newdimen\tocparatotal
+\newdimen\tocsubparanum
+\tocchpnum=\z@            % no chapter numbers
+\tocsecnum=15\p@          % section 88. plus 2.222pt
+\tocsubsecnum=23\p@       % subsection 88.8 plus 2.222pt
+\tocsubsubsecnum=27\p@    % subsubsection 88.8.8 plus 1.444pt
+\tocparanum=35\p@         % paragraph 88.8.8.8 plus 1.666pt
+\tocsubparanum=43\p@      % subparagraph 88.8.8.8.8 plus 1.888pt
+\def\calctocindent{%
+\tocsectotal=\tocchpnum
+\advance\tocsectotal by\tocsecnum
+\tocsubsectotal=\tocsectotal
+\advance\tocsubsectotal by\tocsubsecnum
+\tocsubsubsectotal=\tocsubsectotal
+\advance\tocsubsubsectotal by\tocsubsubsecnum
+\tocparatotal=\tocsubsubsectotal
+\advance\tocparatotal by\tocparanum}
+\calctocindent
+
+\def\l@section{\@dottedtocline{1}{\tocchpnum}{\tocsecnum}}
+\def\l@subsection{\@dottedtocline{2}{\tocsectotal}{\tocsubsecnum}}
+\def\l@subsubsection{\@dottedtocline{3}{\tocsubsectotal}{\tocsubsubsecnum}}
+\def\l@paragraph{\@dottedtocline{4}{\tocsubsubsectotal}{\tocparanum}}
+\def\l@subparagraph{\@dottedtocline{5}{\tocparatotal}{\tocsubparanum}}
+
+\def\listoffigures{\@restonecolfalse\if@twocolumn\@restonecoltrue\onecolumn
+ \fi\section*{\listfigurename\@mkboth{{\listfigurename}}{{\listfigurename}}}
+ \@starttoc{lof}\if@restonecol\twocolumn\fi}
+\def\l@figure{\@dottedtocline{1}{0em}{1.5em}}
+
+\def\listoftables{\@restonecolfalse\if@twocolumn\@restonecoltrue\onecolumn
+ \fi\section*{\listtablename\@mkboth{{\listtablename}}{{\listtablename}}}
+ \@starttoc{lot}\if@restonecol\twocolumn\fi}
+\let\l@table\l@figure
+
+\renewcommand\listoffigures{%
+    \section*{\listfigurename
+      \@mkboth{\listfigurename}{\listfigurename}}%
+    \@starttoc{lof}%
+    }
+
+\renewcommand\listoftables{%
+    \section*{\listtablename
+      \@mkboth{\listtablename}{\listtablename}}%
+    \@starttoc{lot}%
+    }
+
+\ifx\oribibl\undefined
+\ifx\citeauthoryear\undefined
+\renewenvironment{thebibliography}[1]
+     {\section*{\refname}
+      \def\@biblabel##1{##1.}
+      \small
+      \list{\@biblabel{\@arabic\c@enumiv}}%
+           {\settowidth\labelwidth{\@biblabel{#1}}%
+            \leftmargin\labelwidth
+            \advance\leftmargin\labelsep
+            \if@openbib
+              \advance\leftmargin\bibindent
+              \itemindent -\bibindent
+              \listparindent \itemindent
+              \parsep \z@
+            \fi
+            \usecounter{enumiv}%
+            \let\p@enumiv\@empty
+            \renewcommand\theenumiv{\@arabic\c@enumiv}}%
+      \if@openbib
+        \renewcommand\newblock{\par}%
+      \else
+        \renewcommand\newblock{\hskip .11em \@plus.33em \@minus.07em}%
+      \fi
+      \sloppy\clubpenalty4000\widowpenalty4000%
+      \sfcode`\.=\@m}
+     {\def\@noitemerr
+       {\@latex@warning{Empty `thebibliography' environment}}%
+      \endlist}
+\def\@lbibitem[#1]#2{\item[{[#1]}\hfill]\if@filesw
+     {\let\protect\noexpand\immediate
+     \write\@auxout{\string\bibcite{#2}{#1}}}\fi\ignorespaces}
+\newcount\@tempcntc
+\def\@citex[#1]#2{\if@filesw\immediate\write\@auxout{\string\citation{#2}}\fi
+  \@tempcnta\z@\@tempcntb\m@ne\def\@citea{}\@cite{\@for\@citeb:=#2\do
+    {\@ifundefined
+       {b@\@citeb}{\@citeo\@tempcntb\m@ne\@citea\def\@citea{,}{\bfseries
+        ?}\@warning
+       {Citation `\@citeb' on page \thepage \space undefined}}%
+    {\setbox\z@\hbox{\global\@tempcntc0\csname b@\@citeb\endcsname\relax}%
+     \ifnum\@tempcntc=\z@ \@citeo\@tempcntb\m@ne
+       \@citea\def\@citea{,}\hbox{\csname b@\@citeb\endcsname}%
+     \else
+      \advance\@tempcntb\@ne
+      \ifnum\@tempcntb=\@tempcntc
+      \else\advance\@tempcntb\m@ne\@citeo
+      \@tempcnta\@tempcntc\@tempcntb\@tempcntc\fi\fi}}\@citeo}{#1}}
+\def\@citeo{\ifnum\@tempcnta>\@tempcntb\else
+               \@citea\def\@citea{,\,\hskip\z@skip}%
+               \ifnum\@tempcnta=\@tempcntb\the\@tempcnta\else
+               {\advance\@tempcnta\@ne\ifnum\@tempcnta=\@tempcntb \else
+                \def\@citea{--}\fi
+      \advance\@tempcnta\m@ne\the\@tempcnta\@citea\the\@tempcntb}\fi\fi}
+\else
+\renewenvironment{thebibliography}[1]
+     {\section*{\refname}
+      \small
+      \list{}%
+           {\settowidth\labelwidth{}%
+            \leftmargin\parindent
+            \itemindent=-\parindent
+            \labelsep=\z@
+            \if@openbib
+              \advance\leftmargin\bibindent
+              \itemindent -\bibindent
+              \listparindent \itemindent
+              \parsep \z@
+            \fi
+            \usecounter{enumiv}%
+            \let\p@enumiv\@empty
+            \renewcommand\theenumiv{}}%
+      \if@openbib
+        \renewcommand\newblock{\par}%
+      \else
+        \renewcommand\newblock{\hskip .11em \@plus.33em \@minus.07em}%
+      \fi
+      \sloppy\clubpenalty4000\widowpenalty4000%
+      \sfcode`\.=\@m}
+     {\def\@noitemerr
+       {\@latex@warning{Empty `thebibliography' environment}}%
+      \endlist}
+      \def\@cite#1{#1}%
+      \def\@lbibitem[#1]#2{\item[]\if@filesw
+        {\def\protect##1{\string ##1\space}\immediate
+      \write\@auxout{\string\bibcite{#2}{#1}}}\fi\ignorespaces}
+   \fi
+\else
+\@cons\@openbib@code{\noexpand\small}
+\fi
+
+\def\idxquad{\hskip 10\p@}% space that divides entry from number
+
+\def\@idxitem{\par\hangindent 10\p@}
+
+\def\subitem{\par\setbox0=\hbox{--\enspace}% second order
+                \noindent\hangindent\wd0\box0}% index entry
+
+\def\subsubitem{\par\setbox0=\hbox{--\,--\enspace}% third
+                \noindent\hangindent\wd0\box0}% order index entry
+
+\def\indexspace{\par \vskip 10\p@ plus5\p@ minus3\p@\relax}
+
+\renewenvironment{theindex}
+               {\@mkboth{\indexname}{\indexname}%
+                \thispagestyle{empty}\parindent\z@
+                \parskip\z@ \@plus .3\p@\relax
+                \let\item\par
+                \def\,{\relax\ifmmode\mskip\thinmuskip
+                             \else\hskip0.2em\ignorespaces\fi}%
+                \normalfont\small
+                \begin{multicols}{2}[\@makeschapterhead{\indexname}]%
+                }
+                {\end{multicols}}
+
+\renewcommand\footnoterule{%
+  \kern-3\p@
+  \hrule\@width 2truecm
+  \kern2.6\p@}
+  \newdimen\fnindent
+  \fnindent1em
+\long\def\@makefntext#1{%
+    \parindent \fnindent%
+    \leftskip \fnindent%
+    \noindent
+    \llap{\hb@xt@1em{\hss\@makefnmark\ }}\ignorespaces#1}
+
+\long\def\@makecaption#1#2{%
+  \small
+  \vskip\abovecaptionskip
+  \sbox\@tempboxa{{\bfseries #1.} #2}%
+  \ifdim \wd\@tempboxa >\hsize
+    {\bfseries #1.} #2\par
+  \else
+    \global \@minipagefalse
+    \hb@xt@\hsize{\hfil\box\@tempboxa\hfil}%
+  \fi
+  \vskip\belowcaptionskip}
+
+\def\fps@figure{htbp}
+\def\fnum@figure{\figurename\thinspace\thefigure}
+\def \@floatboxreset {%
+        \reset@font
+        \small
+        \@setnobreak
+        \@setminipage
+}
+\def\fps@table{htbp}
+\def\fnum@table{\tablename~\thetable}
+\renewenvironment{table}
+               {\setlength\abovecaptionskip{0\p@}%
+                \setlength\belowcaptionskip{10\p@}%
+                \@float{table}}
+               {\end@float}
+\renewenvironment{table*}
+               {\setlength\abovecaptionskip{0\p@}%
+                \setlength\belowcaptionskip{10\p@}%
+                \@dblfloat{table}}
+               {\end@dblfloat}
+
+\long\def\@caption#1[#2]#3{\par\addcontentsline{\csname
+  ext@#1\endcsname}{#1}{\protect\numberline{\csname
+  the#1\endcsname}{\ignorespaces #2}}\begingroup
+    \@parboxrestore
+    \@makecaption{\csname fnum@#1\endcsname}{\ignorespaces #3}\par
+  \endgroup}
+
+% LaTeX does not provide a command to enter the authors institute
+% addresses. The \institute command is defined here.
+
+\newcounter{@inst}
+\newcounter{@auth}
+\newcounter{auco}
+\newdimen\instindent
+\newbox\authrun
+\newtoks\authorrunning
+\newtoks\tocauthor
+\newbox\titrun
+\newtoks\titlerunning
+\newtoks\toctitle
+
+\def\clearheadinfo{\gdef\@author{No Author Given}%
+                   \gdef\@title{No Title Given}%
+                   \gdef\@subtitle{}%
+                   \gdef\@institute{No Institute Given}%
+                   \gdef\@thanks{}%
+                   \global\titlerunning={}\global\authorrunning={}%
+                   \global\toctitle={}\global\tocauthor={}}
+
+\def\institute#1{\gdef\@institute{#1}}
+
+\def\institutename{\par
+ \begingroup
+ \parskip=\z@
+ \parindent=\z@
+ \setcounter{@inst}{1}%
+ \def\and{\par\stepcounter{@inst}%
+ \noindent$^{\the@inst}$\enspace\ignorespaces}%
+ \setbox0=\vbox{\def\thanks##1{}\@institute}%
+ \ifnum\c@@inst=1\relax
+   \gdef\fnnstart{0}%
+ \else
+   \xdef\fnnstart{\c@@inst}%
+   \setcounter{@inst}{1}%
+   \noindent$^{\the@inst}$\enspace
+ \fi
+ \ignorespaces
+ \@institute\par
+ \endgroup}
+
+\def\@fnsymbol#1{\ensuremath{\ifcase#1\or\star\or{\star\star}\or
+   {\star\star\star}\or \dagger\or \ddagger\or
+   \mathchar "278\or \mathchar "27B\or \|\or **\or \dagger\dagger
+   \or \ddagger\ddagger \else\@ctrerr\fi}}
+
+\def\inst#1{\unskip$^{#1}$}
+\def\fnmsep{\unskip$^,$}
+\def\email#1{{\tt#1}}
+\AtBeginDocument{\@ifundefined{url}{\def\url#1{#1}}{}%
+\@ifpackageloaded{babel}{%
+\@ifundefined{extrasenglish}{}{\addto\extrasenglish{\switcht@albion}}%
+\@ifundefined{extrasfrenchb}{}{\addto\extrasfrenchb{\switcht@francais}}%
+\@ifundefined{extrasgerman}{}{\addto\extrasgerman{\switcht@deutsch}}%
+}{\switcht@@therlang}%
+\providecommand{\keywords}[1]{\par\addvspace\baselineskip
+\noindent\keywordname\enspace\ignorespaces#1}%
+}
+\def\homedir{\~{ }}
+
+\def\subtitle#1{\gdef\@subtitle{#1}}
+\clearheadinfo
+%
+%%% to avoid hyperref warnings
+\providecommand*{\toclevel@author}{999}
+%%% to make title-entry parent of section-entries
+\providecommand*{\toclevel@title}{0}
+%
+\renewcommand\maketitle{\newpage
+\phantomsection
+  \refstepcounter{chapter}%
+  \stepcounter{section}%
+  \setcounter{section}{0}%
+  \setcounter{subsection}{0}%
+  \setcounter{figure}{0}
+  \setcounter{table}{0}
+  \setcounter{equation}{0}
+  \setcounter{footnote}{0}%
+  \begingroup
+    \parindent=\z@
+    \renewcommand\thefootnote{\@fnsymbol\c@footnote}%
+    \if@twocolumn
+      \ifnum \col@number=\@ne
+        \@maketitle
+      \else
+        \twocolumn[\@maketitle]%
+      \fi
+    \else
+      \newpage
+      \global\@topnum\z@   % Prevents figures from going at top of page.
+      \@maketitle
+    \fi
+    \thispagestyle{empty}\@thanks
+%
+    \def\\{\unskip\ \ignorespaces}\def\inst##1{\unskip{}}%
+    \def\thanks##1{\unskip{}}\def\fnmsep{\unskip}%
+    \instindent=\hsize
+    \advance\instindent by-\headlineindent
+    \if!\the\toctitle!\addcontentsline{toc}{title}{\@title}\else
+       \addcontentsline{toc}{title}{\the\toctitle}\fi
+    \if@runhead
+       \if!\the\titlerunning!\else
+         \edef\@title{\the\titlerunning}%
+       \fi
+       \global\setbox\titrun=\hbox{\small\rm\unboldmath\ignorespaces\@title}%
+       \ifdim\wd\titrun>\instindent
+          \typeout{Title too long for running head. Please supply}%
+          \typeout{a shorter form with \string\titlerunning\space prior to
+                   \string\maketitle}%
+          \global\setbox\titrun=\hbox{\small\rm
+          Title Suppressed Due to Excessive Length}%
+       \fi
+       \xdef\@title{\copy\titrun}%
+    \fi
+%
+    \if!\the\tocauthor!\relax
+      {\def\and{\noexpand\protect\noexpand\and}%
+      \protected@xdef\toc@uthor{\@author}}%
+    \else
+      \def\\{\noexpand\protect\noexpand\newline}%
+      \protected@xdef\scratch{\the\tocauthor}%
+      \protected@xdef\toc@uthor{\scratch}%
+    \fi
+    \addtocontents{toc}{\noexpand\protect\noexpand\authcount{\the\c@auco}}%
+    \addcontentsline{toc}{author}{\toc@uthor}%
+    \if@runhead
+       \if!\the\authorrunning!
+         \value{@inst}=\value{@auth}%
+         \setcounter{@auth}{1}%
+       \else
+         \edef\@author{\the\authorrunning}%
+       \fi
+       \global\setbox\authrun=\hbox{\small\unboldmath\@author\unskip}%
+       \ifdim\wd\authrun>\instindent
+          \typeout{Names of authors too long for running head. Please supply}%
+          \typeout{a shorter form with \string\authorrunning\space prior to
+                   \string\maketitle}%
+          \global\setbox\authrun=\hbox{\small\rm
+          Authors Suppressed Due to Excessive Length}%
+       \fi
+       \xdef\@author{\copy\authrun}%
+       \markboth{\@author}{\@title}%
+     \fi
+  \endgroup
+  \setcounter{footnote}{\fnnstart}%
+  \clearheadinfo}
+%
+\def\@maketitle{\newpage
+ \markboth{}{}%
+ \def\lastand{\ifnum\value{@inst}=2\relax
+                 \unskip{} \andname\
+              \else
+                 \unskip \lastandname\
+              \fi}%
+ \def\and{\stepcounter{@auth}\relax
+          \ifnum\value{@auth}=\value{@inst}%
+             \lastand
+          \else
+             \unskip,
+          \fi}%
+ \begin{center}%
+ \let\newline\\
+ {\Large \bfseries\boldmath
+  \pretolerance=10000
+  \@title \par}\vskip .8cm
+\if!\@subtitle!\else {\large \bfseries\boldmath
+  \vskip -.65cm
+  \pretolerance=10000
+  \@subtitle \par}\vskip .8cm\fi
+ \setbox0=\vbox{\setcounter{@auth}{1}\def\and{\stepcounter{@auth}}%
+ \def\thanks##1{}\@author}%
+ \global\value{@inst}=\value{@auth}%
+ \global\value{auco}=\value{@auth}%
+ \setcounter{@auth}{1}%
+{\lineskip .5em
+\noindent\ignorespaces
+\@author\vskip.35cm}
+ {\small\institutename}
+ \end{center}%
+ }
+
+% definition of the "\spnewtheorem" command.
+%
+% Usage:
+%
+%     \spnewtheorem{env_nam}{caption}[within]{cap_font}{body_font}
+% or  \spnewtheorem{env_nam}[numbered_like]{caption}{cap_font}{body_font}
+% or  \spnewtheorem*{env_nam}{caption}{cap_font}{body_font}
+%
+% New is "cap_font" and "body_font". It stands for
+% fontdefinition of the caption and the text itself.
+%
+% "\spnewtheorem*" gives a theorem without number.
+%
+% A defined spnewthoerem environment is used as described
+% by Lamport.
+%
+%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+\def\@thmcountersep{}
+\def\@thmcounterend{.}
+
+\def\spnewtheorem{\@ifstar{\@sthm}{\@Sthm}}
+
+% definition of \spnewtheorem with number
+
+\def\@spnthm#1#2{%
+  \@ifnextchar[{\@spxnthm{#1}{#2}}{\@spynthm{#1}{#2}}}
+\def\@Sthm#1{\@ifnextchar[{\@spothm{#1}}{\@spnthm{#1}}}
+
+\def\@spxnthm#1#2[#3]#4#5{\expandafter\@ifdefinable\csname #1\endcsname
+   {\@definecounter{#1}\@addtoreset{#1}{#3}%
+   \expandafter\xdef\csname the#1\endcsname{\expandafter\noexpand
+     \csname the#3\endcsname \noexpand\@thmcountersep \@thmcounter{#1}}%
+   \expandafter\xdef\csname #1name\endcsname{#2}%
+   \global\@namedef{#1}{\@spthm{#1}{\csname #1name\endcsname}{#4}{#5}}%
+                              \global\@namedef{end#1}{\@endtheorem}}}
+
+\def\@spynthm#1#2#3#4{\expandafter\@ifdefinable\csname #1\endcsname
+   {\@definecounter{#1}%
+   \expandafter\xdef\csname the#1\endcsname{\@thmcounter{#1}}%
+   \expandafter\xdef\csname #1name\endcsname{#2}%
+   \global\@namedef{#1}{\@spthm{#1}{\csname #1name\endcsname}{#3}{#4}}%
+                               \global\@namedef{end#1}{\@endtheorem}}}
+
+\def\@spothm#1[#2]#3#4#5{%
+  \@ifundefined{c@#2}{\@latexerr{No theorem environment `#2' defined}\@eha}%
+  {\expandafter\@ifdefinable\csname #1\endcsname
+  {\newaliascnt{#1}{#2}%
+  \expandafter\xdef\csname #1name\endcsname{#3}%
+  \global\@namedef{#1}{\@spthm{#1}{\csname #1name\endcsname}{#4}{#5}}%
+  \global\@namedef{end#1}{\@endtheorem}}}}
+
+\def\@spthm#1#2#3#4{\topsep 7\p@ \@plus2\p@ \@minus4\p@
+\refstepcounter{#1}%
+\@ifnextchar[{\@spythm{#1}{#2}{#3}{#4}}{\@spxthm{#1}{#2}{#3}{#4}}}
+
+\def\@spxthm#1#2#3#4{\@spbegintheorem{#2}{\csname the#1\endcsname}{#3}{#4}%
+                    \ignorespaces}
+
+\def\@spythm#1#2#3#4[#5]{\@spopargbegintheorem{#2}{\csname
+       the#1\endcsname}{#5}{#3}{#4}\ignorespaces}
+
+\def\@spbegintheorem#1#2#3#4{\trivlist
+                 \item[\hskip\labelsep{#3#1\ #2\@thmcounterend}]#4}
+
+\def\@spopargbegintheorem#1#2#3#4#5{\trivlist
+      \item[\hskip\labelsep{#4#1\ #2}]{#4(#3)\@thmcounterend\ }#5}
+
+% definition of \spnewtheorem* without number
+
+\def\@sthm#1#2{\@Ynthm{#1}{#2}}
+
+\def\@Ynthm#1#2#3#4{\expandafter\@ifdefinable\csname #1\endcsname
+   {\global\@namedef{#1}{\@Thm{\csname #1name\endcsname}{#3}{#4}}%
+    \expandafter\xdef\csname #1name\endcsname{#2}%
+    \global\@namedef{end#1}{\@endtheorem}}}
+
+\def\@Thm#1#2#3{\topsep 7\p@ \@plus2\p@ \@minus4\p@
+\@ifnextchar[{\@Ythm{#1}{#2}{#3}}{\@Xthm{#1}{#2}{#3}}}
+
+\def\@Xthm#1#2#3{\@Begintheorem{#1}{#2}{#3}\ignorespaces}
+
+\def\@Ythm#1#2#3[#4]{\@Opargbegintheorem{#1}
+       {#4}{#2}{#3}\ignorespaces}
+
+\def\@Begintheorem#1#2#3{#3\trivlist
+                           \item[\hskip\labelsep{#2#1\@thmcounterend}]}
+
+\def\@Opargbegintheorem#1#2#3#4{#4\trivlist
+      \item[\hskip\labelsep{#3#1}]{#3(#2)\@thmcounterend\ }}
+
+\if@envcntsect
+   \def\@thmcountersep{.}
+   \spnewtheorem{theorem}{Theorem}[section]{\bfseries}{\itshape}
+\else
+   \spnewtheorem{theorem}{Theorem}{\bfseries}{\itshape}
+   \if@envcntreset
+      \@addtoreset{theorem}{section}
+   \else
+      \@addtoreset{theorem}{chapter}
+   \fi
+\fi
+
+%definition of divers theorem environments
+\spnewtheorem*{claim}{Claim}{\itshape}{\rmfamily}
+\spnewtheorem*{proof}{Proof}{\itshape}{\rmfamily}
+\if@envcntsame % alle Umgebungen wie Theorem.
+   \def\spn@wtheorem#1#2#3#4{\@spothm{#1}[theorem]{#2}{#3}{#4}}
+\else % alle Umgebungen mit eigenem Zaehler
+   \if@envcntsect % mit section numeriert
+      \def\spn@wtheorem#1#2#3#4{\@spxnthm{#1}{#2}[section]{#3}{#4}}
+   \else % nicht mit section numeriert
+      \if@envcntreset
+         \def\spn@wtheorem#1#2#3#4{\@spynthm{#1}{#2}{#3}{#4}
+                                   \@addtoreset{#1}{section}}
+      \else
+         \def\spn@wtheorem#1#2#3#4{\@spynthm{#1}{#2}{#3}{#4}
+                                   \@addtoreset{#1}{chapter}}%
+      \fi
+   \fi
+\fi
+\spn@wtheorem{case}{Case}{\itshape}{\rmfamily}
+\spn@wtheorem{conjecture}{Conjecture}{\itshape}{\rmfamily}
+\spn@wtheorem{corollary}{Corollary}{\bfseries}{\itshape}
+\spn@wtheorem{definition}{Definition}{\bfseries}{\itshape}
+\spn@wtheorem{example}{Example}{\itshape}{\rmfamily}
+\spn@wtheorem{exercise}{Exercise}{\itshape}{\rmfamily}
+\spn@wtheorem{lemma}{Lemma}{\bfseries}{\itshape}
+\spn@wtheorem{note}{Note}{\itshape}{\rmfamily}
+\spn@wtheorem{problem}{Problem}{\itshape}{\rmfamily}
+\spn@wtheorem{property}{Property}{\itshape}{\rmfamily}
+\spn@wtheorem{proposition}{Proposition}{\bfseries}{\itshape}
+\spn@wtheorem{question}{Question}{\itshape}{\rmfamily}
+\spn@wtheorem{solution}{Solution}{\itshape}{\rmfamily}
+\spn@wtheorem{remark}{Remark}{\itshape}{\rmfamily}
+
+\def\@takefromreset#1#2{%
+    \def\@tempa{#1}%
+    \let\@tempd\@elt
+    \def\@elt##1{%
+        \def\@tempb{##1}%
+        \ifx\@tempa\@tempb\else
+            \@addtoreset{##1}{#2}%
+        \fi}%
+    \expandafter\expandafter\let\expandafter\@tempc\csname cl@#2\endcsname
+    \expandafter\def\csname cl@#2\endcsname{}%
+    \@tempc
+    \let\@elt\@tempd}
+
+\def\theopargself{\def\@spopargbegintheorem##1##2##3##4##5{\trivlist
+      \item[\hskip\labelsep{##4##1\ ##2}]{##4##3\@thmcounterend\ }##5}
+                  \def\@Opargbegintheorem##1##2##3##4{##4\trivlist
+      \item[\hskip\labelsep{##3##1}]{##3##2\@thmcounterend\ }}
+      }
+
+\renewenvironment{abstract}{%
+      \list{}{\advance\topsep by0.35cm\relax\small
+      \leftmargin=1cm
+      \labelwidth=\z@
+      \listparindent=\z@
+      \itemindent\listparindent
+      \rightmargin\leftmargin}\item[\hskip\labelsep
+                                    \bfseries\abstractname]}
+    {\endlist}
+
+\newdimen\headlineindent             % dimension for space between
+\headlineindent=1.166cm              % number and text of headings.
+
+\def\ps@headings{\let\@mkboth\@gobbletwo
+   \let\@oddfoot\@empty\let\@evenfoot\@empty
+   \def\@evenhead{\normalfont\small\rlap{\thepage}\hspace{\headlineindent}%
+                  \leftmark\hfil}
+   \def\@oddhead{\normalfont\small\hfil\rightmark\hspace{\headlineindent}%
+                 \llap{\thepage}}
+   \def\chaptermark##1{}%
+   \def\sectionmark##1{}%
+   \def\subsectionmark##1{}}
+
+\def\ps@titlepage{\let\@mkboth\@gobbletwo
+   \let\@oddfoot\@empty\let\@evenfoot\@empty
+   \def\@evenhead{\normalfont\small\rlap{\thepage}\hspace{\headlineindent}%
+                  \hfil}
+   \def\@oddhead{\normalfont\small\hfil\hspace{\headlineindent}%
+                 \llap{\thepage}}
+   \def\chaptermark##1{}%
+   \def\sectionmark##1{}%
+   \def\subsectionmark##1{}}
+
+\if@runhead\ps@headings\else
+\ps@empty\fi
+
+\setlength\arraycolsep{1.4\p@}
+\setlength\tabcolsep{1.4\p@}
+
+\endinput
+%end of file llncs.cls
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/ESOP-Paper/document/proof.sty	Tue Mar 29 23:52:14 2011 +0200
@@ -0,0 +1,278 @@
+%       proof.sty       (Proof Figure Macros)
+%
+%       version 3.0 (for both LaTeX 2.09 and LaTeX 2e)
+%       Mar 6, 1997
+%       Copyright (C) 1990 -- 1997, Makoto Tatsuta (tatsuta@kusm.kyoto-u.ac.jp)
+% 
+% This program is free software; you can redistribute it or modify
+% it under the terms of the GNU General Public License as published by
+% the Free Software Foundation; either versions 1, or (at your option)
+% any later version.
+% 
+% This program is distributed in the hope that it will be useful
+% but WITHOUT ANY WARRANTY; without even the implied warranty of
+% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+% GNU General Public License for more details.
+%
+%       Usage:
+%               In \documentstyle, specify an optional style `proof', say,
+%                       \documentstyle[proof]{article}.
+%
+%       The following macros are available:
+%
+%       In all the following macros, all the arguments such as
+%       <Lowers> and <Uppers> are processed in math mode.
+%
+%       \infer<Lower><Uppers>
+%               draws an inference.
+%
+%               Use & in <Uppers> to delimit upper formulae.
+%               <Uppers> consists more than 0 formulae.
+%
+%               \infer returns \hbox{ ... } or \vbox{ ... } and
+%               sets \@LeftOffset and \@RightOffset globally.
+%
+%       \infer[<Label>]<Lower><Uppers>
+%               draws an inference labeled with <Label>.
+%
+%       \infer*<Lower><Uppers>
+%               draws a many step deduction.
+%
+%       \infer*[<Label>]<Lower><Uppers>
+%               draws a many step deduction labeled with <Label>.
+%
+%       \infer=<Lower><Uppers>
+%               draws a double-ruled deduction.
+%
+%       \infer=[<Label>]<Lower><Uppers>
+%               draws a double-ruled deduction labeled with <Label>.
+%
+%       \deduce<Lower><Uppers>
+%               draws an inference without a rule.
+%
+%       \deduce[<Proof>]<Lower><Uppers>
+%               draws a many step deduction with a proof name.
+%
+%       Example:
+%               If you want to write
+%                           B C
+%                          -----
+%                      A     D
+%                     ----------
+%                         E
+%       use
+%               \infer{E}{
+%                       A
+%                       &
+%                       \infer{D}{B & C}
+%               }
+%
+
+%       Style Parameters
+
+\newdimen\inferLineSkip         \inferLineSkip=2pt
+\newdimen\inferLabelSkip        \inferLabelSkip=5pt
+\def\inferTabSkip{\quad}
+
+%       Variables
+
+\newdimen\@LeftOffset   % global
+\newdimen\@RightOffset  % global
+\newdimen\@SavedLeftOffset      % safe from users
+
+\newdimen\UpperWidth
+\newdimen\LowerWidth
+\newdimen\LowerHeight
+\newdimen\UpperLeftOffset
+\newdimen\UpperRightOffset
+\newdimen\UpperCenter
+\newdimen\LowerCenter
+\newdimen\UpperAdjust
+\newdimen\RuleAdjust
+\newdimen\LowerAdjust
+\newdimen\RuleWidth
+\newdimen\HLabelAdjust
+\newdimen\VLabelAdjust
+\newdimen\WidthAdjust
+
+\newbox\@UpperPart
+\newbox\@LowerPart
+\newbox\@LabelPart
+\newbox\ResultBox
+
+%       Flags
+
+\newif\if@inferRule     % whether \@infer draws a rule.
+\newif\if@DoubleRule    % whether \@infer draws doulbe rules.
+\newif\if@ReturnLeftOffset      % whether \@infer returns \@LeftOffset.
+\newif\if@MathSaved     % whether inner math mode where \infer or
+                       % \deduce appears.
+
+%       Special Fonts
+
+\def\DeduceSym{\vtop{\baselineskip4\p@ \lineskiplimit\z@
+    \vbox{\hbox{.}\hbox{.}\hbox{.}}\hbox{.}}}
+
+%       Math Save Macros
+%
+%       \@SaveMath is called in the very begining of toplevel macros
+%       which are \infer and \deduce.
+%       \@RestoreMath is called in the very last before toplevel macros end.
+%       Remark \infer and \deduce ends calling \@infer.
+
+\def\@SaveMath{\@MathSavedfalse \ifmmode \ifinner
+       \relax $\relax \@MathSavedtrue \fi\fi }
+
+\def\@RestoreMath{\if@MathSaved \relax $\relax\fi }
+
+%       Macros
+
+% Renaming @ifnextchar and @ifnch of LaTeX2e to @IFnextchar and @IFnch.
+
+\def\@IFnextchar#1#2#3{%
+  \let\reserved@e=#1\def\reserved@a{#2}\def\reserved@b{#3}\futurelet
+    \reserved@c\@IFnch}
+\def\@IFnch{\ifx \reserved@c \@sptoken \let\reserved@d\@xifnch
+      \else \ifx \reserved@c \reserved@e\let\reserved@d\reserved@a\else
+          \let\reserved@d\reserved@b\fi
+      \fi \reserved@d}
+
+\def\@ifEmpty#1#2#3{\def\@tempa{\@empty}\def\@tempb{#1}\relax
+       \ifx \@tempa \@tempb #2\else #3\fi }
+
+\def\infer{\@SaveMath \@IFnextchar *{\@inferSteps}{\relax
+       \@IFnextchar ={\@inferDoubleRule}{\@inferOneStep}}}
+
+\def\@inferOneStep{\@inferRuletrue \@DoubleRulefalse
+       \@IFnextchar [{\@infer}{\@infer[\@empty]}}
+
+\def\@inferDoubleRule={\@inferRuletrue \@DoubleRuletrue
+       \@IFnextchar [{\@infer}{\@infer[\@empty]}}
+
+\def\@inferSteps*{\@IFnextchar [{\@@inferSteps}{\@@inferSteps[\@empty]}}
+
+\def\@@inferSteps[#1]{\@deduce{#1}[\DeduceSym]}
+
+\def\deduce{\@SaveMath \@IFnextchar [{\@deduce{\@empty}}
+       {\@inferRulefalse \@infer[\@empty]}}
+
+%       \@deduce<Proof Label>[<Proof>]<Lower><Uppers>
+
+\def\@deduce#1[#2]#3#4{\@inferRulefalse
+       \@infer[\@empty]{#3}{\@SaveMath \@infer[{#1}]{#2}{#4}}}
+
+%       \@infer[<Label>]<Lower><Uppers>
+%               If \@inferRuletrue, it draws a rule and <Label> is right to
+%               a rule. In this case, if \@DoubleRuletrue, it draws
+%               double rules.
+%
+%               Otherwise, draws no rule and <Label> is right to <Lower>.
+
+\def\@infer[#1]#2#3{\relax
+% Get parameters
+       \if@ReturnLeftOffset \else \@SavedLeftOffset=\@LeftOffset \fi
+       \setbox\@LabelPart=\hbox{$#1$}\relax
+       \setbox\@LowerPart=\hbox{$#2$}\relax
+%
+       \global\@LeftOffset=0pt
+       \setbox\@UpperPart=\vbox{\tabskip=0pt \halign{\relax
+               \global\@RightOffset=0pt \@ReturnLeftOffsettrue $##$&&
+               \inferTabSkip
+               \global\@RightOffset=0pt \@ReturnLeftOffsetfalse $##$\cr
+               #3\cr}}\relax
+%                       Here is a little trick.
+%                       \@ReturnLeftOffsettrue(false) influences on \infer or
+%                       \deduce placed in ## locally
+%                       because of \@SaveMath and \@RestoreMath.
+       \UpperLeftOffset=\@LeftOffset
+       \UpperRightOffset=\@RightOffset
+% Calculate Adjustments
+       \LowerWidth=\wd\@LowerPart
+       \LowerHeight=\ht\@LowerPart
+       \LowerCenter=0.5\LowerWidth
+%
+       \UpperWidth=\wd\@UpperPart \advance\UpperWidth by -\UpperLeftOffset
+       \advance\UpperWidth by -\UpperRightOffset
+       \UpperCenter=\UpperLeftOffset
+       \advance\UpperCenter by 0.5\UpperWidth
+%
+       \ifdim \UpperWidth > \LowerWidth
+               % \UpperCenter > \LowerCenter
+       \UpperAdjust=0pt
+       \RuleAdjust=\UpperLeftOffset
+       \LowerAdjust=\UpperCenter \advance\LowerAdjust by -\LowerCenter
+       \RuleWidth=\UpperWidth
+       \global\@LeftOffset=\LowerAdjust
+%
+       \else   % \UpperWidth <= \LowerWidth
+       \ifdim \UpperCenter > \LowerCenter
+%
+       \UpperAdjust=0pt
+       \RuleAdjust=\UpperCenter \advance\RuleAdjust by -\LowerCenter
+       \LowerAdjust=\RuleAdjust
+       \RuleWidth=\LowerWidth
+       \global\@LeftOffset=\LowerAdjust
+%
+       \else   % \UpperWidth <= \LowerWidth
+               % \UpperCenter <= \LowerCenter
+%
+       \UpperAdjust=\LowerCenter \advance\UpperAdjust by -\UpperCenter
+       \RuleAdjust=0pt
+       \LowerAdjust=0pt
+       \RuleWidth=\LowerWidth
+       \global\@LeftOffset=0pt
+%
+       \fi\fi
+% Make a box
+       \if@inferRule
+%
+       \setbox\ResultBox=\vbox{
+               \moveright \UpperAdjust \box\@UpperPart
+               \nointerlineskip \kern\inferLineSkip
+               \if@DoubleRule
+               \moveright \RuleAdjust \vbox{\hrule width\RuleWidth
+                       \kern 1pt\hrule width\RuleWidth}\relax
+               \else
+               \moveright \RuleAdjust \vbox{\hrule width\RuleWidth}\relax
+               \fi
+               \nointerlineskip \kern\inferLineSkip
+               \moveright \LowerAdjust \box\@LowerPart }\relax
+%
+       \@ifEmpty{#1}{}{\relax
+%
+       \HLabelAdjust=\wd\ResultBox     \advance\HLabelAdjust by -\RuleAdjust
+       \advance\HLabelAdjust by -\RuleWidth
+       \WidthAdjust=\HLabelAdjust
+       \advance\WidthAdjust by -\inferLabelSkip
+       \advance\WidthAdjust by -\wd\@LabelPart
+       \ifdim \WidthAdjust < 0pt \WidthAdjust=0pt \fi
+%
+       \VLabelAdjust=\dp\@LabelPart
+       \advance\VLabelAdjust by -\ht\@LabelPart
+       \VLabelAdjust=0.5\VLabelAdjust  \advance\VLabelAdjust by \LowerHeight
+       \advance\VLabelAdjust by \inferLineSkip
+%
+       \setbox\ResultBox=\hbox{\box\ResultBox
+               \kern -\HLabelAdjust \kern\inferLabelSkip
+               \raise\VLabelAdjust \box\@LabelPart \kern\WidthAdjust}\relax
+%
+       }\relax % end @ifEmpty
+%
+       \else % \@inferRulefalse
+%
+       \setbox\ResultBox=\vbox{
+               \moveright \UpperAdjust \box\@UpperPart
+               \nointerlineskip \kern\inferLineSkip
+               \moveright \LowerAdjust \hbox{\unhbox\@LowerPart
+                       \@ifEmpty{#1}{}{\relax
+                       \kern\inferLabelSkip \unhbox\@LabelPart}}}\relax
+       \fi
+%
+       \global\@RightOffset=\wd\ResultBox
+       \global\advance\@RightOffset by -\@LeftOffset
+       \global\advance\@RightOffset by -\LowerWidth
+       \if@ReturnLeftOffset \else \global\@LeftOffset=\@SavedLeftOffset \fi
+%
+       \box\ResultBox
+       \@RestoreMath
+}
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/ESOP-Paper/document/root.bib	Tue Mar 29 23:52:14 2011 +0200
@@ -0,0 +1,319 @@
+
+@Unpublished{KaliszykUrban11,
+  author = 	 {C.~Kaliszyk and C.~Urban},
+  title = 	 {{Q}uotients {R}evisited for {I}sabelle/{HOL}},
+  note = 	 {To appear in the Proc.~of the 26th ACM Symposium On Applied Computing},
+  year = 	 {2011}
+}
+
+@InProceedings{cheney05a,
+  author = 	 {J.~Cheney},
+  title = 	 {{S}crap your {N}ameplate ({F}unctional {P}earl)},
+  booktitle = 	 {Proc.~of the 10th ICFP Conference},
+  pages = 	 {180--191},
+  year = 	 {2005}
+}
+
+@Inproceedings{Altenkirch10,
+  author = {T.~Altenkirch and N.~A.~Danielsson and A.~L\"oh and N.~Oury},
+  title =  {{PiSigma}: {D}ependent {T}ypes {W}ithout the {S}ugar},
+  booktitle = "Proc.~of the 10th FLOPS Conference",
+  year = 2010,
+  series = "LNCS",
+  pages = "40--55",
+  volume = 6009
+}
+
+
+@InProceedings{ UrbanTasson05,
+	author = "C. Urban and C. Tasson",
+	title = "{N}ominal {T}echniques in {I}sabelle/{HOL}",
+	booktitle = "Proc.~of the 20th CADE Conference",
+	year = 2005,
+	series = "LNCS",
+	pages = "38--53",
+	volume = 3632
+}
+
+@InProceedings{ UrbanBerghofer06,
+	author = "C. Urban and S. Berghofer",
+	title = "{A} {R}ecursion {C}ombinator for {N}ominal {D}atatypes {I}mplemented in {I}sabelle/{HOL}",
+	booktitle = "Proc.~of the 3rd IJCAR Conference",
+	year = 2006,
+	series = "LNAI",
+	volume = 4130,
+	pages = "498--512"
+}
+
+@InProceedings{LeeCraryHarper07,
+  author = 	 {D.~K.~Lee and K.~Crary and R.~Harper},
+  title = 	 {{T}owards a {M}echanized {M}etatheory of {Standard ML}},
+  booktitle =    {Proc.~of the 34th POPL Symposium},
+  year = 	 2007,
+  pages =        {173--184}
+}
+
+@Unpublished{chargueraud09,
+  author       = "A.~Chargu{\'e}raud",
+  title        = "{T}he {L}ocally {N}ameless {R}epresentation",
+  Note         = "To appear in J.~of Automated Reasoning."                  
+}
+
+@article{NaraschewskiNipkow99,
+  author={W.~Naraschewski and T.~Nipkow},
+  title={{T}ype {I}nference {V}erified: {A}lgorithm {W} in {Isabelle/HOL}},
+  journal={J.~of Automated Reasoning},
+  year=1999,
+  volume=23,
+  pages={299--318}}
+
+@InProceedings{Berghofer99,
+  author = 	 {S.~Berghofer and M.~Wenzel},
+  title = 	 {{I}nductive {D}atatypes in {HOL} - {L}essons {L}earned in 
+                  {F}ormal-{L}ogic {E}ngineering},
+  booktitle = 	 {Proc.~of the 12th TPHOLs conference},
+  pages = 	 {19--36},
+  year = 	 1999,
+  volume = 	 1690,
+  series = 	 {LNCS}
+}
+
+@InProceedings{CoreHaskell,
+  author = 	 {M.~Sulzmann and M.~Chakravarty and S.~Peyton Jones and K.~Donnelly},
+  title = 	 {{S}ystem {F} with {T}ype {E}quality {C}oercions},
+  booktitle = 	 {Proc.~of the TLDI Workshop},
+  pages = 	 {53-66},
+  year = 	 {2007}
+}
+
+@inproceedings{cheney05,
+  author    = {J.~Cheney},
+  title     = {{T}oward a {G}eneral {T}heory of {N}ames: {B}inding and {S}cope},
+  booktitle = {Proc.~of the 3rd MERLIN workshop},
+  year      = {2005},
+  pages     = {33-40}
+}
+
+@Unpublished{Pitts04,
+  author = 	 {A.~Pitts},
+  title = 	 {{N}otes on the {R}estriction {M}onad for {N}ominal {S}ets and {C}pos},
+  note = 	 {Unpublished notes for an invited talk given at CTCS},
+  year = 	 {2004}
+}
+
+@incollection{UrbanNipkow09,
+  author = {C.~Urban and T.~Nipkow},
+  title = {{N}ominal {V}erification of {A}lgorithm {W}},
+  booktitle={From Semantics to Computer Science. Essays in Honour of Gilles Kahn},
+  editor={G.~Huet and J.-J.~L{\'e}vy and G.~Plotkin},
+  publisher={Cambridge University Press},
+  pages={363--382},
+  year=2009
+}
+
+@InProceedings{Homeier05,
+  author = 	 {P.~Homeier},
+  title = 	 {{A} {D}esign {S}tructure for {H}igher {O}rder {Q}uotients},
+  booktitle = 	 {Proc.~of the 18th TPHOLs Conference},
+  pages = 	 {130--146},
+  year = 	 {2005},
+  volume = 	 {3603},
+  series = 	 {LNCS}
+}
+
+@article{ott-jfp,
+ author     = {P.~Sewell and 
+               F.~Z.~Nardelli and 
+               S.~Owens and 
+               G.~Peskine and 
+               T.~Ridge and 
+               S.~Sarkar and 
+               R.~Strni\v{s}a},
+ title      = {{Ott}: {E}ffective {T}ool {S}upport for the {W}orking {S}emanticist},
+ journal    = {J.~of Functional Programming},
+ year       = {2010},
+ volume     = {20},
+ number     = {1},
+ pages      = {70--122}
+}
+
+@INPROCEEDINGS{Pottier06,
+  author = {F.~Pottier},
+  title = {{A}n {O}verview of {C$\alpha$ml}},
+  year = {2006},
+  booktitle = {ACM Workshop on ML},
+  pages = {27--52},
+  volume = {148},
+  number = {2},
+  series = {ENTCS}
+}
+
+@inproceedings{HuffmanUrban10,
+  author = 	 {B.~Huffman and C.~Urban},
+  title = 	 {{P}roof {P}earl: {A} {N}ew {F}oundation for {N}ominal {I}sabelle},
+  booktitle = {Proc.~of the 1st ITP Conference}, 
+  pages = {35--50},
+  volume = {6172},
+  series = {LNCS},
+  year = 	 {2010}
+}
+
+@PhdThesis{Leroy92,
+  author = 	 {X.~Leroy},
+  title = 	 {{P}olymorphic {T}yping of an {A}lgorithmic {L}anguage},
+  school = 	 {University Paris 7},
+  year = 	 {1992},
+  note = 	 {INRIA Research Report, No~1778}
+}
+
+@Unpublished{SewellBestiary,
+  author = 	 {P.~Sewell},
+  title = 	 {{A} {B}inding {B}estiary},
+  note = 	 {Unpublished notes.}
+}
+
+@InProceedings{challenge05,
+  author = 	 {B.~E.~Aydemir and A.~Bohannon and M.~Fairbairn and
+                  J.~N.~Foster and B.~C.~Pierce and P.~Sewell and 
+                  D.~Vytiniotis and G.~Washburn and S.~Weirich and
+                  S.~Zdancewic},
+  title = 	 {{M}echanized {M}etatheory for the {M}asses: {T}he \mbox{Popl}{M}ark 
+                  {C}hallenge},
+  booktitle = 	 {Proc.~of the 18th TPHOLs Conference},
+  pages = 	 {50--65},
+  year = 	 {2005},
+  volume = 	 {3603},
+  series = 	 {LNCS}
+}
+
+@article{MckinnaPollack99,
+  author =	 {J.~McKinna and R.~Pollack},
+  title =	 {{S}ome {T}ype {T}heory and {L}ambda {C}alculus {F}ormalised},
+  journal =	 {J.~of Automated Reasoning},
+  volume =       23,
+  number =       {1-4},
+  year =	 1999
+}
+
+@article{SatoPollack10,
+  author = 	 {M.~Sato and R.~Pollack},
+  title = 	 {{E}xternal and {I}nternal {S}yntax of the {L}ambda-{C}alculus},
+  journal = 	 {J.~of Symbolic Computation},
+  volume =       45,
+  pages =        {598--616},
+  year =	 2010
+}
+
+@article{GabbayPitts02,
+  author =	 {M.~J.~Gabbay and A.~M.~Pitts},
+  title =	 {A New Approach to Abstract Syntax with Variable
+                  Binding},
+  journal =	 {Formal Aspects of Computing},
+  volume =	 {13},
+  year =	 2002,
+  pages =	 {341--363}
+}
+
+@article{Pitts03,
+  author =	 {A.~M.~Pitts},
+  title =	 {{N}ominal {L}ogic, {A} {F}irst {O}rder {T}heory of {N}ames and
+                  {B}inding},
+  journal =	 {Information and Computation},
+  year =	 {2003},
+  volume =	 {183},
+  pages =	 {165--193}
+}
+
+@InProceedings{BengtsonParrow07,
+  author    = {J.~Bengtson and J.~Parrow},
+  title     = {Formalising the pi-{C}alculus using {N}ominal {L}ogic},
+  booktitle = {Proc.~of the 10th FOSSACS Conference},
+  year      = 2007,
+  pages     = {63--77},
+  series    = {LNCS},
+  volume    = {4423}
+}
+
+@inproceedings{BengtsonParow09,
+  author    = {J.~Bengtson and J.~Parrow},
+  title     = {{P}si-{C}alculi in {I}sabelle},
+  booktitle = {Proc of the 22nd TPHOLs Conference},
+  year      = 2009,
+  pages     = {99--114},
+  series    = {LNCS},
+  volume    = {5674}
+}
+
+@inproceedings{TobinHochstadtFelleisen08,
+  author    = {S.~Tobin-Hochstadt and M.~Felleisen},
+  booktitle = {Proc.~of the 35rd POPL Symposium},
+  title     = {{T}he {D}esign and {I}mplementation of {T}yped {S}cheme},
+  year      = {2008},
+  pages     = {395--406}
+}
+
+@InProceedings{UrbanCheneyBerghofer08,
+  author = "C.~Urban and J.~Cheney and S.~Berghofer",
+  title = "{M}echanizing the {M}etatheory of {LF}",
+  pages = "45--56",
+  year = 2008,
+  booktitle = "Proc.~of the 23rd LICS Symposium"
+}
+
+@InProceedings{UrbanZhu08,
+  title = "{R}evisiting {C}ut-{E}limination: {O}ne {D}ifficult {P}roof is {R}eally a {P}roof",
+  author = "C.~Urban and B.~Zhu",
+  booktitle = "Proc.~of the 9th RTA Conference",
+  year = "2008",
+  pages = "409--424",
+  series = "LNCS",
+  volume = 5117
+}
+
+@Article{UrbanPittsGabbay04,
+  title = "{N}ominal {U}nification",
+  author = "C.~Urban and A.M.~Pitts and M.J.~Gabbay",
+  journal = "Theoretical Computer Science",
+  pages = "473--497",
+  volume = "323",
+  number = "1-3",
+  year = "2004"
+}
+
+@Article{Church40,
+  author = 	 {A.~Church},
+  title = 	 {{A} {F}ormulation of the {S}imple {T}heory of {T}ypes},
+  journal = 	 {Journal of Symbolic Logic},
+  year = 	 {1940},
+  volume = 	 {5},
+  number = 	 {2},
+  pages = 	 {56--68}
+}
+
+
+@Manual{PittsHOL4,
+  title = 	 {{S}yntax and {S}emantics},
+  author = 	 {A.~M.~Pitts},
+  note = 	 {Part of the documentation for the HOL4 system.}
+}
+
+
+@book{PaulsonBenzmueller,
+  year={2009},
+  author={Benzm{\"u}ller, Christoph and Paulson, Lawrence C.},
+  title={Quantified Multimodal Logics in Simple Type Theory},
+  note={{http://arxiv.org/abs/0905.2435}},
+  series={{SEKI Report SR--2009--02 (ISSN 1437-4447)}},
+  publisher={{SEKI Publications}}
+}
+
+@Article{Cheney06,
+  author = 	 {J.~Cheney},
+  title = 	 {{C}ompleteness and {H}erbrand theorems for {N}ominal {L}ogic},
+  journal = 	 {Journal of Symbolic Logic},
+  year = 	 {2006},
+  volume = 	 {71},
+  number = 	 {1},
+  pages = 	 {299--320}
+}
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/ESOP-Paper/document/root.tex	Tue Mar 29 23:52:14 2011 +0200
@@ -0,0 +1,112 @@
+\documentclass{llncs}
+\usepackage{times}
+\usepackage{isabelle}
+\usepackage{isabellesym}
+\usepackage{amsmath}
+\usepackage{amssymb}
+%%\usepackage{amsthm}
+\usepackage{tikz}
+\usepackage{pgf}
+\usepackage{pdfsetup}
+\usepackage{ot1patch}
+\usepackage{times}
+\usepackage{boxedminipage}
+\usepackage{proof}
+\usepackage{setspace}
+
+\allowdisplaybreaks
+\urlstyle{rm}
+\isabellestyle{it}
+\renewcommand{\isastyleminor}{\it}%
+\renewcommand{\isastyle}{\normalsize\it}%
+
+\DeclareRobustCommand{\flqq}{\mbox{\guillemotleft}}
+\DeclareRobustCommand{\frqq}{\mbox{\guillemotright}}
+\renewcommand{\isacharunderscore}{\mbox{$\_\!\_$}}
+\renewcommand{\isasymbullet}{{\raisebox{-0.4mm}{\Large$\boldsymbol{\hspace{-0.5mm}\cdot\hspace{-0.5mm}}$}}}
+\def\dn{\,\stackrel{\mbox{\scriptsize def}}{=}\,}
+\renewcommand{\isasymequiv}{$\dn$}
+%%\renewcommand{\isasymiota}{}
+\renewcommand{\isasymxi}{$..$}
+\renewcommand{\isasymemptyset}{$\varnothing$}
+\newcommand{\isasymnotapprox}{$\not\approx$}
+\newcommand{\isasymLET}{$\mathtt{let}$}
+\newcommand{\isasymAND}{$\mathtt{and}$}
+\newcommand{\isasymIN}{$\mathtt{in}$}
+\newcommand{\isasymEND}{$\mathtt{end}$}
+\newcommand{\isasymBIND}{$\mathtt{bind}$}
+\newcommand{\isasymANIL}{$\mathtt{anil}$}
+\newcommand{\isasymACONS}{$\mathtt{acons}$}
+\newcommand{\isasymCASE}{$\mathtt{case}$}
+\newcommand{\isasymOF}{$\mathtt{of}$}
+\newcommand{\isasymAL}{\makebox[0mm][l]{$^\alpha$}}
+\newcommand{\isasymPRIME}{\makebox[0mm][l]{$'$}}
+\newcommand{\isasymFRESH}{\#}
+\newcommand{\LET}{\;\mathtt{let}\;}
+\newcommand{\IN}{\;\mathtt{in}\;}
+\newcommand{\END}{\;\mathtt{end}\;}
+\newcommand{\AND}{\;\mathtt{and}\;}
+\newcommand{\fv}{\mathit{fv}}
+
+\newcommand{\numbered}[1]{\refstepcounter{equation}{\rm(\arabic{equation})}\label{#1}}
+%----------------- theorem definitions ----------
+%%\theoremstyle{plain}
+%%\spnewtheorem{thm}[section]{Theorem}
+%%\newtheorem{property}[thm]{Property}
+%%\newtheorem{lemma}[thm]{Lemma}
+%%\spnewtheorem{defn}[theorem]{Definition}
+%%\spnewtheorem{exmple}[theorem]{Example}
+\spnewtheorem{myproperty}{Property}{\bfseries}{\rmfamily}
+%-------------------- environment definitions -----------------
+\newenvironment{proof-of}[1]{{\em Proof of #1:}}{}
+
+%\addtolength{\textwidth}{2mm}
+\addtolength{\parskip}{-0.33mm}
+\begin{document}
+
+\title{General Bindings and Alpha-Equivalence\\ in Nominal Isabelle}
+\author{Christian Urban and Cezary Kaliszyk}
+\institute{TU Munich, Germany}
+%%%{\{urbanc, kaliszyk\}@in.tum.de}
+\maketitle
+
+\begin{abstract} 
+Nominal Isabelle is a definitional extension of the Isabelle/HOL theorem
+prover. It provides a proving infrastructure for reasoning about
+programming language calculi involving named bound variables (as
+opposed to de-Bruijn indices). In this paper we present an extension of
+Nominal Isabelle for dealing with general bindings, that means
+term-constructors where multiple variables are bound at once. Such general
+bindings are ubiquitous in programming language research and only very
+poorly supported with single binders, such as lambda-abstractions. Our
+extension includes new definitions of $\alpha$-equivalence and establishes
+automatically the reasoning infrastructure for $\alpha$-equated terms. We
+also prove strong induction principles that have the usual variable
+convention already built in.
+\end{abstract}
+
+%\category{F.4.1}{subcategory}{third-level}
+
+%\terms
+%formal reasoning, programming language calculi
+
+%\keywords
+%nominal logic work, variable convention
+
+
+\input{session}
+
+\begin{spacing}{0.9}
+  \bibliographystyle{plain}
+  \bibliography{root}
+\end{spacing}
+
+%\pagebreak
+%\input{Appendix} 
+
+\end{document}
+
+%%% Local Variables:
+%%% mode: latex
+%%% TeX-master: t
+%%% End:
--- a/IsaMakefile	Wed Mar 16 21:14:43 2011 +0100
+++ b/IsaMakefile	Tue Mar 29 23:52:14 2011 +0200
@@ -4,7 +4,7 @@
 default: tests
 images: 
 
-all: tests paper pearl pearl-jv qpaper slides
+all: tests esop pearl pearl-jv qpaper slides
 
 
 ## global settings
@@ -23,15 +23,14 @@
 $(LOG)/HOL-Nominal2.gz: Nominal/ROOT.ML Nominal/*.thy
 	@cd Nominal; $(USEDIR) -b -d "" HOL Nominal
 
-## Nominal2 Paper
+## ESOP Paper
 
-paper: $(LOG)/HOL-Nominal2-Paper.gz
+esop: $(LOG)/HOL-ESOP-Paper.gz
 
-$(LOG)/HOL-Nominal2-Paper.gz: Paper/ROOT.ML Paper/document/root.* Paper/*.thy
-	@$(USEDIR) -f ROOTa.ML -D generated HOL Paper
-	@$(USEDIR) -D generated HOL Paper
-	$(ISABELLE_TOOL) document -o pdf  Paper/generated
-	@cp Paper/document.pdf paper.pdf
+$(LOG)/HOL-ESOP-Paper.gz: ESOP-Paper/ROOT.ML ESOP-Paper/document/root.* ESOP-Paper/*.thy
+	@$(USEDIR) -f ROOT.ML -D generated HOL-Nominal2 ESOP-Paper
+	$(ISABELLE_TOOL) document -o pdf  ESOP-Paper/generated
+	@cp ESOP-Paper/document.pdf esop-paper.pdf
 
 ## Pearl Paper ITP
 
@@ -107,7 +106,18 @@
 	cd Slides/generated4 ; $(ISABELLE_TOOL) latex -o pdf root.beamer.tex
 	cp Slides/generated4/root.beamer.pdf Slides/slides4.pdf 
 
-slides: slides1 slides2 slides3 slides4
+session5: Slides/ROOT5.ML \
+         Slides/document/root* \
+         Slides/Slides5.thy
+	@$(USEDIR) -D generated5 -f ROOT5.ML HOL-Nominal Slides
+
+slides5: session5
+	rm -f Slides/generated5/*.aux # otherwise latex will fall over
+	cd Slides/generated5 ; $(ISABELLE_TOOL) latex -o pdf root.beamer.tex
+	cd Slides/generated5 ; $(ISABELLE_TOOL) latex -o pdf root.beamer.tex
+	cp Slides/generated5/root.beamer.pdf Slides/slides5.pdf 
+
+slides: slides1 slides2 slides3 slides4 slides5
 
 
 
--- a/Paper/Paper.thy	Wed Mar 16 21:14:43 2011 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,2393 +0,0 @@
-(*<*)
-theory Paper
-imports "../Nominal/Nominal2" 
-        "~~/src/HOL/Library/LaTeXsugar"
-begin
-
-consts
-  fv :: "'a \<Rightarrow> 'b"
-  abs_set :: "'a \<Rightarrow> 'b \<Rightarrow> 'c"
-  alpha_bn :: "'a \<Rightarrow> 'a \<Rightarrow> bool"
-  abs_set2 :: "'a \<Rightarrow> perm \<Rightarrow> 'b \<Rightarrow> 'c"
-  Abs_dist :: "'a \<Rightarrow> 'b \<Rightarrow> 'c" 
-  Abs_print :: "'a \<Rightarrow> 'b \<Rightarrow> 'c" 
-
-definition
- "equal \<equiv> (op =)" 
-
-notation (latex output)
-  swap ("'(_ _')" [1000, 1000] 1000) and
-  fresh ("_ # _" [51, 51] 50) and
-  fresh_star ("_ #\<^sup>* _" [51, 51] 50) and
-  supp ("supp _" [78] 73) and
-  uminus ("-_" [78] 73) and
-  If  ("if _ then _ else _" 10) and
-  alpha_set ("_ \<approx>\<^raw:\,\raisebox{-1pt}{\makebox[0mm][l]{$_{\textit{set}}$}}>\<^bsup>_, _, _\<^esup> _") and
-  alpha_lst ("_ \<approx>\<^raw:\,\raisebox{-1pt}{\makebox[0mm][l]{$_{\textit{list}}$}}>\<^bsup>_, _, _\<^esup> _") and
-  alpha_res ("_ \<approx>\<^raw:\,\raisebox{-1pt}{\makebox[0mm][l]{$_{\textit{set+}}$}}>\<^bsup>_, _, _\<^esup> _") and
-  abs_set ("_ \<approx>\<^raw:{$\,_{\textit{abs\_set}}$}> _") and
-  abs_set2 ("_ \<approx>\<^raw:\raisebox{-1pt}{\makebox[0mm][l]{$\,_{\textit{list}}$}}>\<^bsup>_\<^esup>  _") and
-  fv ("fa'(_')" [100] 100) and
-  equal ("=") and
-  alpha_abs_set ("_ \<approx>\<^raw:{$\,_{\textit{abs\_set}}$}> _") and 
-  Abs_set ("[_]\<^bsub>set\<^esub>._" [20, 101] 999) and
-  Abs_lst ("[_]\<^bsub>list\<^esub>._") and
-  Abs_dist ("[_]\<^bsub>#list\<^esub>._") and
-  Abs_res ("[_]\<^bsub>set+\<^esub>._") and
-  Abs_print ("_\<^bsub>set\<^esub>._") and
-  Cons ("_::_" [78,77] 73) and
-  supp_set ("aux _" [1000] 10) and
-  alpha_bn ("_ \<approx>bn _")
-
-consts alpha_trm ::'a
-consts fa_trm :: 'a
-consts alpha_trm2 ::'a
-consts fa_trm2 :: 'a
-consts ast :: 'a
-consts ast' :: 'a
-notation (latex output) 
-  alpha_trm ("\<approx>\<^bsub>trm\<^esub>") and
-  fa_trm ("fa\<^bsub>trm\<^esub>") and
-  alpha_trm2 ("'(\<approx>\<^bsub>assn\<^esub>, \<approx>\<^bsub>trm\<^esub>')") and
-  fa_trm2 ("'(fa\<^bsub>assn\<^esub>, fa\<^bsub>trm\<^esub>')") and
-  ast ("'(as, t')") and
-  ast' ("'(as', t\<PRIME> ')")
-
-(*>*)
-
-
-section {* Introduction *}
-
-text {*
-
-  So far, Nominal Isabelle provided a mechanism for constructing
-  $\alpha$-equated terms, for example lambda-terms,
-  @{text "t ::= x | t t | \<lambda>x. t"},
-  where free and bound variables have names.  For such $\alpha$-equated terms,
-  Nominal Isabelle derives automatically a reasoning infrastructure that has
-  been used successfully in formalisations of an equivalence checking
-  algorithm for LF \cite{UrbanCheneyBerghofer08}, Typed
-  Scheme~\cite{TobinHochstadtFelleisen08}, several calculi for concurrency
-  \cite{BengtsonParow09} and a strong normalisation result for cut-elimination
-  in classical logic \cite{UrbanZhu08}. It has also been used by Pollack for
-  formalisations in the locally-nameless approach to binding
-  \cite{SatoPollack10}.
-
-  However, Nominal Isabelle has fared less well in a formalisation of
-  the algorithm W \cite{UrbanNipkow09}, where types and type-schemes are,
-  respectively, of the form
-  %
-  \begin{equation}\label{tysch}
-  \begin{array}{l}
-  @{text "T ::= x | T \<rightarrow> T"}\hspace{9mm}
-  @{text "S ::= \<forall>{x\<^isub>1,\<dots>, x\<^isub>n}. T"}
-  \end{array}
-  \end{equation}
-  %
-  \noindent
-  and the @{text "\<forall>"}-quantification binds a finite (possibly empty) set of
-  type-variables.  While it is possible to implement this kind of more general
-  binders by iterating single binders, this leads to a rather clumsy
-  formalisation of W. 
-  %The need of iterating single binders is also one reason
-  %why Nominal Isabelle 
-  % and similar theorem provers that only provide
-  %mechanisms for binding single variables 
-  %has not fared extremely well with the
-  %more advanced tasks in the POPLmark challenge \cite{challenge05}, because
-  %also there one would like to bind multiple variables at once. 
-
-  Binding multiple variables has interesting properties that cannot be captured
-  easily by iterating single binders. For example in the case of type-schemes we do not
-  want to make a distinction about the order of the bound variables. Therefore
-  we would like to regard the first pair of type-schemes as $\alpha$-equivalent,
-  but assuming that @{text x}, @{text y} and @{text z} are distinct variables,
-  the second pair should \emph{not} be $\alpha$-equivalent:
-  %
-  \begin{equation}\label{ex1}
-  @{text "\<forall>{x, y}. x \<rightarrow> y  \<approx>\<^isub>\<alpha>  \<forall>{y, x}. y \<rightarrow> x"}\hspace{10mm}
-  @{text "\<forall>{x, y}. x \<rightarrow> y  \<notapprox>\<^isub>\<alpha>  \<forall>{z}. z \<rightarrow> z"}
-  \end{equation}
-  %
-  \noindent
-  Moreover, we like to regard type-schemes as $\alpha$-equivalent, if they differ
-  only on \emph{vacuous} binders, such as
-  %
-  \begin{equation}\label{ex3}
-  @{text "\<forall>{x}. x \<rightarrow> y  \<approx>\<^isub>\<alpha>  \<forall>{x, z}. x \<rightarrow> y"}
-  \end{equation}
-  %
-  \noindent
-  where @{text z} does not occur freely in the type.  In this paper we will
-  give a general binding mechanism and associated notion of $\alpha$-equivalence
-  that can be used to faithfully represent this kind of binding in Nominal
-  Isabelle.  
-  %The difficulty of finding the right notion for $\alpha$-equivalence
-  %can be appreciated in this case by considering that the definition given by
-  %Leroy in \cite{Leroy92} is incorrect (it omits a side-condition). 
-
-  However, the notion of $\alpha$-equivalence that is preserved by vacuous
-  binders is not always wanted. For example in terms like
-  %
-  \begin{equation}\label{one}
-  @{text "\<LET> x = 3 \<AND> y = 2 \<IN> x - y \<END>"}
-  \end{equation}
-
-  \noindent
-  we might not care in which order the assignments @{text "x = 3"} and
-  \mbox{@{text "y = 2"}} are given, but it would be often unusual to regard
-  \eqref{one} as $\alpha$-equivalent with
-  %
-  \begin{center}
-  @{text "\<LET> x = 3 \<AND> y = 2 \<AND> z = foo \<IN> x - y \<END>"}
-  \end{center}
-  %
-  \noindent
-  Therefore we will also provide a separate binding mechanism for cases in
-  which the order of binders does not matter, but the ``cardinality'' of the
-  binders has to agree.
-
-  However, we found that this is still not sufficient for dealing with
-  language constructs frequently occurring in programming language
-  research. For example in @{text "\<LET>"}s containing patterns like
-  %
-  \begin{equation}\label{two}
-  @{text "\<LET> (x, y) = (3, 2) \<IN> x - y \<END>"}
-  \end{equation}
-  %
-  \noindent
-  we want to bind all variables from the pattern inside the body of the
-  $\mathtt{let}$, but we also care about the order of these variables, since
-  we do not want to regard \eqref{two} as $\alpha$-equivalent with
-  %
-  \begin{center}
-  @{text "\<LET> (y, x) = (3, 2) \<IN> x - y \<END>"}
-  \end{center}
-  %
-  \noindent
-  As a result, we provide three general binding mechanisms each of which binds
-  multiple variables at once, and let the user chose which one is intended
-  in a formalisation.
-  %%when formalising a term-calculus.
-
-  By providing these general binding mechanisms, however, we have to work
-  around a problem that has been pointed out by Pottier \cite{Pottier06} and
-  Cheney \cite{Cheney05}: in @{text "\<LET>"}-constructs of the form
-  %
-  \begin{center}
-  @{text "\<LET> x\<^isub>1 = t\<^isub>1 \<AND> \<dots> \<AND> x\<^isub>n = t\<^isub>n \<IN> s \<END>"}
-  \end{center}
-  %
-  \noindent
-  we care about the 
-  information that there are as many bound variables @{text
-  "x\<^isub>i"} as there are @{text "t\<^isub>i"}. We lose this information if
-  we represent the @{text "\<LET>"}-constructor by something like
-  %
-  \begin{center}
-  @{text "\<LET> (\<lambda>x\<^isub>1\<dots>x\<^isub>n . s)  [t\<^isub>1,\<dots>,t\<^isub>n]"}
-  \end{center}
-  %
-  \noindent
-  where the notation @{text "\<lambda>_ . _"} indicates that the list of @{text
-  "x\<^isub>i"} becomes bound in @{text s}. In this representation the term
-  \mbox{@{text "\<LET> (\<lambda>x . s)  [t\<^isub>1, t\<^isub>2]"}} is a perfectly legal
-  instance, but the lengths of the two lists do not agree. To exclude such
-  terms, additional predicates about well-formed terms are needed in order to
-  ensure that the two lists are of equal length. This can result in very messy
-  reasoning (see for example~\cite{BengtsonParow09}). To avoid this, we will
-  allow type specifications for @{text "\<LET>"}s as follows
-  %
-  \begin{center}
-  \begin{tabular}{r@ {\hspace{2mm}}r@ {\hspace{2mm}}cl}
-  @{text trm} & @{text "::="}  & @{text "\<dots>"} 
-              & @{text "|"}  @{text "\<LET>  as::assn  s::trm"}\hspace{2mm} 
-                                 \isacommand{bind} @{text "bn(as)"} \isacommand{in} @{text "s"}\\%%%[1mm]
-  @{text assn} & @{text "::="} & @{text "\<ANIL>"}
-               &  @{text "|"}  @{text "\<ACONS>  name  trm  assn"}
-  \end{tabular}
-  \end{center}
-  %
-  \noindent
-  where @{text assn} is an auxiliary type representing a list of assignments
-  and @{text bn} an auxiliary function identifying the variables to be bound
-  by the @{text "\<LET>"}. This function can be defined by recursion over @{text
-  assn} as follows
-  %
-  \begin{center}
-  @{text "bn(\<ANIL>) ="} @{term "{}"} \hspace{5mm} 
-  @{text "bn(\<ACONS> x t as) = {x} \<union> bn(as)"} 
-  \end{center}
-  %
-  \noindent
-  The scope of the binding is indicated by labels given to the types, for
-  example @{text "s::trm"}, and a binding clause, in this case
-  \isacommand{bind} @{text "bn(as)"} \isacommand{in} @{text "s"}. This binding
-  clause states that all the names the function @{text
-  "bn(as)"} returns should be bound in @{text s}.  This style of specifying terms and bindings is heavily
-  inspired by the syntax of the Ott-tool \cite{ott-jfp}. 
-
-  %Though, Ott
-  %has only one binding mode, namely the one where the order of
-  %binders matters. Consequently, type-schemes with binding sets
-  %of names cannot be modelled in Ott.
-
-  However, we will not be able to cope with all specifications that are
-  allowed by Ott. One reason is that Ott lets the user specify ``empty'' 
-  types like @{text "t ::= t t | \<lambda>x. t"}
-  where no clause for variables is given. Arguably, such specifications make
-  some sense in the context of Coq's type theory (which Ott supports), but not
-  at all in a HOL-based environment where every datatype must have a non-empty
-  set-theoretic model. % \cite{Berghofer99}.
-
-  Another reason is that we establish the reasoning infrastructure
-  for $\alpha$-\emph{equated} terms. In contrast, Ott produces  a reasoning 
-  infrastructure in Isabelle/HOL for
-  \emph{non}-$\alpha$-equated, or ``raw'', terms. While our $\alpha$-equated terms
-  and the raw terms produced by Ott use names for bound variables,
-  there is a key difference: working with $\alpha$-equated terms means, for example,  
-  that the two type-schemes
-
-  \begin{center}
-  @{text "\<forall>{x}. x \<rightarrow> y  = \<forall>{x, z}. x \<rightarrow> y"} 
-  \end{center}
-  
-  \noindent
-  are not just $\alpha$-equal, but actually \emph{equal}! As a result, we can
-  only support specifications that make sense on the level of $\alpha$-equated
-  terms (offending specifications, which for example bind a variable according
-  to a variable bound somewhere else, are not excluded by Ott, but we have
-  to).  
-
-  %Our insistence on reasoning with $\alpha$-equated terms comes from the
-  %wealth of experience we gained with the older version of Nominal Isabelle:
-  %for non-trivial properties, reasoning with $\alpha$-equated terms is much
-  %easier than reasoning with raw terms. The fundamental reason for this is
-  %that the HOL-logic underlying Nominal Isabelle allows us to replace
-  %``equals-by-equals''. In contrast, replacing
-  %``$\alpha$-equals-by-$\alpha$-equals'' in a representation based on raw terms
-  %requires a lot of extra reasoning work.
-
-  Although in informal settings a reasoning infrastructure for $\alpha$-equated
-  terms is nearly always taken for granted, establishing it automatically in
-  Isabelle/HOL is a rather non-trivial task. For every
-  specification we will need to construct type(s) containing as elements the
-  $\alpha$-equated terms. To do so, we use the standard HOL-technique of defining
-  a new type by identifying a non-empty subset of an existing type.  The
-  construction we perform in Isabelle/HOL can be illustrated by the following picture:
-  %
-  \begin{center}
-  \begin{tikzpicture}[scale=0.89]
-  %\draw[step=2mm] (-4,-1) grid (4,1);
-  
-  \draw[very thick] (0.7,0.4) circle (4.25mm);
-  \draw[rounded corners=1mm, very thick] ( 0.0,-0.8) rectangle ( 1.8, 0.9);
-  \draw[rounded corners=1mm, very thick] (-1.95,0.85) rectangle (-2.85,-0.05);
-  
-  \draw (-2.0, 0.845) --  (0.7,0.845);
-  \draw (-2.0,-0.045)  -- (0.7,-0.045);
-
-  \draw ( 0.7, 0.4) node {\footnotesize\begin{tabular}{@ {}c@ {}}$\alpha$-\\[-1mm]clas.\end{tabular}};
-  \draw (-2.4, 0.4) node {\footnotesize\begin{tabular}{@ {}c@ {}}$\alpha$-eq.\\[-1mm]terms\end{tabular}};
-  \draw (1.8, 0.48) node[right=-0.1mm]
-    {\footnotesize\begin{tabular}{@ {}l@ {}}existing\\[-1mm] type\\ (sets of raw terms)\end{tabular}};
-  \draw (0.9, -0.35) node {\footnotesize\begin{tabular}{@ {}l@ {}}non-empty\\[-1mm]subset\end{tabular}};
-  \draw (-3.25, 0.55) node {\footnotesize\begin{tabular}{@ {}l@ {}}new\\[-1mm]type\end{tabular}};
-  
-  \draw[<->, very thick] (-1.8, 0.3) -- (-0.1,0.3);
-  \draw (-0.95, 0.3) node[above=0mm] {\footnotesize{}isomorphism};
-
-  \end{tikzpicture}
-  \end{center}
-  %
-  \noindent
-  We take as the starting point a definition of raw terms (defined as a
-  datatype in Isabelle/HOL); then identify the $\alpha$-equivalence classes in
-  the type of sets of raw terms according to our $\alpha$-equivalence relation,
-  and finally define the new type as these $\alpha$-equivalence classes
-  (non-emptiness is satisfied whenever the raw terms are definable as datatype
-  in Isabelle/HOL and our relation for $\alpha$-equivalence is
-  an equivalence relation).
-
-  %The fact that we obtain an isomorphism between the new type and the
-  %non-empty subset shows that the new type is a faithful representation of
-  %$\alpha$-equated terms. That is not the case for example for terms using the
-  %locally nameless representation of binders \cite{McKinnaPollack99}: in this
-  %representation there are ``junk'' terms that need to be excluded by
-  %reasoning about a well-formedness predicate.
-
-  The problem with introducing a new type in Isabelle/HOL is that in order to
-  be useful, a reasoning infrastructure needs to be ``lifted'' from the
-  underlying subset to the new type. This is usually a tricky and arduous
-  task. To ease it, we re-implemented in Isabelle/HOL \cite{KaliszykUrban11} the quotient package
-  described by Homeier \cite{Homeier05} for the HOL4 system. This package
-  allows us to lift definitions and theorems involving raw terms to
-  definitions and theorems involving $\alpha$-equated terms. For example if we
-  define the free-variable function over raw lambda-terms
-
-  \begin{center}
-  @{text "fv(x) = {x}"}\hspace{8mm}
-  @{text "fv(t\<^isub>1 t\<^isub>2) = fv(t\<^isub>1) \<union> fv(t\<^isub>2)"}\hspace{8mm}
-  @{text "fv(\<lambda>x.t) = fv(t) - {x}"}
-  \end{center}
-  
-  \noindent
-  then with the help of the quotient package we can obtain a function @{text "fv\<^sup>\<alpha>"}
-  operating on quotients, or $\alpha$-equivalence classes of lambda-terms. This
-  lifted function is characterised by the equations
-
-  \begin{center}
-  @{text "fv\<^sup>\<alpha>(x) = {x}"}\hspace{8mm}
-  @{text "fv\<^sup>\<alpha>(t\<^isub>1 t\<^isub>2) = fv\<^sup>\<alpha>(t\<^isub>1) \<union> fv\<^sup>\<alpha>(t\<^isub>2)"}\hspace{8mm}
-  @{text "fv\<^sup>\<alpha>(\<lambda>x.t) = fv\<^sup>\<alpha>(t) - {x}"}
-  \end{center}
-
-  \noindent
-  (Note that this means also the term-constructors for variables, applications
-  and lambda are lifted to the quotient level.)  This construction, of course,
-  only works if $\alpha$-equivalence is indeed an equivalence relation, and the
-  ``raw'' definitions and theorems are respectful w.r.t.~$\alpha$-equivalence.
-  %For example, we will not be able to lift a bound-variable function. Although
-  %this function can be defined for raw terms, it does not respect
-  %$\alpha$-equivalence and therefore cannot be lifted. 
-  To sum up, every lifting
-  of theorems to the quotient level needs proofs of some respectfulness
-  properties (see \cite{Homeier05}). In the paper we show that we are able to
-  automate these proofs and as a result can automatically establish a reasoning 
-  infrastructure for $\alpha$-equated terms.\smallskip
-
-  %The examples we have in mind where our reasoning infrastructure will be
-  %helpful includes the term language of Core-Haskell. This term language
-  %involves patterns that have lists of type-, coercion- and term-variables,
-  %all of which are bound in @{text "\<CASE>"}-expressions. In these
-  %patterns we do not know in advance how many variables need to
-  %be bound. Another example is the specification of SML, which includes
-  %includes bindings as in type-schemes.\medskip
-
-  \noindent
-  {\bf Contributions:}  We provide three new definitions for when terms
-  involving general binders are $\alpha$-equivalent. These definitions are
-  inspired by earlier work of Pitts \cite{Pitts04}. By means of automatic
-  proofs, we establish a reasoning infrastructure for $\alpha$-equated
-  terms, including properties about support, freshness and equality
-  conditions for $\alpha$-equated terms. We are also able to derive strong 
-  induction principles that have the variable convention already built in.
-  The method behind our specification of general binders is taken 
-  from the Ott-tool, but we introduce crucial restrictions, and also extensions, so 
-  that our specifications make sense for reasoning about $\alpha$-equated terms.  
-  The main improvement over Ott is that we introduce three binding modes
-  (only one is present in Ott), provide formalised definitions for $\alpha$-equivalence and 
-  for free variables of our terms, and also derive a reasoning infrastructure
-  for our specifications from ``first principles''.
-
-
-  %\begin{figure}
-  %\begin{boxedminipage}{\linewidth}
-  %%\begin{center}
-  %\begin{tabular}{r@ {\hspace{1mm}}r@ {\hspace{2mm}}l}
-  %\multicolumn{3}{@ {}l}{Type Kinds}\\
-  %@{text "\<kappa>"} & @{text "::="} & @{text "\<star> | \<kappa>\<^isub>1 \<rightarrow> \<kappa>\<^isub>2"}\smallskip\\
-  %\multicolumn{3}{@ {}l}{Coercion Kinds}\\
-  %@{text "\<iota>"} & @{text "::="} & @{text "\<sigma>\<^isub>1 \<sim> \<sigma>\<^isub>2"}\smallskip\\
-  %\multicolumn{3}{@ {}l}{Types}\\
-  %@{text "\<sigma>"} & @{text "::="} & @{text "a | T | \<sigma>\<^isub>1 \<sigma>\<^isub>2 | S\<^isub>n"}$\;\overline{@{text "\<sigma>"}}$@{text "\<^sup>n"} 
-  %@{text "| \<forall>a:\<kappa>. \<sigma> | \<iota> \<Rightarrow> \<sigma>"}\smallskip\\
-  %\multicolumn{3}{@ {}l}{Coercion Types}\\
-  %@{text "\<gamma>"} & @{text "::="} & @{text "c | C | \<gamma>\<^isub>1 \<gamma>\<^isub>2 | S\<^isub>n"}$\;\overline{@{text "\<gamma>"}}$@{text "\<^sup>n"}
-  %@{text "| \<forall>c:\<iota>. \<gamma> | \<iota> \<Rightarrow> \<gamma> "}\\
-  %& @{text "|"} & @{text "refl \<sigma> | sym \<gamma> | \<gamma>\<^isub>1 \<circ> \<gamma>\<^isub>2 | \<gamma> @ \<sigma> | left \<gamma> | right \<gamma>"}\\
-  %& @{text "|"} & @{text "\<gamma>\<^isub>1 \<sim> \<gamma>\<^isub>2 | rightc \<gamma> | leftc \<gamma> | \<gamma>\<^isub>1 \<triangleright> \<gamma>\<^isub>2"}\smallskip\\
-  %\multicolumn{3}{@ {}l}{Terms}\\
-  %@{text "e"} & @{text "::="} & @{text "x | K | \<Lambda>a:\<kappa>. e | \<Lambda>c:\<iota>. e | e \<sigma> | e \<gamma>"}\\
-  %& @{text "|"} & @{text "\<lambda>x:\<sigma>. e | e\<^isub>1 e\<^isub>2 | \<LET> x:\<sigma> = e\<^isub>1 \<IN> e\<^isub>2"}\\
-  %& @{text "|"} & @{text "\<CASE> e\<^isub>1 \<OF>"}$\;\overline{@{text "p \<rightarrow> e\<^isub>2"}}$ @{text "| e \<triangleright> \<gamma>"}\smallskip\\
-  %\multicolumn{3}{@ {}l}{Patterns}\\
-  %@{text "p"} & @{text "::="} & @{text "K"}$\;\overline{@{text "a:\<kappa>"}}\;\overline{@{text "c:\<iota>"}}\;\overline{@{text "x:\<sigma>"}}$\smallskip\\
-  %\multicolumn{3}{@ {}l}{Constants}\\
-  %& @{text C} & coercion constants\\
-  %& @{text T} & value type constructors\\
-  %& @{text "S\<^isub>n"} & n-ary type functions (which need to be fully applied)\\
-  %& @{text K} & data constructors\smallskip\\
-  %\multicolumn{3}{@ {}l}{Variables}\\
-  %& @{text a} & type variables\\
-  %& @{text c} & coercion variables\\
-  %& @{text x} & term variables\\
-  %\end{tabular}
-  %\end{center}
-  %\end{boxedminipage}
-  %\caption{The System @{text "F\<^isub>C"}
-  %\cite{CoreHaskell}, also often referred to as \emph{Core-Haskell}. In this
-  %version of @{text "F\<^isub>C"} we made a modification by separating the
-  %grammars for type kinds and coercion kinds, as well as for types and coercion
-  %types. For this paper the interesting term-constructor is @{text "\<CASE>"},
-  %which binds multiple type-, coercion- and term-variables.\label{corehas}}
-  %\end{figure}
-*}
-
-section {* A Short Review of the Nominal Logic Work *}
-
-text {*
-  At its core, Nominal Isabelle is an adaption of the nominal logic work by
-  Pitts \cite{Pitts03}. This adaptation for Isabelle/HOL is described in
-  \cite{HuffmanUrban10} (including proofs). We shall briefly review this work
-  to aid the description of what follows. 
-
-  Two central notions in the nominal logic work are sorted atoms and
-  sort-respecting permutations of atoms. We will use the letters @{text "a,
-  b, c, \<dots>"} to stand for atoms and @{text "p, q, \<dots>"} to stand for
-  permutations. The purpose of atoms is to represent variables, be they bound or free. 
-  %The sorts of atoms can be used to represent different kinds of
-  %variables, such as the term-, coercion- and type-variables in Core-Haskell.
-  It is assumed that there is an infinite supply of atoms for each
-  sort. In the interest of brevity, we shall restrict ourselves 
-  in what follows to only one sort of atoms.
-
-  Permutations are bijective functions from atoms to atoms that are 
-  the identity everywhere except on a finite number of atoms. There is a 
-  two-place permutation operation written
-  @{text "_ \<bullet> _  ::  perm \<Rightarrow> \<beta> \<Rightarrow> \<beta>"}
-  where the generic type @{text "\<beta>"} is the type of the object 
-  over which the permutation 
-  acts. In Nominal Isabelle, the identity permutation is written as @{term "0::perm"},
-  the composition of two permutations @{term p} and @{term q} as \mbox{@{term "p + q"}}, 
-  and the inverse permutation of @{term p} as @{text "- p"}. The permutation
-  operation is defined over the type-hierarchy \cite{HuffmanUrban10};
-  for example permutations acting on products, lists, sets, functions and booleans are
-  given by:
-  %
-  %\begin{equation}\label{permute}
-  %\mbox{\begin{tabular}{@ {}c@ {\hspace{10mm}}c@ {}}
-  %\begin{tabular}{@ {}l@ {}}
-  %@{thm permute_prod.simps[no_vars, THEN eq_reflection]}\\[2mm]
-  %@{thm permute_list.simps(1)[no_vars, THEN eq_reflection]}\\
-  %@{thm permute_list.simps(2)[no_vars, THEN eq_reflection]}\\
-  %\end{tabular} &
-  %\begin{tabular}{@ {}l@ {}}
-  %@{thm permute_set_eq[no_vars, THEN eq_reflection]}\\
-  %@{text "p \<bullet> f \<equiv> \<lambda>x. p \<bullet> (f (- p \<bullet> x))"}\\
-  %@{thm permute_bool_def[no_vars, THEN eq_reflection]}
-  %\end{tabular}
-  %\end{tabular}}
-  %\end{equation}
-  %
-  \begin{center}
-  \mbox{\begin{tabular}{@ {}c@ {\hspace{4mm}}c@ {\hspace{4mm}}c@ {}}
-  \begin{tabular}{@ {}l@ {}}
-  @{thm permute_prod.simps[no_vars, THEN eq_reflection]}\\
-  @{thm permute_bool_def[no_vars, THEN eq_reflection]}
-  \end{tabular} &
-  \begin{tabular}{@ {}l@ {}}
-  @{thm permute_list.simps(1)[no_vars, THEN eq_reflection]}\\
-  @{thm permute_list.simps(2)[no_vars, THEN eq_reflection]}\\
-  \end{tabular} &
-  \begin{tabular}{@ {}l@ {}}
-  @{thm permute_set_eq[no_vars, THEN eq_reflection]}\\
-  @{text "p \<bullet> f \<equiv> \<lambda>x. p \<bullet> (f (- p \<bullet> x))"}\\
-  \end{tabular}
-  \end{tabular}}
-  \end{center}
-
-  \noindent
-  Concrete permutations in Nominal Isabelle are built up from swappings, 
-  written as \mbox{@{text "(a b)"}}, which are permutations that behave 
-  as follows:
-  %
-  \begin{center}
-  @{text "(a b) = \<lambda>c. if a = c then b else if b = c then a else c"}
-  \end{center}
-
-  The most original aspect of the nominal logic work of Pitts is a general
-  definition for the notion of the ``set of free variables of an object @{text
-  "x"}''.  This notion, written @{term "supp x"}, is general in the sense that
-  it applies not only to lambda-terms ($\alpha$-equated or not), but also to lists,
-  products, sets and even functions. The definition depends only on the
-  permutation operation and on the notion of equality defined for the type of
-  @{text x}, namely:
-  %
-  \begin{equation}\label{suppdef}
-  @{thm supp_def[no_vars, THEN eq_reflection]}
-  \end{equation}
-
-  \noindent
-  There is also the derived notion for when an atom @{text a} is \emph{fresh}
-  for an @{text x}, defined as @{thm fresh_def[no_vars]}.
-  We use for sets of atoms the abbreviation 
-  @{thm (lhs) fresh_star_def[no_vars]}, defined as 
-  @{thm (rhs) fresh_star_def[no_vars]}.
-  A striking consequence of these definitions is that we can prove
-  without knowing anything about the structure of @{term x} that
-  swapping two fresh atoms, say @{text a} and @{text b}, leaves 
-  @{text x} unchanged, namely if @{text "a \<FRESH> x"} and @{text "b \<FRESH> x"}
-  then @{term "(a \<rightleftharpoons> b) \<bullet> x = x"}.
-  %
-  %\begin{myproperty}\label{swapfreshfresh}
-  %@{thm[mode=IfThen] swap_fresh_fresh[no_vars]}
-  %\end{myproperty}
-  %
-  %While often the support of an object can be relatively easily 
-  %described, for example for atoms, products, lists, function applications, 
-  %booleans and permutations as follows
-  %%
-  %\begin{center}
-  %\begin{tabular}{c@ {\hspace{10mm}}c}
-  %\begin{tabular}{rcl}
-  %@{term "supp a"} & $=$ & @{term "{a}"}\\
-  %@{term "supp (x, y)"} & $=$ & @{term "supp x \<union> supp y"}\\
-  %@{term "supp []"} & $=$ & @{term "{}"}\\
-  %@{term "supp (x#xs)"} & $=$ & @{term "supp x \<union> supp xs"}\\
-  %\end{tabular}
-  %&
-  %\begin{tabular}{rcl}
-  %@{text "supp (f x)"} & @{text "\<subseteq>"} & @{term "supp f \<union> supp x"}\\
-  %@{term "supp b"} & $=$ & @{term "{}"}\\
-  %@{term "supp p"} & $=$ & @{term "{a. p \<bullet> a \<noteq> a}"}
-  %\end{tabular}
-  %\end{tabular}
-  %\end{center}
-  %
-  %\noindent 
-  %in some cases it can be difficult to characterise the support precisely, and
-  %only an approximation can be established (as for functions above). 
-  %
-  %Reasoning about
-  %such approximations can be simplified with the notion \emph{supports}, defined 
-  %as follows:
-  %
-  %\begin{definition}
-  %A set @{text S} \emph{supports} @{text x} if for all atoms @{text a} and @{text b}
-  %not in @{text S} we have @{term "(a \<rightleftharpoons> b) \<bullet> x = x"}.
-  %\end{definition}
-  %
-  %\noindent
-  %The main point of @{text supports} is that we can establish the following 
-  %two properties.
-  %
-  %\begin{myproperty}\label{supportsprop}
-  %Given a set @{text "as"} of atoms.
-  %{\it (i)} @{thm[mode=IfThen] supp_is_subset[where S="as", no_vars]}
-  %{\it (ii)} @{thm supp_supports[no_vars]}.
-  %\end{myproperty}
-  %
-  %Another important notion in the nominal logic work is \emph{equivariance}.
-  %For a function @{text f}, say of type @{text "\<alpha> \<Rightarrow> \<beta>"}, to be equivariant 
-  %it is required that every permutation leaves @{text f} unchanged, that is
-  %%
-  %\begin{equation}\label{equivariancedef}
-  %@{term "\<forall>p. p \<bullet> f = f"}
-  %\end{equation}
-  %
-  %\noindent or equivalently that a permutation applied to the application
-  %@{text "f x"} can be moved to the argument @{text x}. That means for equivariant
-  %functions @{text f}, we have for all permutations @{text p}:
-  %%
-  %\begin{equation}\label{equivariance}
-  %@{text "p \<bullet> f = f"} \;\;\;\textit{if and only if}\;\;\;
-  %@{text "p \<bullet> (f x) = f (p \<bullet> x)"}
-  %\end{equation}
-  % 
-  %\noindent
-  %From property \eqref{equivariancedef} and the definition of @{text supp}, we 
-  %can easily deduce that equivariant functions have empty support. There is
-  %also a similar notion for equivariant relations, say @{text R}, namely the property
-  %that
-  %%
-  %\begin{center}
-  %@{text "x R y"} \;\;\textit{implies}\;\; @{text "(p \<bullet> x) R (p \<bullet> y)"}
-  %\end{center}
-  %
-  %Using freshness, the nominal logic work provides us with general means for renaming 
-  %binders. 
-  %
-  %\noindent
-  While in the older version of Nominal Isabelle, we used extensively 
-  %Property~\ref{swapfreshfresh}
-  this property to rename single binders, it %%this property 
-  proved too unwieldy for dealing with multiple binders. For such binders the 
-  following generalisations turned out to be easier to use.
-
-  \begin{myproperty}\label{supppermeq}
-  @{thm[mode=IfThen] supp_perm_eq[no_vars]}
-  \end{myproperty}
-
-  \begin{myproperty}\label{avoiding}
-  For a finite set @{text as} and a finitely supported @{text x} with
-  @{term "as \<sharp>* x"} and also a finitely supported @{text c}, there
-  exists a permutation @{text p} such that @{term "(p \<bullet> as) \<sharp>* c"} and
-  @{term "supp x \<sharp>* p"}.
-  \end{myproperty}
-
-  \noindent
-  The idea behind the second property is that given a finite set @{text as}
-  of binders (being bound, or fresh, in @{text x} is ensured by the
-  assumption @{term "as \<sharp>* x"}), then there exists a permutation @{text p} such that
-  the renamed binders @{term "p \<bullet> as"} avoid @{text c} (which can be arbitrarily chosen
-  as long as it is finitely supported) and also @{text "p"} does not affect anything
-  in the support of @{text x} (that is @{term "supp x \<sharp>* p"}). The last 
-  fact and Property~\ref{supppermeq} allow us to ``rename'' just the binders 
-  @{text as} in @{text x}, because @{term "p \<bullet> x = x"}.
-
-  Most properties given in this section are described in detail in \cite{HuffmanUrban10}
-  and all are formalised in Isabelle/HOL. In the next sections we will make 
-  extensive use of these properties in order to define $\alpha$-equivalence in 
-  the presence of multiple binders.
-*}
-
-
-section {* General Bindings\label{sec:binders} *}
-
-text {*
-  In Nominal Isabelle, the user is expected to write down a specification of a
-  term-calculus and then a reasoning infrastructure is automatically derived
-  from this specification (remember that Nominal Isabelle is a definitional
-  extension of Isabelle/HOL, which does not introduce any new axioms).
-
-  In order to keep our work with deriving the reasoning infrastructure
-  manageable, we will wherever possible state definitions and perform proofs
-  on the ``user-level'' of Isabelle/HOL, as opposed to write custom ML-code. % that
-  %generates them anew for each specification. 
-  To that end, we will consider
-  first pairs @{text "(as, x)"} of type @{text "(atom set) \<times> \<beta>"}.  These pairs
-  are intended to represent the abstraction, or binding, of the set of atoms @{text
-  "as"} in the body @{text "x"}.
-
-  The first question we have to answer is when two pairs @{text "(as, x)"} and
-  @{text "(bs, y)"} are $\alpha$-equivalent? (For the moment we are interested in
-  the notion of $\alpha$-equivalence that is \emph{not} preserved by adding
-  vacuous binders.) To answer this question, we identify four conditions: {\it (i)}
-  given a free-atom function @{text "fa"} of type \mbox{@{text "\<beta> \<Rightarrow> atom
-  set"}}, then @{text x} and @{text y} need to have the same set of free
-  atoms; moreover there must be a permutation @{text p} such that {\it
-  (ii)} @{text p} leaves the free atoms of @{text x} and @{text y} unchanged, but
-  {\it (iii)} ``moves'' their bound names so that we obtain modulo a relation,
-  say \mbox{@{text "_ R _"}}, two equivalent terms. We also require that {\it (iv)}
-  @{text p} makes the sets of abstracted atoms @{text as} and @{text bs} equal. The
-  requirements {\it (i)} to {\it (iv)} can be stated formally as the conjunction of:
-  %
-  \begin{equation}\label{alphaset}
-  \begin{array}{@ {\hspace{10mm}}l@ {\hspace{5mm}}l@ {\hspace{10mm}}l@ {\hspace{5mm}}l}
-  \multicolumn{4}{l}{@{term "(as, x) \<approx>set R fa p (bs, y)"}\hspace{2mm}@{text "\<equiv>"}}\\[1mm]
-       \mbox{\it (i)}   & @{term "fa(x) - as = fa(y) - bs"} &
-       \mbox{\it (iii)} &  @{text "(p \<bullet> x) R y"} \\
-       \mbox{\it (ii)}  & @{term "(fa(x) - as) \<sharp>* p"} & 
-       \mbox{\it (iv)}  & @{term "(p \<bullet> as) = bs"} \\ 
-  \end{array}
-  \end{equation}
-  %
-  \noindent
-  Note that this relation depends on the permutation @{text
-  "p"}; $\alpha$-equivalence between two pairs is then the relation where we
-  existentially quantify over this @{text "p"}. Also note that the relation is
-  dependent on a free-atom function @{text "fa"} and a relation @{text
-  "R"}. The reason for this extra generality is that we will use
-  $\approx_{\,\textit{set}}$ for both ``raw'' terms and $\alpha$-equated terms. In
-  the latter case, @{text R} will be replaced by equality @{text "="} and we
-  will prove that @{text "fa"} is equal to @{text "supp"}.
-
-  The definition in \eqref{alphaset} does not make any distinction between the
-  order of abstracted atoms. If we want this, then we can define $\alpha$-equivalence 
-  for pairs of the form \mbox{@{text "(as, x)"}} with type @{text "(atom list) \<times> \<beta>"} 
-  as follows
-  %
-  \begin{equation}\label{alphalist}
-  \begin{array}{@ {\hspace{10mm}}l@ {\hspace{5mm}}l@ {\hspace{10mm}}l@ {\hspace{5mm}}l}
-  \multicolumn{4}{l}{@{term "(as, x) \<approx>lst R fa p (bs, y)"}\hspace{2mm}@{text "\<equiv>"}}\\[1mm]
-         \mbox{\it (i)}   & @{term "fa(x) - (set as) = fa(y) - (set bs)"} & 
-         \mbox{\it (iii)} & @{text "(p \<bullet> x) R y"}\\
-         \mbox{\it (ii)}  & @{term "(fa(x) - set as) \<sharp>* p"} &
-         \mbox{\it (iv)}  & @{term "(p \<bullet> as) = bs"}\\
-  \end{array}
-  \end{equation}
-  %
-  \noindent
-  where @{term set} is the function that coerces a list of atoms into a set of atoms.
-  Now the last clause ensures that the order of the binders matters (since @{text as}
-  and @{text bs} are lists of atoms).
-
-  If we do not want to make any difference between the order of binders \emph{and}
-  also allow vacuous binders, that means \emph{restrict} names, then we keep sets of binders, but drop 
-  condition {\it (iv)} in \eqref{alphaset}:
-  %
-  \begin{equation}\label{alphares}
-  \begin{array}{@ {\hspace{10mm}}l@ {\hspace{5mm}}l@ {\hspace{10mm}}l@ {\hspace{5mm}}l}
-  \multicolumn{2}{l}{@{term "(as, x) \<approx>res R fa p (bs, y)"}\hspace{2mm}@{text "\<equiv>"}}\\[1mm]
-             \mbox{\it (i)}   & @{term "fa(x) - as = fa(y) - bs"} & 
-             \mbox{\it (iii)} & @{text "(p \<bullet> x) R y"}\\
-             \mbox{\it (ii)}  & @{term "(fa(x) - as) \<sharp>* p"}\\
-  \end{array}
-  \end{equation}
-
-  It might be useful to consider first some examples how these definitions
-  of $\alpha$-equivalence pan out in practice.  For this consider the case of
-  abstracting a set of atoms over types (as in type-schemes). We set
-  @{text R} to be the usual equality @{text "="} and for @{text "fa(T)"} we
-  define
-  %
-  \begin{center}
-  @{text "fa(x) = {x}"}  \hspace{5mm} @{text "fa(T\<^isub>1 \<rightarrow> T\<^isub>2) = fa(T\<^isub>1) \<union> fa(T\<^isub>2)"}
-  \end{center}
-
-  \noindent
-  Now recall the examples shown in \eqref{ex1} and
-  \eqref{ex3}. It can be easily checked that @{text "({x, y}, x \<rightarrow> y)"} and
-  @{text "({y, x}, y \<rightarrow> x)"} are $\alpha$-equivalent according to
-  $\approx_{\,\textit{set}}$ and $\approx_{\,\textit{set+}}$ by taking @{text p} to
-  be the swapping @{term "(x \<rightleftharpoons> y)"}. In case of @{text "x \<noteq> y"}, then @{text
-  "([x, y], x \<rightarrow> y)"} $\not\approx_{\,\textit{list}}$ @{text "([y, x], x \<rightarrow> y)"}
-  since there is no permutation that makes the lists @{text "[x, y]"} and
-  @{text "[y, x]"} equal, and also leaves the type \mbox{@{text "x \<rightarrow> y"}}
-  unchanged. Another example is @{text "({x}, x)"} $\approx_{\,\textit{set+}}$
-  @{text "({x, y}, x)"} which holds by taking @{text p} to be the identity
-  permutation.  However, if @{text "x \<noteq> y"}, then @{text "({x}, x)"}
-  $\not\approx_{\,\textit{set}}$ @{text "({x, y}, x)"} since there is no
-  permutation that makes the sets @{text "{x}"} and @{text "{x, y}"} equal
-  (similarly for $\approx_{\,\textit{list}}$).  It can also relatively easily be
-  shown that all three notions of $\alpha$-equivalence coincide, if we only
-  abstract a single atom.
-
-  In the rest of this section we are going to introduce three abstraction 
-  types. For this we define 
-  %
-  \begin{equation}
-  @{term "abs_set (as, x) (bs, x) \<equiv> \<exists>p. alpha_set (as, x) equal supp p (bs, x)"}
-  \end{equation}
-  
-  \noindent
-  (similarly for $\approx_{\,\textit{abs\_set+}}$ 
-  and $\approx_{\,\textit{abs\_list}}$). We can show that these relations are equivalence 
-  relations. %% and equivariant.
-
-  \begin{lemma}\label{alphaeq} 
-  The relations $\approx_{\,\textit{abs\_set}}$, $\approx_{\,\textit{abs\_list}}$
-  and $\approx_{\,\textit{abs\_set+}}$ are equivalence relations. %, and if 
-  %@{term "abs_set (as, x) (bs, y)"} then also 
-  %@{term "abs_set (p \<bullet> as, p \<bullet> x) (p \<bullet> bs, p \<bullet> y)"} (similarly for the other two relations).
-  \end{lemma}
-
-  \begin{proof}
-  Reflexivity is by taking @{text "p"} to be @{text "0"}. For symmetry we have
-  a permutation @{text p} and for the proof obligation take @{term "-p"}. In case 
-  of transitivity, we have two permutations @{text p} and @{text q}, and for the
-  proof obligation use @{text "q + p"}. All conditions are then by simple
-  calculations. 
-  \end{proof}
-
-  \noindent
-  This lemma allows us to use our quotient package for introducing 
-  new types @{text "\<beta> abs_set"}, @{text "\<beta> abs_set+"} and @{text "\<beta> abs_list"}
-  representing $\alpha$-equivalence classes of pairs of type 
-  @{text "(atom set) \<times> \<beta>"} (in the first two cases) and of type @{text "(atom list) \<times> \<beta>"}
-  (in the third case). 
-  The elements in these types will be, respectively, written as
-  %
-  %\begin{center}
-  @{term "Abs_set as x"}, %\hspace{5mm} 
-  @{term "Abs_res as x"} and %\hspace{5mm}
-  @{term "Abs_lst as x"}, 
-  %\end{center}
-  %
-  %\noindent
-  indicating that a set (or list) of atoms @{text as} is abstracted in @{text x}. We will
-  call the types \emph{abstraction types} and their elements
-  \emph{abstractions}. The important property we need to derive is the support of 
-  abstractions, namely:
-
-  \begin{theorem}[Support of Abstractions]\label{suppabs} 
-  Assuming @{text x} has finite support, then
-
-  \begin{center}
-  \begin{tabular}{l}
-  @{thm (lhs) supp_Abs(1)[no_vars]} $\;\;=\;\;$
-  @{thm (lhs) supp_Abs(2)[no_vars]} $\;\;=\;\;$ @{thm (rhs) supp_Abs(2)[no_vars]}, and\\
-  @{thm (lhs) supp_Abs(3)[where bs="bs", no_vars]} $\;\;=\;\;$
-  @{thm (rhs) supp_Abs(3)[where bs="bs", no_vars]}
-  \end{tabular}
-  \end{center}
-  \end{theorem}
-
-  \noindent
-  This theorem states that the bound names do not appear in the support.
-  For brevity we omit the proof and again refer the reader to
-  our formalisation in Isabelle/HOL.
-
-  %\noindent
-  %Below we will show the first equation. The others 
-  %follow by similar arguments. By definition of the abstraction type @{text "abs_set"} 
-  %we have 
-  %%
-  %\begin{equation}\label{abseqiff}
-  %@{thm (lhs) Abs_eq_iff(1)[where bs="as" and cs="bs", no_vars]} \;\;\text{if and only if}\;\; 
-  %@{thm (rhs) Abs_eq_iff(1)[where bs="as" and cs="bs", no_vars]}
-  %\end{equation}
-  %
-  %\noindent
-  %and also
-  %
-  %\begin{equation}\label{absperm}
-  %%@%{%thm %permute_Abs[no_vars]}%
-  %\end{equation}
-
-  %\noindent
-  %The second fact derives from the definition of permutations acting on pairs 
-  %\eqref{permute} and $\alpha$-equivalence being equivariant 
-  %(see Lemma~\ref{alphaeq}). With these two facts at our disposal, we can show 
-  %the following lemma about swapping two atoms in an abstraction.
-  %
-  %\begin{lemma}
-  %@{thm[mode=IfThen] Abs_swap1(1)[where bs="as", no_vars]}
-  %\end{lemma}
-  %
-  %\begin{proof}
-  %This lemma is straightforward using \eqref{abseqiff} and observing that
-  %the assumptions give us @{term "(a \<rightleftharpoons> b) \<bullet> (supp x - as) = (supp x - as)"}.
-  %Moreover @{text supp} and set difference are equivariant (see \cite{HuffmanUrban10}).
-  %\end{proof}
-  %
-  %\noindent
-  %Assuming that @{text "x"} has finite support, this lemma together 
-  %with \eqref{absperm} allows us to show
-  %
-  %\begin{equation}\label{halfone}
-  %@{thm Abs_supports(1)[no_vars]}
-  %\end{equation}
-  %
-  %\noindent
-  %which by Property~\ref{supportsprop} gives us ``one half'' of
-  %Theorem~\ref{suppabs}. The ``other half'' is a bit more involved. To establish 
-  %it, we use a trick from \cite{Pitts04} and first define an auxiliary 
-  %function @{text aux}, taking an abstraction as argument:
-  %@{thm supp_set.simps[THEN eq_reflection, no_vars]}.
-  %
-  %Using the second equation in \eqref{equivariance}, we can show that 
-  %@{text "aux"} is equivariant (since @{term "p \<bullet> (supp x - as) = (supp (p \<bullet> x)) - (p \<bullet> as)"}) 
-  %and therefore has empty support. 
-  %This in turn means
-  %
-  %\begin{center}
-  %@{term "supp (supp_gen (Abs_set as x)) \<subseteq> supp (Abs_set as x)"}
-  %\end{center}
-  %
-  %\noindent
-  %using \eqref{suppfun}. Assuming @{term "supp x - as"} is a finite set,
-  %we further obtain
-  %
-  %\begin{equation}\label{halftwo}
-  %@{thm (concl) Abs_supp_subset1(1)[no_vars]}
-  %\end{equation}
-  %
-  %\noindent
-  %since for finite sets of atoms, @{text "bs"}, we have 
-  %@{thm (concl) supp_finite_atom_set[where S="bs", no_vars]}.
-  %Finally, taking \eqref{halfone} and \eqref{halftwo} together establishes 
-  %Theorem~\ref{suppabs}. 
-
-  The method of first considering abstractions of the
-  form @{term "Abs_set as x"} etc is motivated by the fact that 
-  we can conveniently establish  at the Isabelle/HOL level
-  properties about them.  It would be
-  laborious to write custom ML-code that derives automatically such properties 
-  for every term-constructor that binds some atoms. Also the generality of
-  the definitions for $\alpha$-equivalence will help us in the next sections.
-*}
-
-section {* Specifying General Bindings\label{sec:spec} *}
-
-text {*
-  Our choice of syntax for specifications is influenced by the existing
-  datatype package of Isabelle/HOL %\cite{Berghofer99} 
-  and by the syntax of the
-  Ott-tool \cite{ott-jfp}. For us a specification of a term-calculus is a
-  collection of (possibly mutual recursive) type declarations, say @{text
-  "ty\<AL>\<^isub>1, \<dots>, ty\<AL>\<^isub>n"}, and an associated collection of
-  binding functions, say @{text "bn\<AL>\<^isub>1, \<dots>, bn\<AL>\<^isub>m"}. The
-  syntax in Nominal Isabelle for such specifications is roughly as follows:
-  %
-  \begin{equation}\label{scheme}
-  \mbox{\begin{tabular}{@ {}p{2.5cm}l}
-  type \mbox{declaration part} &
-  $\begin{cases}
-  \mbox{\small\begin{tabular}{l}
-  \isacommand{nominal\_datatype} @{text "ty\<AL>\<^isub>1 = \<dots>"}\\
-  \isacommand{and} @{text "ty\<AL>\<^isub>2 = \<dots>"}\\
-  \raisebox{2mm}{$\ldots$}\\[-2mm] 
-  \isacommand{and} @{text "ty\<AL>\<^isub>n = \<dots>"}\\ 
-  \end{tabular}}
-  \end{cases}$\\
-  binding \mbox{function part} &
-  $\begin{cases}
-  \mbox{\small\begin{tabular}{l}
-  \isacommand{binder} @{text "bn\<AL>\<^isub>1"} \isacommand{and} \ldots \isacommand{and} @{text "bn\<AL>\<^isub>m"}\\
-  \isacommand{where}\\
-  \raisebox{2mm}{$\ldots$}\\[-2mm]
-  \end{tabular}}
-  \end{cases}$\\
-  \end{tabular}}
-  \end{equation}
-
-  \noindent
-  Every type declaration @{text ty}$^\alpha_{1..n}$ consists of a collection of 
-  term-constructors, each of which comes with a list of labelled 
-  types that stand for the types of the arguments of the term-constructor.
-  For example a term-constructor @{text "C\<^sup>\<alpha>"} might be specified with
-
-  \begin{center}
-  @{text "C\<^sup>\<alpha> label\<^isub>1::ty"}$'_1$ @{text "\<dots> label\<^isub>l::ty"}$'_l\;\;$  @{text "binding_clauses"} 
-  \end{center}
-  
-  \noindent
-  whereby some of the @{text ty}$'_{1..l}$ %%(or their components) 
-  can be contained
-  in the collection of @{text ty}$^\alpha_{1..n}$ declared in
-  \eqref{scheme}. 
-  In this case we will call the corresponding argument a
-  \emph{recursive argument} of @{text "C\<^sup>\<alpha>"}. 
-  %The types of such recursive 
-  %arguments need to satisfy a  ``positivity''
-  %restriction, which ensures that the type has a set-theoretic semantics 
-  %\cite{Berghofer99}.  
-  The labels
-  annotated on the types are optional. Their purpose is to be used in the
-  (possibly empty) list of \emph{binding clauses}, which indicate the binders
-  and their scope in a term-constructor.  They come in three \emph{modes}:
-  %
-  \begin{center}
-  \begin{tabular}{@ {}l@ {}}
-  \isacommand{bind} {\it binders} \isacommand{in} {\it bodies}\;\;\;\,
-  \isacommand{bind (set)} {\it binders} \isacommand{in} {\it bodies}\;\;\;\,
-  \isacommand{bind (set+)} {\it binders} \isacommand{in} {\it bodies}
-  \end{tabular}
-  \end{center}
-  %
-  \noindent
-  The first mode is for binding lists of atoms (the order of binders matters);
-  the second is for sets of binders (the order does not matter, but the
-  cardinality does) and the last is for sets of binders (with vacuous binders
-  preserving $\alpha$-equivalence). As indicated, the labels in the ``\isacommand{in}-part'' of a binding
-  clause will be called \emph{bodies}; the
-  ``\isacommand{bind}-part'' will be called \emph{binders}. In contrast to
-  Ott, we allow multiple labels in binders and bodies. 
-
-  %For example we allow
-  %binding clauses of the form:
-  %
-  %\begin{center}
-  %\begin{tabular}{@ {}ll@ {}}
-  %@{text "Foo\<^isub>1 x::name y::name t::trm s::trm"} &  
-  %    \isacommand{bind} @{text "x y"} \isacommand{in} @{text "t s"}\\
-  %@{text "Foo\<^isub>2 x::name y::name t::trm s::trm"} &  
-  %    \isacommand{bind} @{text "x y"} \isacommand{in} @{text "t"}, 
-  %    \isacommand{bind} @{text "x y"} \isacommand{in} @{text "s"}\\
-  %\end{tabular}
-  %\end{center}
-
-  \noindent
-  %Similarly for the other binding modes. 
-  %Interestingly, in case of \isacommand{bind (set)}
-  %and \isacommand{bind (set+)} the binding clauses above will make a difference to the semantics
-  %of the specifications (the corresponding $\alpha$-equivalence will differ). We will 
-  %show this later with an example.
-  
-  There are also some restrictions we need to impose on our binding clauses in comparison to
-  the ones of Ott. The
-  main idea behind these restrictions is that we obtain a sensible notion of
-  $\alpha$-equivalence where it is ensured that within a given scope an 
-  atom occurrence cannot be both bound and free at the same time.  The first
-  restriction is that a body can only occur in
-  \emph{one} binding clause of a term constructor (this ensures that the bound
-  atoms of a body cannot be free at the same time by specifying an
-  alternative binder for the same body). 
-
-  For binders we distinguish between
-  \emph{shallow} and \emph{deep} binders.  Shallow binders are just
-  labels. The restriction we need to impose on them is that in case of
-  \isacommand{bind (set)} and \isacommand{bind (set+)} the labels must either
-  refer to atom types or to sets of atom types; in case of \isacommand{bind}
-  the labels must refer to atom types or lists of atom types. Two examples for
-  the use of shallow binders are the specification of lambda-terms, where a
-  single name is bound, and type-schemes, where a finite set of names is
-  bound:
-
-  \begin{center}\small
-  \begin{tabular}{@ {}c@ {\hspace{7mm}}c@ {}}
-  \begin{tabular}{@ {}l}
-  \isacommand{nominal\_datatype} @{text lam} $=$\\
-  \hspace{2mm}\phantom{$\mid$}~@{text "Var name"}\\
-  \hspace{2mm}$\mid$~@{text "App lam lam"}\\
-  \hspace{2mm}$\mid$~@{text "Lam x::name t::lam"}~~\isacommand{bind} @{text x} \isacommand{in} @{text t}\\
-  \end{tabular} &
-  \begin{tabular}{@ {}l@ {}}
-  \isacommand{nominal\_datatype}~@{text ty} $=$\\
-  \hspace{5mm}\phantom{$\mid$}~@{text "TVar name"}\\
-  \hspace{5mm}$\mid$~@{text "TFun ty ty"}\\
-  \isacommand{and}~@{text "tsc = All xs::(name fset) T::ty"}~~%
-  \isacommand{bind (set+)} @{text xs} \isacommand{in} @{text T}\\
-  \end{tabular}
-  \end{tabular}
-  \end{center}
-
-  \noindent
-  In these specifications @{text "name"} refers to an atom type, and @{text
-  "fset"} to the type of finite sets.
-  Note that for @{text lam} it does not matter which binding mode we use. The
-  reason is that we bind only a single @{text name}. However, having
-  \isacommand{bind (set)} or \isacommand{bind} in the second case makes a
-  difference to the semantics of the specification (which we will define in the next section).
-
-
-  A \emph{deep} binder uses an auxiliary binding function that ``picks'' out
-  the atoms in one argument of the term-constructor, which can be bound in
-  other arguments and also in the same argument (we will call such binders
-  \emph{recursive}, see below). The binding functions are
-  expected to return either a set of atoms (for \isacommand{bind (set)} and
-  \isacommand{bind (set+)}) or a list of atoms (for \isacommand{bind}). They can
-  be defined by recursion over the corresponding type; the equations
-  must be given in the binding function part of the scheme shown in
-  \eqref{scheme}. For example a term-calculus containing @{text "Let"}s with
-  tuple patterns might be specified as:
-  %
-  \begin{equation}\label{letpat}
-  \mbox{\small%
-  \begin{tabular}{l}
-  \isacommand{nominal\_datatype} @{text trm} $=$\\
-  \hspace{5mm}\phantom{$\mid$}~@{term "Var name"}\\
-  \hspace{5mm}$\mid$~@{term "App trm trm"}\\
-  \hspace{5mm}$\mid$~@{text "Lam x::name t::trm"} 
-     \;\;\isacommand{bind} @{text x} \isacommand{in} @{text t}\\
-  \hspace{5mm}$\mid$~@{text "Let p::pat trm t::trm"} 
-     \;\;\isacommand{bind} @{text "bn(p)"} \isacommand{in} @{text t}\\
-  \isacommand{and} @{text pat} $=$
-  @{text PNil}
-  $\mid$~@{text "PVar name"}
-  $\mid$~@{text "PTup pat pat"}\\ 
-  \isacommand{binder}~@{text "bn::pat \<Rightarrow> atom list"}\\
-  \isacommand{where}~@{text "bn(PNil) = []"}\\
-  \hspace{5mm}$\mid$~@{text "bn(PVar x) = [atom x]"}\\
-  \hspace{5mm}$\mid$~@{text "bn(PTup p\<^isub>1 p\<^isub>2) = bn(p\<^isub>1) @ bn(p\<^isub>2)"}\smallskip\\ 
-  \end{tabular}}
-  \end{equation}
-  %
-  \noindent
-  In this specification the function @{text "bn"} determines which atoms of
-  the pattern @{text p} are bound in the argument @{text "t"}. Note that in the
-  second-last @{text bn}-clause the function @{text "atom"} coerces a name
-  into the generic atom type of Nominal Isabelle \cite{HuffmanUrban10}. This
-  allows us to treat binders of different atom type uniformly.
-
-  As said above, for deep binders we allow binding clauses such as
-  %
-  %\begin{center}
-  %\begin{tabular}{ll}
-  @{text "Bar p::pat t::trm"} %%%&  
-     \isacommand{bind} @{text "bn(p)"} \isacommand{in} @{text "p t"} %%\\
-  %\end{tabular}
-  %\end{center}
-  %
-  %\noindent
-  where the argument of the deep binder also occurs in the body. We call such
-  binders \emph{recursive}.  To see the purpose of such recursive binders,
-  compare ``plain'' @{text "Let"}s and @{text "Let_rec"}s in the following
-  specification:
-  %
-  \begin{equation}\label{letrecs}
-  \mbox{\small%
-  \begin{tabular}{@ {}l@ {}}
-  \isacommand{nominal\_datatype}~@{text "trm ="}~\ldots\\
-  \hspace{5mm}$\mid$~@{text "Let as::assn t::trm"} 
-     \;\;\isacommand{bind} @{text "bn(as)"} \isacommand{in} @{text t}\\
-  \hspace{5mm}$\mid$~@{text "Let_rec as::assn t::trm"}
-     \;\;\isacommand{bind} @{text "bn(as)"} \isacommand{in} @{text "as t"}\\
-  \isacommand{and} @{text "assn"} $=$
-  @{text "ANil"}
-  $\mid$~@{text "ACons name trm assn"}\\
-  \isacommand{binder} @{text "bn::assn \<Rightarrow> atom list"}\\
-  \isacommand{where}~@{text "bn(ANil) = []"}\\
-  \hspace{5mm}$\mid$~@{text "bn(ACons a t as) = [atom a] @ bn(as)"}\\
-  \end{tabular}}
-  \end{equation}
-  %
-  \noindent
-  The difference is that with @{text Let} we only want to bind the atoms @{text
-  "bn(as)"} in the term @{text t}, but with @{text "Let_rec"} we also want to bind the atoms
-  inside the assignment. This difference has consequences for the associated
-  notions of free-atoms and $\alpha$-equivalence.
-  
-  To make sure that atoms bound by deep binders cannot be free at the
-  same time, we cannot have more than one binding function for a deep binder. 
-  Consequently we exclude specifications such as
-  %
-  \begin{center}\small
-  \begin{tabular}{@ {}l@ {\hspace{2mm}}l@ {}}
-  @{text "Baz\<^isub>1 p::pat t::trm"} & 
-     \isacommand{bind} @{text "bn\<^isub>1(p) bn\<^isub>2(p)"} \isacommand{in} @{text t}\\
-  @{text "Baz\<^isub>2 p::pat t\<^isub>1::trm t\<^isub>2::trm"} & 
-     \isacommand{bind} @{text "bn\<^isub>1(p)"} \isacommand{in} @{text "t\<^isub>1"},
-     \isacommand{bind} @{text "bn\<^isub>2(p)"} \isacommand{in} @{text "t\<^isub>2"}\\
-  \end{tabular}
-  \end{center}
-
-  \noindent
-  Otherwise it is possible that @{text "bn\<^isub>1"} and @{text "bn\<^isub>2"}  pick 
-  out different atoms to become bound, respectively be free, in @{text "p"}.
-  (Since the Ott-tool does not derive a reasoning infrastructure for 
-  $\alpha$-equated terms with deep binders, it can permit such specifications.)
-  
-  We also need to restrict the form of the binding functions in order 
-  to ensure the @{text "bn"}-functions can be defined for $\alpha$-equated 
-  terms. The main restriction is that we cannot return an atom in a binding function that is also
-  bound in the corresponding term-constructor. That means in \eqref{letpat} 
-  that the term-constructors @{text PVar} and @{text PTup} may
-  not have a binding clause (all arguments are used to define @{text "bn"}).
-  In contrast, in case of \eqref{letrecs} the term-constructor @{text ACons}
-  may have a binding clause involving the argument @{text trm} (the only one that
-  is \emph{not} used in the definition of the binding function). This restriction
-  is sufficient for lifting the binding function to $\alpha$-equated terms.
-
-  In the version of
-  Nominal Isabelle described here, we also adopted the restriction from the
-  Ott-tool that binding functions can only return: the empty set or empty list
-  (as in case @{text PNil}), a singleton set or singleton list containing an
-  atom (case @{text PVar}), or unions of atom sets or appended atom lists
-  (case @{text PTup}). This restriction will simplify some automatic definitions and proofs
-  later on.
-  
-  In order to simplify our definitions of free atoms and $\alpha$-equivalence, 
-  we shall assume specifications 
-  of term-calculi are implicitly \emph{completed}. By this we mean that  
-  for every argument of a term-constructor that is \emph{not} 
-  already part of a binding clause given by the user, we add implicitly a special \emph{empty} binding
-  clause, written \isacommand{bind}~@{term "{}"}~\isacommand{in}~@{text "labels"}. In case
-  of the lambda-terms, the completion produces
-
-  \begin{center}\small
-  \begin{tabular}{@ {}l@ {\hspace{-1mm}}}
-  \isacommand{nominal\_datatype} @{text lam} =\\
-  \hspace{5mm}\phantom{$\mid$}~@{text "Var x::name"}
-    \;\;\isacommand{bind}~@{term "{}"}~\isacommand{in}~@{text "x"}\\
-  \hspace{5mm}$\mid$~@{text "App t\<^isub>1::lam t\<^isub>2::lam"}
-    \;\;\isacommand{bind}~@{term "{}"}~\isacommand{in}~@{text "t\<^isub>1 t\<^isub>2"}\\
-  \hspace{5mm}$\mid$~@{text "Lam x::name t::lam"}
-    \;\;\isacommand{bind}~@{text x} \isacommand{in} @{text t}\\
-  \end{tabular}
-  \end{center}
-
-  \noindent 
-  The point of completion is that we can make definitions over the binding
-  clauses and be sure to have captured all arguments of a term constructor. 
-*}
-
-section {* Alpha-Equivalence and Free Atoms\label{sec:alpha} *}
-
-text {*
-  Having dealt with all syntax matters, the problem now is how we can turn
-  specifications into actual type definitions in Isabelle/HOL and then
-  establish a reasoning infrastructure for them. As
-  Pottier and Cheney pointed out \cite{Pottier06,Cheney05}, just 
-  re-arranging the arguments of
-  term-constructors so that binders and their bodies are next to each other will 
-  result in inadequate representations in cases like @{text "Let x\<^isub>1 = t\<^isub>1\<dots>x\<^isub>n = t\<^isub>n in s"}. 
-  Therefore we will first
-  extract ``raw'' datatype definitions from the specification and then define 
-  explicitly an $\alpha$-equivalence relation over them. We subsequently
-  construct the quotient of the datatypes according to our $\alpha$-equivalence.
-
-  The ``raw'' datatype definition can be obtained by stripping off the 
-  binding clauses and the labels from the types. We also have to invent
-  new names for the types @{text "ty\<^sup>\<alpha>"} and term-constructors @{text "C\<^sup>\<alpha>"}
-  given by the user. In our implementation we just use the affix ``@{text "_raw"}''.
-  But for the purpose of this paper, we use the superscript @{text "_\<^sup>\<alpha>"} to indicate 
-  that a notion is given for $\alpha$-equivalence classes and leave it out 
-  for the corresponding notion given on the ``raw'' level. So for example 
-  we have @{text "ty\<^sup>\<alpha> \<mapsto> ty"} and @{text "C\<^sup>\<alpha> \<mapsto> C"}
-  where @{term ty} is the type used in the quotient construction for 
-  @{text "ty\<^sup>\<alpha>"} and @{text "C"} is the term-constructor on the ``raw'' type @{text "ty"}. 
-
-  %The resulting datatype definition is legal in Isabelle/HOL provided the datatypes are 
-  %non-empty and the types in the constructors only occur in positive 
-  %position (see \cite{Berghofer99} for an in-depth description of the datatype package
-  %in Isabelle/HOL). 
-  We subsequently define each of the user-specified binding 
-  functions @{term "bn"}$_{1..m}$ by recursion over the corresponding 
-  raw datatype. We can also easily define permutation operations by 
-  recursion so that for each term constructor @{text "C"} we have that
-  %
-  \begin{equation}\label{ceqvt}
-  @{text "p \<bullet> (C z\<^isub>1 \<dots> z\<^isub>n) = C (p \<bullet> z\<^isub>1) \<dots> (p \<bullet> z\<^isub>n)"}
-  \end{equation}
-
-  The first non-trivial step we have to perform is the generation of
-  free-atom functions from the specification. For the 
-  \emph{raw} types @{text "ty"}$_{1..n}$ we define the free-atom functions
-  %
-  %\begin{equation}\label{fvars}
-  @{text "fa_ty\<^isub>"}$_{1..n}$
-  %\end{equation}
-  %
-  %\noindent
-  by recursion.
-  We define these functions together with auxiliary free-atom functions for
-  the binding functions. Given raw binding functions @{text "bn"}$_{1..m}$ 
-  we define
-  %
-  %\begin{center}
-  @{text "fa_bn\<^isub>"}$_{1..m}$.
-  %\end{center}
-  %
-  %\noindent
-  The reason for this setup is that in a deep binder not all atoms have to be
-  bound, as we saw in the example with ``plain'' @{text Let}s. We need therefore a function
-  that calculates those free atoms in a deep binder.
-
-  While the idea behind these free-atom functions is clear (they just
-  collect all atoms that are not bound), because of our rather complicated
-  binding mechanisms their definitions are somewhat involved.  Given
-  a term-constructor @{text "C"} of type @{text ty} and some associated
-  binding clauses @{text "bc\<^isub>1\<dots>bc\<^isub>k"}, the result of @{text
-  "fa_ty (C z\<^isub>1 \<dots> z\<^isub>n)"} will be the union @{text
-  "fa(bc\<^isub>1) \<union> \<dots> \<union> fa(bc\<^isub>k)"} where we will define below what @{text "fa"} for a binding
-  clause means. We only show the details for the mode \isacommand{bind (set)} (the other modes are similar). 
-  Suppose the binding clause @{text bc\<^isub>i} is of the form 
-  %
-  %\begin{center}
-  \mbox{\isacommand{bind (set)} @{text "b\<^isub>1\<dots>b\<^isub>p"} \isacommand{in} @{text "d\<^isub>1\<dots>d\<^isub>q"}}
-  %\end{center}
-  %
-  %\noindent
-  in which the body-labels @{text "d"}$_{1..q}$ refer to types @{text ty}$_{1..q}$,
-  and the binders @{text b}$_{1..p}$
-  either refer to labels of atom types (in case of shallow binders) or to binding 
-  functions taking a single label as argument (in case of deep binders). Assuming 
-  @{text "D"} stands for the set of free atoms of the bodies, @{text B} for the 
-  set of binding atoms in the binders and @{text "B'"} for the set of free atoms in 
-  non-recursive deep binders,
-  then the free atoms of the binding clause @{text bc\<^isub>i} are\\[-2mm]
-  %
-  \begin{equation}\label{fadef}
-  \mbox{@{text "fa(bc\<^isub>i) \<equiv> (D - B) \<union> B'"}}.
-  \end{equation}
-  %
-  \noindent
-  The set @{text D} is formally defined as
-  %
-  %\begin{center}
-  @{text "D \<equiv> fa_ty\<^isub>1 d\<^isub>1 \<union> ... \<union> fa_ty\<^isub>q d\<^isub>q"}
-  %\end{center} 
-  %
-  %\noindent
-  where in case @{text "d\<^isub>i"} refers to one of the raw types @{text "ty"}$_{1..n}$ from the 
-  specification, the function @{text "fa_ty\<^isub>i"} is the corresponding free-atom function 
-  we are defining by recursion; 
-  %(see \eqref{fvars}); 
-  otherwise we set @{text "fa_ty\<^isub>i d\<^isub>i = supp d\<^isub>i"}.
-  
-  In order to formally define the set @{text B} we use the following auxiliary @{text "bn"}-functions
-  for atom types to which shallow binders may refer\\[-4mm]
-  %
-  %\begin{center}
-  %\begin{tabular}{r@ {\hspace{2mm}}c@ {\hspace{2mm}}l}
-  %@{text "bn_atom a"} & @{text "\<equiv>"} & @{text "{atom a}"}\\
-  %@{text "bn_atom_set as"} & @{text "\<equiv>"} & @{text "atoms as"}\\
-  %@{text "bn_atom_list as"} & @{text "\<equiv>"} & @{text "atoms (set as)"}
-  %\end{tabular}
-  %\end{center}
-  %
-  \begin{center}
-  @{text "bn\<^bsub>atom\<^esub> a \<equiv> {atom a}"}\hfill
-  @{text "bn\<^bsub>atom_set\<^esub> as \<equiv> atoms as"}\hfill
-  @{text "bn\<^bsub>atom_list\<^esub> as \<equiv> atoms (set as)"}
-  \end{center}
-  %
-  \noindent 
-  Like the function @{text atom}, the function @{text "atoms"} coerces 
-  a set of atoms to a set of the generic atom type. 
-  %It is defined as  @{text "atoms as \<equiv> {atom a | a \<in> as}"}. 
-  The set @{text B} is then formally defined as\\[-4mm]
-  %
-  \begin{center}
-  @{text "B \<equiv> bn_ty\<^isub>1 b\<^isub>1 \<union> ... \<union> bn_ty\<^isub>p b\<^isub>p"}
-  \end{center} 
-  %
-  \noindent 
-  where we use the auxiliary binding functions for shallow binders. 
-  The set @{text "B'"} collects all free atoms in non-recursive deep
-  binders. Let us assume these binders in @{text "bc\<^isub>i"} are
-  %
-  %\begin{center}
-  \mbox{@{text "bn\<^isub>1 l\<^isub>1, \<dots>, bn\<^isub>r l\<^isub>r"}}
-  %\end{center}
-  %
-  %\noindent
-  with @{text "l"}$_{1..r}$ $\subseteq$ @{text "b"}$_{1..p}$ and none of the 
-  @{text "l"}$_{1..r}$ being among the bodies @{text
-  "d"}$_{1..q}$. The set @{text "B'"} is defined as\\[-5mm]
-  %
-  \begin{center}
-  @{text "B' \<equiv> fa_bn\<^isub>1 l\<^isub>1 \<union> ... \<union> fa_bn\<^isub>r l\<^isub>r"}\\[-9mm]
-  \end{center}
-  %
-  \noindent
-  This completes the definition of the free-atom functions @{text "fa_ty"}$_{1..n}$.
-
-  Note that for non-recursive deep binders, we have to add in \eqref{fadef}
-  the set of atoms that are left unbound by the binding functions @{text
-  "bn"}$_{1..m}$. We used for the definition of
-  this set the functions @{text "fa_bn"}$_{1..m}$, which are also defined by mutual
-  recursion. Assume the user specified a @{text bn}-clause of the form
-  %
-  %\begin{center}
-  @{text "bn (C z\<^isub>1 \<dots> z\<^isub>s) = rhs"}
-  %\end{center}
-  %
-  %\noindent
-  where the @{text "z"}$_{1..s}$ are of types @{text "ty"}$_{1..s}$. For each of
-  the arguments we calculate the free atoms as follows:
-  %
-  \begin{center}
-  \begin{tabular}{c@ {\hspace{2mm}}p{0.9\textwidth}}
-  $\bullet$ & @{term "fa_ty\<^isub>i z\<^isub>i"} provided @{text "z\<^isub>i"} does not occur in @{text "rhs"} 
-  (that means nothing is bound in @{text "z\<^isub>i"} by the binding function),\\
-  $\bullet$ & @{term "fa_bn\<^isub>i z\<^isub>i"} provided @{text "z\<^isub>i"} occurs in  @{text "rhs"}
-  with the recursive call @{text "bn\<^isub>i z\<^isub>i"}, and\\
-  $\bullet$ & @{term "{}"} provided @{text "z\<^isub>i"} occurs in  @{text "rhs"},
-  but without a recursive call.
-  \end{tabular}
-  \end{center}
-  %
-  \noindent
-  For defining @{text "fa_bn (C z\<^isub>1 \<dots> z\<^isub>n)"} we just union up all these sets.
- 
-  To see how these definitions work in practice, let us reconsider the
-  term-constructors @{text "Let"} and @{text "Let_rec"} shown in
-  \eqref{letrecs} together with the term-constructors for assignments @{text
-  "ANil"} and @{text "ACons"}. Since there is a binding function defined for
-  assignments, we have three free-atom functions, namely @{text
-  "fa\<^bsub>trm\<^esub>"}, @{text "fa\<^bsub>assn\<^esub>"} and @{text
-  "fa\<^bsub>bn\<^esub>"} as follows:
-  %
-  \begin{center}\small
-  \begin{tabular}{@ {}l@ {\hspace{1mm}}c@ {\hspace{1mm}}l@ {}}
-  @{text "fa\<^bsub>trm\<^esub> (Let as t)"} & @{text "="} & @{text "(fa\<^bsub>trm\<^esub> t - set (bn as)) \<union> fa\<^bsub>bn\<^esub> as"}\\
-  @{text "fa\<^bsub>trm\<^esub> (Let_rec as t)"} & @{text "="} & @{text "(fa\<^bsub>assn\<^esub> as \<union> fa\<^bsub>trm\<^esub> t) - set (bn as)"}\\[1mm]
-
-  @{text "fa\<^bsub>assn\<^esub> (ANil)"} & @{text "="} & @{term "{}"}\\
-  @{text "fa\<^bsub>assn\<^esub> (ACons a t as)"} & @{text "="} & @{text "(supp a) \<union> (fa\<^bsub>trm\<^esub> t) \<union> (fa\<^bsub>assn\<^esub> as)"}\\[1mm]
-
-  @{text "fa\<^bsub>bn\<^esub> (ANil)"} & @{text "="} & @{term "{}"}\\
-  @{text "fa\<^bsub>bn\<^esub> (ACons a t as)"} & @{text "="} & @{text "(fa\<^bsub>trm\<^esub> t) \<union> (fa\<^bsub>bn\<^esub> as)"}
-  \end{tabular}
-  \end{center}
-
-  \noindent
-  Recall that @{text ANil} and @{text "ACons"} have no
-  binding clause in the specification. The corresponding free-atom
-  function @{text "fa\<^bsub>assn\<^esub>"} therefore returns all free atoms
-  of an assignment (in case of @{text "ACons"}, they are given in
-  terms of @{text supp}, @{text "fa\<^bsub>trm\<^esub>"} and @{text "fa\<^bsub>assn\<^esub>"}). 
-  The binding only takes place in @{text Let} and
-  @{text "Let_rec"}. In case of @{text "Let"}, the binding clause specifies
-  that all atoms given by @{text "set (bn as)"} have to be bound in @{text
-  t}. Therefore we have to subtract @{text "set (bn as)"} from @{text
-  "fa\<^bsub>trm\<^esub> t"}. However, we also need to add all atoms that are
-  free in @{text "as"}. This is
-  in contrast with @{text "Let_rec"} where we have a recursive
-  binder to bind all occurrences of the atoms in @{text
-  "set (bn as)"} also inside @{text "as"}. Therefore we have to subtract
-  @{text "set (bn as)"} from both @{text "fa\<^bsub>trm\<^esub> t"} and @{text "fa\<^bsub>assn\<^esub> as"}. 
-  %Like the function @{text "bn"}, the function @{text "fa\<^bsub>bn\<^esub>"} traverses the 
-  %list of assignments, but instead returns the free atoms, which means in this 
-  %example the free atoms in the argument @{text "t"}.  
-
-  An interesting point in this
-  example is that a ``naked'' assignment (@{text "ANil"} or @{text "ACons"}) does not bind any
-  atoms, even if the binding function is specified over assignments. 
-  Only in the context of a @{text Let} or @{text "Let_rec"}, where the binding clauses are given, will
-  some atoms actually become bound.  This is a phenomenon that has also been pointed
-  out in \cite{ott-jfp}. For us this observation is crucial, because we would 
-  not be able to lift the @{text "bn"}-functions to $\alpha$-equated terms if they act on 
-  atoms that are bound. In that case, these functions would \emph{not} respect
-  $\alpha$-equivalence.
-
-  Next we define the $\alpha$-equivalence relations for the raw types @{text
-  "ty"}$_{1..n}$ from the specification. We write them as
-  %
-  %\begin{center}
-  @{text "\<approx>ty"}$_{1..n}$.
-  %\end{center}
-  %
-  %\noindent
-  Like with the free-atom functions, we also need to
-  define auxiliary $\alpha$-equivalence relations 
-  %
-  %\begin{center}
-  @{text "\<approx>bn\<^isub>"}$_{1..m}$
-  %\end{center}
-  %
-  %\noindent
-  for the binding functions @{text "bn"}$_{1..m}$, 
-  To simplify our definitions we will use the following abbreviations for
-  \emph{compound equivalence relations} and \emph{compound free-atom functions} acting on tuples.
-  %
-  \begin{center}
-  \begin{tabular}{r@ {\hspace{2mm}}c@ {\hspace{2mm}}l}
-  @{text "(x\<^isub>1,\<dots>, x\<^isub>n) (R\<^isub>1,\<dots>, R\<^isub>n) (x\<PRIME>\<^isub>1,\<dots>, x\<PRIME>\<^isub>n)"} & @{text "\<equiv>"} &
-  @{text "x\<^isub>1 R\<^isub>1 x\<PRIME>\<^isub>1 \<and> \<dots> \<and> x\<^isub>n R\<^isub>n x\<PRIME>\<^isub>n"}\\
-  @{text "(fa\<^isub>1,\<dots>, fa\<^isub>n) (x\<^isub>1,\<dots>, x\<^isub>n)"} & @{text "\<equiv>"} & @{text "fa\<^isub>1 x\<^isub>1 \<union> \<dots> \<union> fa\<^isub>n x\<^isub>n"}\\
-  \end{tabular}
-  \end{center}
-
-
-  The $\alpha$-equivalence relations are defined as inductive predicates
-  having a single clause for each term-constructor. Assuming a
-  term-constructor @{text C} is of type @{text ty} and has the binding clauses
-  @{term "bc"}$_{1..k}$, then the $\alpha$-equivalence clause has the form
-  %
-  \begin{center}
-  \mbox{\infer{@{text "C z\<^isub>1 \<dots> z\<^isub>n  \<approx>ty  C z\<PRIME>\<^isub>1 \<dots> z\<PRIME>\<^isub>n"}}
-  {@{text "prems(bc\<^isub>1) \<dots> prems(bc\<^isub>k)"}}} 
-  \end{center}
-
-  \noindent
-  The task below is to specify what the premises of a binding clause are. As a
-  special instance, we first treat the case where @{text "bc\<^isub>i"} is the
-  empty binding clause of the form
-  %
-  \begin{center}
-  \mbox{\isacommand{bind (set)} @{term "{}"} \isacommand{in} @{text "d\<^isub>1\<dots>d\<^isub>q"}.}
-  \end{center}
-
-  \noindent
-  In this binding clause no atom is bound and we only have to $\alpha$-relate the bodies. For this
-  we build first the tuples @{text "D \<equiv> (d\<^isub>1,\<dots>, d\<^isub>q)"} and @{text "D' \<equiv> (d\<PRIME>\<^isub>1,\<dots>, d\<PRIME>\<^isub>q)"}  
-  whereby the labels @{text "d"}$_{1..q}$ refer to arguments @{text "z"}$_{1..n}$ and
-  respectively @{text "d\<PRIME>"}$_{1..q}$ to @{text "z\<PRIME>"}$_{1..n}$. In order to relate
-  two such tuples we define the compound $\alpha$-equivalence relation @{text "R"} as follows
-  %
-  \begin{equation}\label{rempty}
-  \mbox{@{text "R \<equiv> (R\<^isub>1,\<dots>, R\<^isub>q)"}}
-  \end{equation}
-
-  \noindent
-  with @{text "R\<^isub>i"} being @{text "\<approx>ty\<^isub>i"} if the corresponding labels @{text "d\<^isub>i"} and 
-  @{text "d\<PRIME>\<^isub>i"} refer
-  to a recursive argument of @{text C} with type @{text "ty\<^isub>i"}; otherwise
-  we take @{text "R\<^isub>i"} to be the equality @{text "="}. This lets us define
-  the premise for an empty binding clause succinctly as @{text "prems(bc\<^isub>i) \<equiv> D R D'"},
-  which can be unfolded to the series of premises
-  %
-  %\begin{center}
-  @{text "d\<^isub>1 R\<^isub>1 d\<PRIME>\<^isub>1  \<dots> d\<^isub>q R\<^isub>q d\<PRIME>\<^isub>q"}.
-  %\end{center}
-  %
-  %\noindent
-  We will use the unfolded version in the examples below.
-
-  Now suppose the binding clause @{text "bc\<^isub>i"} is of the general form 
-  %
-  \begin{equation}\label{nonempty}
-  \mbox{\isacommand{bind (set)} @{text "b\<^isub>1\<dots>b\<^isub>p"} \isacommand{in} @{text "d\<^isub>1\<dots>d\<^isub>q"}.}
-  \end{equation}
-
-  \noindent
-  In this case we define a premise @{text P} using the relation
-  $\approx_{\,\textit{set}}$ given in Section~\ref{sec:binders} (similarly
-  $\approx_{\,\textit{set+}}$ and $\approx_{\,\textit{list}}$ for the other
-  binding modes). This premise defines $\alpha$-equivalence of two abstractions
-  involving multiple binders. As above, we first build the tuples @{text "D"} and
-  @{text "D'"} for the bodies @{text "d"}$_{1..q}$, and the corresponding
-  compound $\alpha$-relation @{text "R"} (shown in \eqref{rempty}). 
-  For $\approx_{\,\textit{set}}$  we also need
-  a compound free-atom function for the bodies defined as
-  %
-  \begin{center}
-  \mbox{@{text "fa \<equiv> (fa_ty\<^isub>1,\<dots>, fa_ty\<^isub>q)"}}
-  \end{center}
-
-  \noindent
-  with the assumption that the @{text "d"}$_{1..q}$ refer to arguments of types @{text "ty"}$_{1..q}$.
-  The last ingredient we need are the sets of atoms bound in the bodies.
-  For this we take
-
-  \begin{center}
-  @{text "B \<equiv> bn_ty\<^isub>1 b\<^isub>1 \<union> \<dots> \<union> bn_ty\<^isub>p b\<^isub>p"}\;.\\
-  \end{center}
-
-  \noindent
-  Similarly for @{text "B'"} using the labels @{text "b\<PRIME>"}$_{1..p}$. This 
-  lets us formally define the premise @{text P} for a non-empty binding clause as:
-  %
-  \begin{center}
-  \mbox{@{term "P \<equiv> \<exists>p. (B, D) \<approx>set R fa p (B', D')"}}\;.
-  \end{center}
-
-  \noindent
-  This premise accounts for $\alpha$-equivalence of the bodies of the binding
-  clause. 
-  However, in case the binders have non-recursive deep binders, this premise
-  is not enough:
-  we also have to ``propagate'' $\alpha$-equivalence inside the structure of
-  these binders. An example is @{text "Let"} where we have to make sure the
-  right-hand sides of assignments are $\alpha$-equivalent. For this we use 
-  relations @{text "\<approx>bn"}$_{1..m}$ (which we will formally define shortly).
-  Let us assume the non-recursive deep binders in @{text "bc\<^isub>i"} are
-  %
-  %\begin{center}
-  @{text "bn\<^isub>1 l\<^isub>1, \<dots>, bn\<^isub>r l\<^isub>r"}.
-  %\end{center}
-  %
-  %\noindent
-  The tuple @{text L} is then @{text "(l\<^isub>1,\<dots>,l\<^isub>r)"} (similarly @{text "L'"})
-  and the compound equivalence relation @{text "R'"} is @{text "(\<approx>bn\<^isub>1,\<dots>,\<approx>bn\<^isub>r)"}. 
-  All premises for @{text "bc\<^isub>i"} are then given by
-  %
-  \begin{center}
-  @{text "prems(bc\<^isub>i) \<equiv> P  \<and>   L R' L'"}
-  \end{center} 
-
-  \noindent 
-  The auxiliary $\alpha$-equivalence relations @{text "\<approx>bn"}$_{1..m}$ 
-  in @{text "R'"} are defined as follows: assuming a @{text bn}-clause is of the form
-  %
-  %\begin{center}
-  @{text "bn (C z\<^isub>1 \<dots> z\<^isub>s) = rhs"}
-  %\end{center}
-  %
-  %\noindent
-  where the @{text "z"}$_{1..s}$ are of types @{text "ty"}$_{1..s}$,
-  then the corresponding $\alpha$-equivalence clause for @{text "\<approx>bn"} has the form
-  %
-  \begin{center}
-  \mbox{\infer{@{text "C z\<^isub>1 \<dots> z\<^isub>s \<approx>bn C z\<PRIME>\<^isub>1 \<dots> z\<PRIME>\<^isub>s"}}
-  {@{text "z\<^isub>1 R\<^isub>1 z\<PRIME>\<^isub>1 \<dots> z\<^isub>s R\<^isub>s z\<PRIME>\<^isub>s"}}}
-  \end{center}
-  
-  \noindent
-  In this clause the relations @{text "R"}$_{1..s}$ are given by 
-
-  \begin{center}
-  \begin{tabular}{c@ {\hspace{2mm}}p{0.9\textwidth}}
-  $\bullet$ & @{text "z\<^isub>i \<approx>ty z\<PRIME>\<^isub>i"} provided @{text "z\<^isub>i"} does not occur in @{text rhs} and 
-  is a recursive argument of @{text C},\\
-  $\bullet$ & @{text "z\<^isub>i = z\<PRIME>\<^isub>i"} provided @{text "z\<^isub>i"} does not occur in @{text rhs}
-  and is a non-recursive argument of @{text C},\\
-  $\bullet$ & @{text "z\<^isub>i \<approx>bn\<^isub>i z\<PRIME>\<^isub>i"} provided @{text "z\<^isub>i"} occurs in @{text rhs}
-  with the recursive call @{text "bn\<^isub>i x\<^isub>i"} and\\
-  $\bullet$ & @{text True} provided @{text "z\<^isub>i"} occurs in @{text rhs} but without a
-  recursive call.
-  \end{tabular}
-  \end{center}
-
-  \noindent
-  This completes the definition of $\alpha$-equivalence. As a sanity check, we can show
-  that the premises of empty binding clauses are a special case of the clauses for 
-  non-empty ones (we just have to unfold the definition of $\approx_{\,\textit{set}}$ and take @{text "0"}
-  for the existentially quantified permutation).
-
-  Again let us take a look at a concrete example for these definitions. For \eqref{letrecs}
-  we have three relations $\approx_{\textit{trm}}$, $\approx_{\textit{assn}}$ and
-  $\approx_{\textit{bn}}$ with the following clauses:
-
-  \begin{center}\small
-  \begin{tabular}{@ {}c @ {}}
-  \infer{@{text "Let as t \<approx>\<^bsub>trm\<^esub> Let as' t'"}}
-  {@{term "\<exists>p. (bn as, t) \<approx>lst alpha_trm fa_trm p (bn as', t')"} & @{text "as \<approx>\<^bsub>bn\<^esub> as'"}}\smallskip\\
-  \makebox[0mm]{\infer{@{text "Let_rec as t \<approx>\<^bsub>trm\<^esub> Let_rec as' t'"}}
-  {@{term "\<exists>p. (bn as, ast) \<approx>lst alpha_trm2 fa_trm2 p (bn as', ast')"}}}
-  \end{tabular}
-  \end{center}
-
-  \begin{center}\small
-  \begin{tabular}{@ {}c @ {}}
-  \infer{@{text "ANil \<approx>\<^bsub>assn\<^esub> ANil"}}{}\hspace{9mm}
-  \infer{@{text "ACons a t as \<approx>\<^bsub>assn\<^esub> ACons a' t' as"}}
-  {@{text "a = a'"} & @{text "t \<approx>\<^bsub>trm\<^esub> t'"} & @{text "as \<approx>\<^bsub>assn\<^esub> as'"}}
-  \end{tabular}
-  \end{center}
-
-  \begin{center}\small
-  \begin{tabular}{@ {}c @ {}}
-  \infer{@{text "ANil \<approx>\<^bsub>bn\<^esub> ANil"}}{}\hspace{9mm}
-  \infer{@{text "ACons a t as \<approx>\<^bsub>bn\<^esub> ACons a' t' as"}}
-  {@{text "t \<approx>\<^bsub>trm\<^esub> t'"} & @{text "as \<approx>\<^bsub>bn\<^esub> as'"}}
-  \end{tabular}
-  \end{center}
-
-  \noindent
-  Note the difference between  $\approx_{\textit{assn}}$ and
-  $\approx_{\textit{bn}}$: the latter only ``tracks'' $\alpha$-equivalence of 
-  the components in an assignment that are \emph{not} bound. This is needed in the 
-  clause for @{text "Let"} (which has
-  a non-recursive binder). 
-  %The underlying reason is that the terms inside an assignment are not meant 
-  %to be ``under'' the binder. Such a premise is \emph{not} needed in @{text "Let_rec"}, 
-  %because there all components of an assignment are ``under'' the binder. 
-*}
-
-section {* Establishing the Reasoning Infrastructure *}
-
-text {*
-  Having made all necessary definitions for raw terms, we can start
-  with establishing the reasoning infrastructure for the $\alpha$-equated types
-  @{text "ty\<AL>"}$_{1..n}$, that is the types the user originally specified. We sketch
-  in this section the proofs we need for establishing this infrastructure. One
-  main point of our work is that we have completely automated these proofs in Isabelle/HOL.
-
-  First we establish that the
-  $\alpha$-equivalence relations defined in the previous section are 
-  equivalence relations.
-
-  \begin{lemma}\label{equiv} 
-  Given the raw types @{text "ty"}$_{1..n}$ and binding functions
-  @{text "bn"}$_{1..m}$, the relations @{text "\<approx>ty"}$_{1..n}$ and 
-  @{text "\<approx>bn"}$_{1..m}$ are equivalence relations.%% and equivariant.
-  \end{lemma}
-
-  \begin{proof} 
-  The proof is by mutual induction over the definitions. The non-trivial
-  cases involve premises built up by $\approx_{\textit{set}}$, 
-  $\approx_{\textit{set+}}$ and $\approx_{\textit{list}}$. They 
-  can be dealt with as in Lemma~\ref{alphaeq}.
-  \end{proof}
-
-  \noindent 
-  We can feed this lemma into our quotient package and obtain new types @{text
-  "ty"}$^\alpha_{1..n}$ representing $\alpha$-equated terms of types @{text "ty"}$_{1..n}$. 
-  We also obtain definitions for the term-constructors @{text
-  "C"}$^\alpha_{1..k}$ from the raw term-constructors @{text
-  "C"}$_{1..k}$, and similar definitions for the free-atom functions @{text
-  "fa_ty"}$^\alpha_{1..n}$ and @{text "fa_bn"}$^\alpha_{1..m}$ as well as the binding functions @{text
-  "bn"}$^\alpha_{1..m}$. However, these definitions are not really useful to the 
-  user, since they are given in terms of the isomorphisms we obtained by 
-  creating new types in Isabelle/HOL (recall the picture shown in the 
-  Introduction).
-
-  The first useful property for the user is the fact that distinct 
-  term-constructors are not 
-  equal, that is
-  %
-  \begin{equation}\label{distinctalpha}
-  \mbox{@{text "C"}$^\alpha$~@{text "x\<^isub>1 \<dots> x\<^isub>r"}~@{text "\<noteq>"}~% 
-  @{text "D"}$^\alpha$~@{text "y\<^isub>1 \<dots> y\<^isub>s"}} 
-  \end{equation}
-  
-  \noindent
-  whenever @{text "C"}$^\alpha$~@{text "\<noteq>"}~@{text "D"}$^\alpha$.
-  In order to derive this fact, we use the definition of $\alpha$-equivalence
-  and establish that
-  %
-  \begin{equation}\label{distinctraw}
-  \mbox{@{text "C x\<^isub>1 \<dots> x\<^isub>r"}\;$\not\approx$@{text ty}\;@{text "D y\<^isub>1 \<dots> y\<^isub>s"}}
-  \end{equation}
-
-  \noindent
-  holds for the corresponding raw term-constructors.
-  In order to deduce \eqref{distinctalpha} from \eqref{distinctraw}, our quotient
-  package needs to know that the raw term-constructors @{text "C"} and @{text "D"} 
-  are \emph{respectful} w.r.t.~the $\alpha$-equivalence relations (see \cite{Homeier05}).
-  Assuming, for example, @{text "C"} is of type @{text "ty"} with argument types
-  @{text "ty"}$_{1..r}$, respectfulness amounts to showing that
-  %
-  \begin{center}
-  @{text "C x\<^isub>1 \<dots> x\<^isub>r \<approx>ty C x\<PRIME>\<^isub>1 \<dots> x\<PRIME>\<^isub>r"}
-  \end{center}  
-
-  \noindent
-  holds under the assumptions that we have \mbox{@{text
-  "x\<^isub>i \<approx>ty\<^isub>i x\<PRIME>\<^isub>i"}} whenever @{text "x\<^isub>i"}
-  and @{text "x\<PRIME>\<^isub>i"} are recursive arguments of @{text C} and
-  @{text "x\<^isub>i = x\<PRIME>\<^isub>i"} whenever they are non-recursive arguments. We can prove this
-  implication by applying the corresponding rule in our $\alpha$-equivalence
-  definition and by establishing the following auxiliary implications %facts 
-  %
-  \begin{equation}\label{fnresp}
-  \mbox{%
-  \begin{tabular}{ll@ {\hspace{7mm}}ll}
-  \mbox{\it (i)} & @{text "x \<approx>ty\<^isub>i x\<PRIME>"}~~@{text "\<Rightarrow>"}~~@{text "fa_ty\<^isub>i x = fa_ty\<^isub>i x\<PRIME>"} &
-  \mbox{\it (iii)} & @{text "x \<approx>ty\<^isub>j x\<PRIME>"}~~@{text "\<Rightarrow>"}~~@{text "bn\<^isub>j x = bn\<^isub>j x\<PRIME>"}\\
-
-  \mbox{\it (ii)} & @{text "x \<approx>ty\<^isub>j x\<PRIME>"}~~@{text "\<Rightarrow>"}~~@{text "fa_bn\<^isub>j x = fa_bn\<^isub>j x\<PRIME>"} &
-  \mbox{\it (iv)} & @{text "x \<approx>ty\<^isub>j x\<PRIME>"}~~@{text "\<Rightarrow>"}~~@{text "x \<approx>bn\<^isub>j x\<PRIME>"}\\
-  \end{tabular}}
-  \end{equation}
-
-  \noindent
-  They can be established by induction on @{text "\<approx>ty"}$_{1..n}$. Whereas the first,
-  second and last implication are true by how we stated our definitions, the 
-  third \emph{only} holds because of our restriction
-  imposed on the form of the binding functions---namely \emph{not} returning 
-  any bound atoms. In Ott, in contrast, the user may 
-  define @{text "bn"}$_{1..m}$ so that they return bound
-  atoms and in this case the third implication is \emph{not} true. A 
-  result is that the lifing of the corresponding binding functions in Ott to $\alpha$-equated
-  terms is impossible.
-
-  Having established respectfulness for the raw term-constructors, the 
-  quotient package is able to automatically deduce \eqref{distinctalpha} from 
-  \eqref{distinctraw}. Having the facts \eqref{fnresp} at our disposal, we can 
-  also lift properties that characterise when two raw terms of the form
-  %
-  \begin{center}
-  @{text "C x\<^isub>1 \<dots> x\<^isub>r \<approx>ty C x\<PRIME>\<^isub>1 \<dots> x\<PRIME>\<^isub>r"}
-  \end{center}
-
-  \noindent
-  are $\alpha$-equivalent. This gives us conditions when the corresponding
-  $\alpha$-equated terms are \emph{equal}, namely
-  %
-  %\begin{center}
-  @{text "C\<^sup>\<alpha> x\<^isub>1 \<dots> x\<^isub>r = C\<^sup>\<alpha> x\<PRIME>\<^isub>1 \<dots> x\<PRIME>\<^isub>r"}.
-  %\end{center}
-  %
-  %\noindent
-  We call these conditions as \emph{quasi-injectivity}. They correspond to
-  the premises in our $\alpha$-equivalence relations.
-
-  Next we can lift the permutation 
-  operations defined in \eqref{ceqvt}. In order to make this 
-  lifting to go through, we have to show that the permutation operations are respectful. 
-  This amounts to showing that the 
-  $\alpha$-equivalence relations are equivariant \cite{HuffmanUrban10}.
-  %, which we already established 
-  %in Lemma~\ref{equiv}. 
-  As a result we can add the equations
-  %
-  \begin{equation}\label{calphaeqvt}
-  @{text "p \<bullet> (C\<^sup>\<alpha> x\<^isub>1 \<dots> x\<^isub>r) = C\<^sup>\<alpha> (p \<bullet> x\<^isub>1) \<dots> (p \<bullet> x\<^isub>r)"}
-  \end{equation}
-
-  \noindent
-  to our infrastructure. In a similar fashion we can lift the defining equations
-  of the free-atom functions @{text "fn_ty\<AL>"}$_{1..n}$ and
-  @{text "fa_bn\<AL>"}$_{1..m}$ as well as of the binding functions @{text
-  "bn\<AL>"}$_{1..m}$ and the size functions @{text "size_ty\<AL>"}$_{1..n}$.
-  The latter are defined automatically for the raw types @{text "ty"}$_{1..n}$
-  by the datatype package of Isabelle/HOL.
-
-  Finally we can add to our infrastructure a cases lemma (explained in the next section)
-  and a structural induction principle 
-  for the types @{text "ty\<AL>"}$_{1..n}$. The conclusion of the induction principle is
-  of the form
-  %
-  %\begin{equation}\label{weakinduct}
-  \mbox{@{text "P\<^isub>1 x\<^isub>1 \<and> \<dots> \<and> P\<^isub>n x\<^isub>n "}}
-  %\end{equation} 
-  %
-  %\noindent
-  whereby the @{text P}$_{1..n}$ are predicates and the @{text x}$_{1..n}$ 
-  have types @{text "ty\<AL>"}$_{1..n}$. This induction principle has for each
-  term constructor @{text "C"}$^\alpha$ a premise of the form
-  %
-  \begin{equation}\label{weakprem}
-  \mbox{@{text "\<forall>x\<^isub>1\<dots>x\<^isub>r. P\<^isub>i x\<^isub>i \<and> \<dots> \<and> P\<^isub>j x\<^isub>j \<Rightarrow> P (C\<^sup>\<alpha> x\<^isub>1 \<dots> x\<^isub>r)"}} 
-  \end{equation}
-
-  \noindent 
-  in which the @{text "x"}$_{i..j}$ @{text "\<subseteq>"} @{text "x"}$_{1..r}$ are 
-  the recursive arguments of @{text "C\<AL>"}. 
-
-  By working now completely on the $\alpha$-equated level, we
-  can first show that the free-atom functions and binding functions are
-  equivariant, namely
-  %
-  \begin{center}
-  \begin{tabular}{rcl@ {\hspace{10mm}}rcl}
-  @{text "p \<bullet> (fa_ty\<AL>\<^isub>i  x)"} & $=$ & @{text "fa_ty\<AL>\<^isub>i (p \<bullet> x)"} &
-  @{text "p \<bullet> (bn\<AL>\<^isub>j  x)"}    & $=$ & @{text "bn\<AL>\<^isub>j (p \<bullet> x)"}\\
-  @{text "p \<bullet> (fa_bn\<AL>\<^isub>j  x)"} & $=$ & @{text "fa_bn\<AL>\<^isub>j (p \<bullet> x)"}\\
-  \end{tabular}
-  \end{center}
-  %
-  \noindent
-  These properties can be established using the induction principle for the types @{text "ty\<AL>"}$_{1..n}$.
-  %%in \eqref{weakinduct}.
-  Having these equivariant properties established, we can
-  show that the support of term-constructors @{text "C\<^sup>\<alpha>"} is included in
-  the support of its arguments, that means 
-
-  \begin{center}
-  @{text "supp (C\<^sup>\<alpha> x\<^isub>1 \<dots> x\<^isub>r) \<subseteq> (supp x\<^isub>1 \<union> \<dots> \<union> supp x\<^isub>r)"}
-  \end{center}
- 
-  \noindent
-  holds. This allows us to prove by induction that
-  every @{text x} of type @{text "ty\<AL>"}$_{1..n}$ is finitely supported. 
-  %This can be again shown by induction 
-  %over @{text "ty\<AL>"}$_{1..n}$. 
-  Lastly, we can show that the support of 
-  elements in  @{text "ty\<AL>"}$_{1..n}$ is the same as @{text "fa_ty\<AL>"}$_{1..n}$.
-  This fact is important in a nominal setting, but also provides evidence 
-  that our notions of free-atoms and $\alpha$-equivalence are correct.
-
-  \begin{theorem} 
-  For @{text "x"}$_{1..n}$ with type @{text "ty\<AL>"}$_{1..n}$, we have
-  @{text "supp x\<^isub>i = fa_ty\<AL>\<^isub>i x\<^isub>i"}.
-  \end{theorem}
-
-  \begin{proof}
-  The proof is by induction. In each case
-  we unfold the definition of @{text "supp"}, move the swapping inside the 
-  term-constructors and then use the quasi-injectivity lemmas in order to complete the
-  proof. For the abstraction cases we use the facts derived in Theorem~\ref{suppabs}.
-  \end{proof}
-
-  \noindent
-  To sum up this section, we can establish automatically a reasoning infrastructure
-  for the types @{text "ty\<AL>"}$_{1..n}$ 
-  by first lifting definitions from the raw level to the quotient level and
-  then by establishing facts about these lifted definitions. All necessary proofs
-  are generated automatically by custom ML-code. 
-
-  %This code can deal with 
-  %specifications such as the one shown in Figure~\ref{nominalcorehas} for Core-Haskell.  
-
-  %\begin{figure}[t!]
-  %\begin{boxedminipage}{\linewidth}
-  %\small
-  %\begin{tabular}{l}
-  %\isacommand{atom\_decl}~@{text "var cvar tvar"}\\[1mm]
-  %\isacommand{nominal\_datatype}~@{text "tkind ="}\\
-  %\phantom{$|$}~@{text "KStar"}~$|$~@{text "KFun tkind tkind"}\\ 
-  %\isacommand{and}~@{text "ckind ="}\\
-  %\phantom{$|$}~@{text "CKSim ty ty"}\\
-  %\isacommand{and}~@{text "ty ="}\\
-  %\phantom{$|$}~@{text "TVar tvar"}~$|$~@{text "T string"}~$|$~@{text "TApp ty ty"}\\
-  %$|$~@{text "TFun string ty_list"}~%
-  %$|$~@{text "TAll tv::tvar tkind ty::ty"}  \isacommand{bind}~@{text "tv"}~\isacommand{in}~@{text ty}\\
-  %$|$~@{text "TArr ckind ty"}\\
-  %\isacommand{and}~@{text "ty_lst ="}\\
-  %\phantom{$|$}~@{text "TNil"}~$|$~@{text "TCons ty ty_lst"}\\
-  %\isacommand{and}~@{text "cty ="}\\
-  %\phantom{$|$}~@{text "CVar cvar"}~%
-  %$|$~@{text "C string"}~$|$~@{text "CApp cty cty"}~$|$~@{text "CFun string co_lst"}\\
-  %$|$~@{text "CAll cv::cvar ckind cty::cty"}  \isacommand{bind}~@{text "cv"}~\isacommand{in}~@{text cty}\\
-  %$|$~@{text "CArr ckind cty"}~$|$~@{text "CRefl ty"}~$|$~@{text "CSym cty"}~$|$~@{text "CCirc cty cty"}\\
-  %$|$~@{text "CAt cty ty"}~$|$~@{text "CLeft cty"}~$|$~@{text "CRight cty"}~$|$~@{text "CSim cty cty"}\\
-  %$|$~@{text "CRightc cty"}~$|$~@{text "CLeftc cty"}~$|$~@{text "Coerce cty cty"}\\
-  %\isacommand{and}~@{text "co_lst ="}\\
-  %\phantom{$|$}@{text "CNil"}~$|$~@{text "CCons cty co_lst"}\\
-  %\isacommand{and}~@{text "trm ="}\\
-  %\phantom{$|$}~@{text "Var var"}~$|$~@{text "K string"}\\
-  %$|$~@{text "LAM_ty tv::tvar tkind t::trm"}  \isacommand{bind}~@{text "tv"}~\isacommand{in}~@{text t}\\
-  %$|$~@{text "LAM_cty cv::cvar ckind t::trm"}   \isacommand{bind}~@{text "cv"}~\isacommand{in}~@{text t}\\
-  %$|$~@{text "App_ty trm ty"}~$|$~@{text "App_cty trm cty"}~$|$~@{text "App trm trm"}\\
-  %$|$~@{text "Lam v::var ty t::trm"}  \isacommand{bind}~@{text "v"}~\isacommand{in}~@{text t}\\
-  %$|$~@{text "Let x::var ty trm t::trm"}  \isacommand{bind}~@{text x}~\isacommand{in}~@{text t}\\
-  %$|$~@{text "Case trm assoc_lst"}~$|$~@{text "Cast trm co"}\\
-  %\isacommand{and}~@{text "assoc_lst ="}\\
-  %\phantom{$|$}~@{text ANil}~%
-  %$|$~@{text "ACons p::pat t::trm assoc_lst"}  \isacommand{bind}~@{text "bv p"}~\isacommand{in}~@{text t}\\
-  %\isacommand{and}~@{text "pat ="}\\
-  %\phantom{$|$}~@{text "Kpat string tvtk_lst tvck_lst vt_lst"}\\
-  %\isacommand{and}~@{text "vt_lst ="}\\
-  %\phantom{$|$}~@{text VTNil}~$|$~@{text "VTCons var ty vt_lst"}\\
-  %\isacommand{and}~@{text "tvtk_lst ="}\\
-  %\phantom{$|$}~@{text TVTKNil}~$|$~@{text "TVTKCons tvar tkind tvtk_lst"}\\
-  %\isacommand{and}~@{text "tvck_lst ="}\\ 
-  %\phantom{$|$}~@{text TVCKNil}~$|$ @{text "TVCKCons cvar ckind tvck_lst"}\\
-  %\isacommand{binder}\\
-  %@{text "bv :: pat \<Rightarrow> atom list"}~\isacommand{and}~%
-  %@{text "bv1 :: vt_lst \<Rightarrow> atom list"}~\isacommand{and}\\
-  %@{text "bv2 :: tvtk_lst \<Rightarrow> atom list"}~\isacommand{and}~%
-  %@{text "bv3 :: tvck_lst \<Rightarrow> atom list"}\\
-  %\isacommand{where}\\
-  %\phantom{$|$}~@{text "bv (K s tvts tvcs vs) = (bv3 tvts) @ (bv2 tvcs) @ (bv1 vs)"}\\
-  %$|$~@{text "bv1 VTNil = []"}\\
-  %$|$~@{text "bv1 (VTCons x ty tl) = (atom x)::(bv1 tl)"}\\
-  %$|$~@{text "bv2 TVTKNil = []"}\\
-  %$|$~@{text "bv2 (TVTKCons a ty tl) = (atom a)::(bv2 tl)"}\\
-  %$|$~@{text "bv3 TVCKNil = []"}\\
-  %$|$~@{text "bv3 (TVCKCons c cty tl) = (atom c)::(bv3 tl)"}\\
-  %\end{tabular}
-  %\end{boxedminipage}
-  %\caption{The nominal datatype declaration for Core-Haskell. For the moment we
-  %do not support nested types; therefore we explicitly have to unfold the 
-  %lists @{text "co_lst"}, @{text "assoc_lst"} and so on. This will be improved
-  %in a future version of Nominal Isabelle. Apart from that, the 
-  %declaration follows closely the original in Figure~\ref{corehas}. The
-  %point of our work is that having made such a declaration in Nominal Isabelle,
-  %one obtains automatically a reasoning infrastructure for Core-Haskell.
-  %\label{nominalcorehas}}
-  %\end{figure}
-*}
-
-
-section {* Strong Induction Principles *}
-
-text {*
-  In the previous section we derived induction principles for $\alpha$-equated terms. 
-  We call such induction principles \emph{weak}, because for a 
-  term-constructor \mbox{@{text "C\<^sup>\<alpha> x\<^isub>1\<dots>x\<^isub>r"}}
-  the induction hypothesis requires us to establish the implications \eqref{weakprem}.
-  The problem with these implications is that in general they are difficult to establish.
-  The reason is that we cannot make any assumption about the bound atoms that might be in @{text "C\<^sup>\<alpha>"}. 
-  %%(for example we cannot assume the variable convention for them).
-
-  In \cite{UrbanTasson05} we introduced a method for automatically
-  strengthening weak induction principles for terms containing single
-  binders. These stronger induction principles allow the user to make additional
-  assumptions about bound atoms. 
-  %These additional assumptions amount to a formal
-  %version of the informal variable convention for binders. 
-  To sketch how this strengthening extends to the case of multiple binders, we use as
-  running example the term-constructors @{text "Lam"} and @{text "Let"}
-  from example \eqref{letpat}. Instead of establishing @{text " P\<^bsub>trm\<^esub> t \<and> P\<^bsub>pat\<^esub> p"},
-  the stronger induction principle for \eqref{letpat} establishes properties @{text " P\<^bsub>trm\<^esub> c t \<and> P\<^bsub>pat\<^esub> c p"}
-  where the additional parameter @{text c} controls
-  which freshness assumptions the binders should satisfy. For the two term constructors 
-  this means that the user has to establish in inductions the implications
-  %
-  \begin{center}
-  \begin{tabular}{l}
-  @{text "\<forall>a t c. {atom a} \<FRESH>\<^sup>* c \<and> (\<forall>d. P\<^bsub>trm\<^esub> d t) \<Rightarrow> P\<^bsub>trm\<^esub> c (Lam a t)"}\\
-  @{text "\<forall>p t c. (set (bn p)) \<FRESH>\<^sup>* c \<and> (\<forall>d. P\<^bsub>pat\<^esub> d p) \<and> (\<forall>d. P\<^bsub>trm\<^esub> d t) \<and> \<Rightarrow> P\<^bsub>trm\<^esub> c (Let p t)"}\\%[-0mm]
-  \end{tabular}
-  \end{center}
-
-  In \cite{UrbanTasson05} we showed how the weaker induction principles imply
-  the stronger ones. This was done by some quite complicated, nevertheless automated,
-  induction proof. In this paper we simplify this work by leveraging the automated proof
-  methods from the function package of Isabelle/HOL. 
-  The reasoning principle these methods employ is well-founded induction. 
-  To use them in our setting, we have to discharge
-  two proof obligations: one is that we have
-  well-founded measures (for each type @{text "ty"}$^\alpha_{1..n}$) that decrease in 
-  every induction step and the other is that we have covered all cases. 
-  As measures we use the size functions 
-  @{text "size_ty"}$^\alpha_{1..n}$, which we lifted in the previous section and which are 
-  all well-founded. %It is straightforward to establish that these measures decrease 
-  %in every induction step.
-  
-  What is left to show is that we covered all cases. To do so, we use 
-  a \emph{cases lemma} derived for each type. For the terms in \eqref{letpat} 
-  this lemma is of the form
-  %
-  \begin{equation}\label{weakcases}
-  \infer{@{text "P\<^bsub>trm\<^esub>"}}
-  {\begin{array}{l@ {\hspace{9mm}}l}
-  @{text "\<forall>x. t = Var x \<Rightarrow> P\<^bsub>trm\<^esub>"} & @{text "\<forall>a t'. t = Lam a t' \<Rightarrow> P\<^bsub>trm\<^esub>"}\\
-  @{text "\<forall>t\<^isub>1 t\<^isub>2. t = App t\<^isub>1 t\<^isub>2 \<Rightarrow> P\<^bsub>trm\<^esub>"} & @{text "\<forall>p t'. t = Let p t' \<Rightarrow> P\<^bsub>trm\<^esub>"}\\
-  \end{array}}\\[-1mm]
-  \end{equation}
-  %
-  where we have a premise for each term-constructor.
-  The idea behind such cases lemmas is that we can conclude with a property @{text "P\<^bsub>trm\<^esub>"},
-  provided we can show that this property holds if we substitute for @{text "t"} all 
-  possible term-constructors. 
-  
-  The only remaining difficulty is that in order to derive the stronger induction
-  principles conveniently, the cases lemma in \eqref{weakcases} is too weak. For this note that
-  in order to apply this lemma, we have to establish @{text "P\<^bsub>trm\<^esub>"} for \emph{all} @{text Lam}- and 
-  \emph{all} @{text Let}-terms. 
-  What we need instead is a cases lemma where we only have to consider terms that have 
-  binders that are fresh w.r.t.~a context @{text "c"}. This gives the implications
-  %
-  \begin{center}
-  \begin{tabular}{l}
-  @{text "\<forall>a t'. t = Lam a t' \<and> {atom a} \<FRESH>\<^sup>* c \<Rightarrow> P\<^bsub>trm\<^esub>"}\\
-  @{text "\<forall>p t'. t = Let p t' \<and> (set (bn p)) \<FRESH>\<^sup>* c \<Rightarrow> P\<^bsub>trm\<^esub>"}\\%[-2mm]
-  \end{tabular}
-  \end{center}
-  %
-  \noindent
-  which however can be relatively easily be derived from the implications in \eqref{weakcases} 
-  by a renaming using Properties \ref{supppermeq} and \ref{avoiding}. In the first case we know
-  that @{text "{atom a} \<FRESH>\<^sup>* Lam a t"}. Property \eqref{avoiding} provides us therefore with 
-  a permutation @{text q}, such that @{text "{atom (q \<bullet> a)} \<FRESH>\<^sup>* c"} and 
-  @{text "supp (Lam a t) \<FRESH>\<^sup>* q"} hold.
-  By using Property \ref{supppermeq}, we can infer from the latter 
-  that @{text "Lam (q \<bullet> a) (q \<bullet> t) = Lam a t"}
-  and we are done with this case.
-
-  The @{text Let}-case involving a (non-recursive) deep binder is a bit more complicated.
-  The reason is that the we cannot apply Property \ref{avoiding} to the whole term @{text "Let p t"},
-  because @{text p} might contain names that are bound (by @{text bn}) and so are 
-  free. To solve this problem we have to introduce a permutation function that only
-  permutes names bound by @{text bn} and leaves the other names unchanged. We do this again
-  by lifting. For a
-  clause @{text "bn (C x\<^isub>1 \<dots> x\<^isub>r) = rhs"}, we define 
-  %
-  \begin{center}
-  @{text "p \<bullet>\<^bsub>bn\<^esub> (C x\<^isub>1 \<dots> x\<^isub>r) \<equiv> C y\<^isub>1 \<dots> y\<^isub>r"}  with
-  $\begin{cases}
-  \text{@{text "y\<^isub>i \<equiv> x\<^isub>i"} provided @{text "x\<^isub>i"} does not occur in @{text "rhs"}}\\
-  \text{@{text "y\<^isub>i \<equiv> p \<bullet>\<^bsub>bn'\<^esub> x\<^isub>i"} provided @{text "bn' x\<^isub>i"} is in @{text "rhs"}}\\
-  \text{@{text "y\<^isub>i \<equiv> p \<bullet> x\<^isub>i"} otherwise}  
-  \end{cases}$
-  \end{center}
-  %
-  %\noindent
-  %with @{text "y\<^isub>i"} determined as follows:
-  %
-  %\begin{center}
-  %\begin{tabular}{c@ {\hspace{2mm}}p{0.9\textwidth}}
-  %$\bullet$ & @{text "y\<^isub>i \<equiv> x\<^isub>i"} provided @{text "x\<^isub>i"} does not occur in @{text "rhs"}\\
-  %$\bullet$ & @{text "y\<^isub>i \<equiv> p \<bullet>\<^bsub>bn'\<^esub> x\<^isub>i"} provided @{text "bn' x\<^isub>i"} is in @{text "rhs"}\\
-  %$\bullet$ & @{text "y\<^isub>i \<equiv> p \<bullet> x\<^isub>i"} otherwise
-  %\end{tabular}
-  %\end{center}
-  %
-  \noindent
-  Now Properties \ref{supppermeq} and \ref{avoiding} give us a permutation @{text q} such that
-  @{text "(set (bn (q \<bullet>\<^bsub>bn\<^esub> p)) \<FRESH>\<^sup>* c"} holds and such that @{text "[q \<bullet>\<^bsub>bn\<^esub> p]\<^bsub>list\<^esub>.(q \<bullet> t)"}
-  is equal to @{text "[p]\<^bsub>list\<^esub>. t"}. We can also show that @{text "(q \<bullet>\<^bsub>bn\<^esub> p) \<approx>\<^bsub>bn\<^esub> p"}. 
-  These facts establish that @{text "Let (q \<bullet>\<^bsub>bn\<^esub> p) (p \<bullet> t) = Let p t"}, as we need. This
-  completes the non-trivial cases in \eqref{letpat} for strengthening the corresponding induction
-  principle.
-  
-
-
-  %A natural question is
-  %whether we can also strengthen the weak induction principles involving
-  %the general binders presented here. We will indeed be able to so, but for this we need an 
-  %additional notion for permuting deep binders. 
-
-  %Given a binding function @{text "bn"} we define an auxiliary permutation 
-  %operation @{text "_ \<bullet>\<^bsub>bn\<^esub> _"} which permutes only bound arguments in a deep binder.
-  %Assuming a clause of @{text bn} is given as 
-  %
-  %\begin{center}
-  %@{text "bn (C x\<^isub>1 \<dots> x\<^isub>r) = rhs"}, 
-  %\end{center}
-
-  %\noindent 
-  %then we define 
-  %
-  %\begin{center}
-  %@{text "p \<bullet>\<^bsub>bn\<^esub> (C x\<^isub>1 \<dots> x\<^isub>r) \<equiv> C y\<^isub>1 \<dots> y\<^isub>r"} 
-  %\end{center}
-  
-  %\noindent
-  %with @{text "y\<^isub>i"} determined as follows:
-  %
-  %\begin{center}
-  %\begin{tabular}{c@ {\hspace{2mm}}p{7cm}}
-  %$\bullet$ & @{text "y\<^isub>i \<equiv> x\<^isub>i"} provided @{text "x\<^isub>i"} does not occur in @{text "rhs"}\\
-  %$\bullet$ & @{text "y\<^isub>i \<equiv> p \<bullet>\<^bsub>bn'\<^esub> x\<^isub>i"} provided @{text "bn' x\<^isub>i"} is in @{text "rhs"}\\
-  %$\bullet$ & @{text "y\<^isub>i \<equiv> p \<bullet> x\<^isub>i"} otherwise
-  %\end{tabular}
-  %\end{center}
-  
-  %\noindent
-  %Using again the quotient package  we can lift the @{text "_ \<bullet>\<^bsub>bn\<^esub> _"} function to 
-  %$\alpha$-equated terms. We can then prove the following two facts
-
-  %\begin{lemma}\label{permutebn} 
-  %Given a binding function @{text "bn\<^sup>\<alpha>"} then for all @{text p}
-  %{\it (i)} @{text "p \<bullet> (bn\<^sup>\<alpha> x) = bn\<^sup>\<alpha> (p \<bullet>\<AL>\<^bsub>bn\<^esub> x)"} and {\it (ii)}
-  %  @{text "fa_bn\<^isup>\<alpha> x = fa_bn\<^isup>\<alpha> (p \<bullet>\<AL>\<^bsub>bn\<^esub> x)"}.
-  %\end{lemma}
-
-  %\begin{proof} 
-  %By induction on @{text x}. The equations follow by simple unfolding 
-  %of the definitions. 
-  %\end{proof}
-
-  %\noindent
-  %The first property states that a permutation applied to a binding function is
-  %equivalent to first permuting the binders and then calculating the bound
-  %atoms. The second amounts to the fact that permuting the binders has no 
-  %effect on the free-atom function. The main point of this permutation
-  %function, however, is that if we have a permutation that is fresh 
-  %for the support of an object @{text x}, then we can use this permutation 
-  %to rename the binders in @{text x}, without ``changing'' @{text x}. In case of the 
-  %@{text "Let"} term-constructor from the example shown 
-  %in \eqref{letpat} this means for a permutation @{text "r"}
-  %%
-  %\begin{equation}\label{renaming}
-  %\begin{array}{l}
-  %\mbox{if @{term "supp (Abs_lst (bn p) t\<^isub>2)  \<sharp>* r"}}\\ 
-  %\qquad\mbox{then @{text "Let p t\<^isub>1 t\<^isub>2 = Let (r \<bullet>\<AL>\<^bsub>bn_pat\<^esub> p) t\<^isub>1 (r \<bullet> t\<^isub>2)"}}
-  %\end{array}
-  %\end{equation}
-
-  %\noindent
-  %This fact will be crucial when establishing the strong induction principles below.
-
- 
-  %In our running example about @{text "Let"}, the strong induction
-  %principle means that instead 
-  %of establishing the implication 
-  %
-  %\begin{center}
-  %@{text "\<forall>p t\<^isub>1 t\<^isub>2. P\<^bsub>pat\<^esub> p \<and> P\<^bsub>trm\<^esub> t\<^isub>1 \<and> P\<^bsub>trm\<^esub> t\<^isub>2 \<Rightarrow> P\<^bsub>trm\<^esub> (Let p t\<^isub>1 t\<^isub>2)"}
-  %\end{center}
-  %
-  %\noindent
-  %it is sufficient to establish the following implication
-  %
-  %\begin{equation}\label{strong}
-  %\mbox{\begin{tabular}{l}
-  %@{text "\<forall>p t\<^isub>1 t\<^isub>2 c."}\\
-  %\hspace{5mm}@{text "set (bn p) #\<^sup>* c \<and>"}\\
-  %\hspace{5mm}@{text "(\<forall>d. P\<^bsub>pat\<^esub> d p) \<and> (\<forall>d. P\<^bsub>trm\<^esub> d t\<^isub>1) \<and> (\<forall>d. P\<^bsub>trm\<^esub> d t\<^isub>2)"}\\
-  %\hspace{15mm}@{text "\<Rightarrow> P\<^bsub>trm\<^esub> c (Let p t\<^isub>1 t\<^isub>2)"}
-  %\end{tabular}}
-  %\end{equation}
-  %
-  %\noindent 
-  %While this implication contains an additional argument, namely @{text c}, and 
-  %also additional universal quantifications, it is usually easier to establish.
-  %The reason is that we have the freshness 
-  %assumption @{text "set (bn\<^sup>\<alpha> p) #\<^sup>* c"}, whereby @{text c} can be arbitrarily 
-  %chosen by the user as long as it has finite support.
-  %
-  %Let us now show how we derive the strong induction principles from the
-  %weak ones. In case of the @{text "Let"}-example we derive by the weak 
-  %induction the following two properties
-  %
-  %\begin{equation}\label{hyps}
-  %@{text "\<forall>q c. P\<^bsub>trm\<^esub> c (q \<bullet> t)"} \hspace{4mm} 
-  %@{text "\<forall>q\<^isub>1 q\<^isub>2 c. P\<^bsub>pat\<^esub> (q\<^isub>1 \<bullet>\<AL>\<^bsub>bn\<^esub> (q\<^isub>2 \<bullet> p))"}
-  %\end{equation} 
-  %
-  %\noindent
-  %For the @{text Let} term-constructor  we therefore have to establish @{text "P\<^bsub>trm\<^esub> c (q \<bullet> Let p t\<^isub>1 t\<^isub>2)"} 
-  %assuming \eqref{hyps} as induction hypotheses (the first for @{text t\<^isub>1} and @{text t\<^isub>2}). 
-  %By Property~\ref{avoiding} we
-  %obtain a permutation @{text "r"} such that 
-  %
-  %\begin{equation}\label{rprops}
-  %@{term "(r \<bullet> set (bn (q \<bullet> p))) \<sharp>* c "}\hspace{4mm}
-  %@{term "supp (Abs_lst (bn (q \<bullet> p)) (q \<bullet> t\<^isub>2)) \<sharp>* r"}
-  %\end{equation}
-  %
-  %\noindent
-  %hold. The latter fact and \eqref{renaming} give us
-  %%
-  %\begin{center}
-  %\begin{tabular}{l}
-  %@{text "Let (q \<bullet> p) (q \<bullet> t\<^isub>1) (q \<bullet> t\<^isub>2) ="} \\
-  %\hspace{15mm}@{text "Let (r \<bullet>\<AL>\<^bsub>bn\<^esub> (q \<bullet> p)) (q \<bullet> t\<^isub>1) (r \<bullet> (q \<bullet> t\<^isub>2))"}
-  %\end{tabular}
-  %\end{center}
-  %
-  %\noindent
-  %So instead of proving @{text "P\<^bsub>trm\<^esub> c (q \<bullet> Let p t\<^isub>1 t\<^isub>2)"}, we can equally
-  %establish @{text "P\<^bsub>trm\<^esub> c (Let (r \<bullet>\<AL>\<^bsub>bn\<^esub> (q \<bullet> p)) (q \<bullet> t\<^isub>1) (r \<bullet> (q \<bullet> t\<^isub>2)))"}.
-  %To do so, we will use the implication \eqref{strong} of the strong induction
-  %principle, which requires us to discharge
-  %the following four proof obligations:
-  %%
-  %\begin{center}
-  %\begin{tabular}{rl}
-  %{\it (i)} &   @{text "set (bn (r \<bullet>\<AL>\<^bsub>bn\<^esub> (q \<bullet> p))) #\<^sup>* c"}\\
-  %{\it (ii)} &  @{text "\<forall>d. P\<^bsub>pat\<^esub> d (r \<bullet>\<AL>\<^bsub>bn\<^esub> (q \<bullet> p))"}\\
-  %{\it (iii)} & @{text "\<forall>d. P\<^bsub>trm\<^esub> d (q \<bullet> t\<^isub>1)"}\\
-  %{\it (iv)} & @{text "\<forall>d. P\<^bsub>trm\<^esub> d (r \<bullet> (q \<bullet> t\<^isub>2))"}\\
-  %\end{tabular}
-  %\end{center}
-  %
-  %\noindent
-  %The first follows from \eqref{rprops} and Lemma~\ref{permutebn}.{\it (i)}; the 
-  %others from the induction hypotheses in \eqref{hyps} (in the fourth case
-  %we have to use the fact that @{term "(r \<bullet> (q \<bullet> t\<^isub>2)) = (r + q) \<bullet> t\<^isub>2"}).
-  %
-  %Taking now the identity permutation @{text 0} for the permutations in \eqref{hyps},
-  %we can establish our original goals, namely @{text "P\<^bsub>trm\<^esub> c t"} and \mbox{@{text "P\<^bsub>pat\<^esub> c p"}}.
-  %This completes the proof showing that the weak induction principles imply 
-  %the strong induction principles. 
-*}
-
-
-section {* Related Work\label{related} *}
-
-text {*
-  To our knowledge the earliest usage of general binders in a theorem prover
-  is described in \cite{NaraschewskiNipkow99} about a formalisation of the
-  algorithm W. This formalisation implements binding in type-schemes using a
-  de-Bruijn indices representation. Since type-schemes in W contain only a single
-  place where variables are bound, different indices do not refer to different binders (as in the usual
-  de-Bruijn representation), but to different bound variables. A similar idea
-  has been recently explored for general binders in the locally nameless
-  approach to binding \cite{chargueraud09}.  There, de-Bruijn indices consist
-  of two numbers, one referring to the place where a variable is bound, and the
-  other to which variable is bound. The reasoning infrastructure for both
-  representations of bindings comes for free in theorem provers like Isabelle/HOL or
-  Coq, since the corresponding term-calculi can be implemented as ``normal''
-  datatypes.  However, in both approaches it seems difficult to achieve our
-  fine-grained control over the ``semantics'' of bindings (i.e.~whether the
-  order of binders should matter, or vacuous binders should be taken into
-  account). %To do so, one would require additional predicates that filter out
-  %unwanted terms. Our guess is that such predicates result in rather
-  %intricate formal reasoning.
-
-  Another technique for representing binding is higher-order abstract syntax
-  (HOAS). %, which for example is implemented in the Twelf system. 
-  This %%representation
-  technique supports very elegantly many aspects of \emph{single} binding, and
-  impressive work has been done that uses HOAS for mechanising the metatheory
-  of SML~\cite{LeeCraryHarper07}. We are, however, not aware how multiple
-  binders of SML are represented in this work. Judging from the submitted
-  Twelf-solution for the POPLmark challenge, HOAS cannot easily deal with
-  binding constructs where the number of bound variables is not fixed. %For example 
-  In the second part of this challenge, @{text "Let"}s involve
-  patterns that bind multiple variables at once. In such situations, HOAS
-  seems to have to resort to the iterated-single-binders-approach with
-  all the unwanted consequences when reasoning about the resulting terms.
-
-  %Two formalisations involving general binders have been 
-  %performed in older
-  %versions of Nominal Isabelle (one about Psi-calculi and one about algorithm W 
-  %\cite{BengtsonParow09,UrbanNipkow09}).  Both
-  %use the approach based on iterated single binders. Our experience with
-  %the latter formalisation has been disappointing. The major pain arose from
-  %the need to ``unbind'' variables. This can be done in one step with our
-  %general binders described in this paper, but needs a cumbersome
-  %iteration with single binders. The resulting formal reasoning turned out to
-  %be rather unpleasant. The hope is that the extension presented in this paper
-  %is a substantial improvement.
- 
-  The most closely related work to the one presented here is the Ott-tool
-  \cite{ott-jfp} and the C$\alpha$ml language \cite{Pottier06}. Ott is a nifty
-  front-end for creating \LaTeX{} documents from specifications of
-  term-calculi involving general binders. For a subset of the specifications
-  Ott can also generate theorem prover code using a raw representation of
-  terms, and in Coq also a locally nameless representation. The developers of
-  this tool have also put forward (on paper) a definition for
-  $\alpha$-equivalence of terms that can be specified in Ott.  This definition is
-  rather different from ours, not using any nominal techniques.  To our
-  knowledge there is no concrete mathematical result concerning this
-  notion of $\alpha$-equivalence.  Also the definition for the 
-  notion of free variables
-  is work in progress.
-
-  Although we were heavily inspired by the syntax of Ott,
-  its definition of $\alpha$-equi\-valence is unsuitable for our extension of
-  Nominal Isabelle. First, it is far too complicated to be a basis for
-  automated proofs implemented on the ML-level of Isabelle/HOL. Second, it
-  covers cases of binders depending on other binders, which just do not make
-  sense for our $\alpha$-equated terms. Third, it allows empty types that have no
-  meaning in a HOL-based theorem prover. We also had to generalise slightly Ott's 
-  binding clauses. In Ott you specify binding clauses with a single body; we 
-  allow more than one. We have to do this, because this makes a difference 
-  for our notion of $\alpha$-equivalence in case of \isacommand{bind (set)} and 
-  \isacommand{bind (set+)}. 
-  %
-  %Consider the examples
-  %
-  %\begin{center}
-  %\begin{tabular}{@ {}l@ {\hspace{2mm}}l@ {}}
-  %@{text "Foo\<^isub>1 xs::name fset t::trm s::trm"} &  
-  %    \isacommand{bind (set)} @{text "xs"} \isacommand{in} @{text "t s"}\\
-  %@{text "Foo\<^isub>2 xs::name fset t::trm s::trm"} &  
-  %    \isacommand{bind (set)} @{text "xs"} \isacommand{in} @{text "t"}, 
-  %    \isacommand{bind (set)} @{text "xs"} \isacommand{in} @{text "s"}\\
-  %\end{tabular}
-  %\end{center}
-  %
-  %\noindent
-  %In the first term-constructor we have a single
-  %body that happens to be ``spread'' over two arguments; in the second term-constructor we have
-  %two independent bodies in which the same variables are bound. As a result we 
-  %have
-  % 
-  %\begin{center}
-  %\begin{tabular}{r@ {\hspace{1.5mm}}c@ {\hspace{1.5mm}}l}
-  %@{text "Foo\<^isub>1 {a, b} (a, b) (a, b)"} & $\not=$ & 
-  %@{text "Foo\<^isub>1 {a, b} (a, b) (b, a)"}\\
-  %@{text "Foo\<^isub>2 {a, b} (a, b) (a, b)"} & $=$ & 
-  %@{text "Foo\<^isub>2 {a, b} (a, b) (b, a)"}\\
-  %\end{tabular}
-  %\end{center}
-  %
-  %\noindent
-  %and therefore need the extra generality to be able to distinguish between 
-  %both specifications.
-  Because of how we set up our definitions, we also had to impose some restrictions
-  (like a single binding function for a deep binder) that are not present in Ott. 
-  %Our
-  %expectation is that we can still cover many interesting term-calculi from
-  %programming language research, for example Core-Haskell. 
-
-  Pottier presents in \cite{Pottier06} a language, called C$\alpha$ml, for 
-  representing terms with general binders inside OCaml. This language is
-  implemented as a front-end that can be translated to OCaml with the help of
-  a library. He presents a type-system in which the scope of general binders
-  can be specified using special markers, written @{text "inner"} and 
-  @{text "outer"}. It seems our and his specifications can be
-  inter-translated as long as ours use the binding mode 
-  \isacommand{bind} only.
-  However, we have not proved this. Pottier gives a definition for 
-  $\alpha$-equivalence, which also uses a permutation operation (like ours).
-  Still, this definition is rather different from ours and he only proves that
-  it defines an equivalence relation. A complete
-  reasoning infrastructure is well beyond the purposes of his language. 
-  Similar work for Haskell with similar results was reported by Cheney \cite{Cheney05a}.
-  
-  In a slightly different domain (programming with dependent types), the 
-  paper \cite{Altenkirch10} presents a calculus with a notion of 
-  $\alpha$-equivalence related to our binding mode \isacommand{bind (set+)}.
-  The definition in \cite{Altenkirch10} is similar to the one by Pottier, except that it
-  has a more operational flavour and calculates a partial (renaming) map. 
-  In this way, the definition can deal with vacuous binders. However, to our
-  best knowledge, no concrete mathematical result concerning this
-  definition of $\alpha$-equivalence has been proved.\\[-7mm]    
-*}
-
-section {* Conclusion *}
-
-text {*
-  We have presented an extension of Nominal Isabelle for dealing with
-  general binders, that is term-constructors having multiple bound 
-  variables. For this extension we introduced new definitions of 
-  $\alpha$-equivalence and automated all necessary proofs in Isabelle/HOL.
-  To specify general binders we used the specifications from Ott, but extended them 
-  in some places and restricted
-  them in others so that they make sense in the context of $\alpha$-equated terms. 
-  We also introduced two binding modes (set and set+) that do not 
-  exist in Ott. 
-  We have tried out the extension with calculi such as Core-Haskell, type-schemes 
-  and approximately a  dozen of other typical examples from programming 
-  language research~\cite{SewellBestiary}. 
-  %The code
-  %will eventually become part of the next Isabelle distribution.\footnote{For the moment
-  %it can be downloaded from the Mercurial repository linked at
-  %\href{http://isabelle.in.tum.de/nominal/download}
-  %{http://isabelle.in.tum.de/nominal/download}.}
-
-  We have left out a discussion about how functions can be defined over
-  $\alpha$-equated terms involving general binders. In earlier versions of Nominal
-  Isabelle this turned out to be a thorny issue.  We
-  hope to do better this time by using the function package that has recently
-  been implemented in Isabelle/HOL and also by restricting function
-  definitions to equivariant functions (for them we can
-  provide more automation).
-
-  %There are some restrictions we imposed in this paper that we would like to lift in
-  %future work. One is the exclusion of nested datatype definitions. Nested
-  %datatype definitions allow one to specify, for instance, the function kinds
-  %in Core-Haskell as @{text "TFun string (ty list)"} instead of the unfolded
-  %version @{text "TFun string ty_list"} (see Figure~\ref{nominalcorehas}). To
-  %achieve this, we need a slightly more clever implementation than we have at the moment. 
-
-  %A more interesting line of investigation is whether we can go beyond the 
-  %simple-minded form of binding functions that we adopted from Ott. At the moment, binding
-  %functions can only return the empty set, a singleton atom set or unions
-  %of atom sets (similarly for lists). It remains to be seen whether 
-  %properties like
-  %%
-  %\begin{center}
-  %@{text "fa_ty x  =  bn x \<union> fa_bn x"}.
-  %\end{center}
-  %
-  %\noindent
-  %allow us to support more interesting binding functions. 
-  %
-  %We have also not yet played with other binding modes. For example we can
-  %imagine that there is need for a binding mode 
-  %where instead of lists, we abstract lists of distinct elements.
-  %Once we feel confident about such binding modes, our implementation 
-  %can be easily extended to accommodate them.
-  %
-  \smallskip
-  \noindent
-  {\bf Acknowledgements:} %We are very grateful to Andrew Pitts for  
-  %many discussions about Nominal Isabelle. 
-  We thank Peter Sewell for 
-  making the informal notes \cite{SewellBestiary} available to us and 
-  also for patiently explaining some of the finer points of the Ott-tool.\\[-7mm]    
-  %Stephanie Weirich suggested to separate the subgrammars
-  %of kinds and types in our Core-Haskell example. \\[-6mm] 
-*}
-
-
-(*<*)
-end
-(*>*)
--- a/Paper/ROOT.ML	Wed Mar 16 21:14:43 2011 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,4 +0,0 @@
-quick_and_dirty := true;
-no_document use_thys ["~~/src/HOL/Library/LaTeXsugar", 
-                      "../Nominal/Nominal2"];
-use_thys ["Paper"];
\ No newline at end of file
--- a/Paper/document/llncs.cls	Wed Mar 16 21:14:43 2011 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1207 +0,0 @@
-% LLNCS DOCUMENT CLASS -- version 2.17 (12-Jul-2010)
-% Springer Verlag LaTeX2e support for Lecture Notes in Computer Science
-%
-%%
-%% \CharacterTable
-%%  {Upper-case    \A\B\C\D\E\F\G\H\I\J\K\L\M\N\O\P\Q\R\S\T\U\V\W\X\Y\Z
-%%   Lower-case    \a\b\c\d\e\f\g\h\i\j\k\l\m\n\o\p\q\r\s\t\u\v\w\x\y\z
-%%   Digits        \0\1\2\3\4\5\6\7\8\9
-%%   Exclamation   \!     Double quote  \"     Hash (number) \#
-%%   Dollar        \$     Percent       \%     Ampersand     \&
-%%   Acute accent  \'     Left paren    \(     Right paren   \)
-%%   Asterisk      \*     Plus          \+     Comma         \,
-%%   Minus         \-     Point         \.     Solidus       \/
-%%   Colon         \:     Semicolon     \;     Less than     \<
-%%   Equals        \=     Greater than  \>     Question mark \?
-%%   Commercial at \@     Left bracket  \[     Backslash     \\
-%%   Right bracket \]     Circumflex    \^     Underscore    \_
-%%   Grave accent  \`     Left brace    \{     Vertical bar  \|
-%%   Right brace   \}     Tilde         \~}
-%%
-\NeedsTeXFormat{LaTeX2e}[1995/12/01]
-\ProvidesClass{llncs}[2010/07/12 v2.17
-^^J LaTeX document class for Lecture Notes in Computer Science]
-% Options
-\let\if@envcntreset\iffalse
-\DeclareOption{envcountreset}{\let\if@envcntreset\iftrue}
-\DeclareOption{citeauthoryear}{\let\citeauthoryear=Y}
-\DeclareOption{oribibl}{\let\oribibl=Y}
-\let\if@custvec\iftrue
-\DeclareOption{orivec}{\let\if@custvec\iffalse}
-\let\if@envcntsame\iffalse
-\DeclareOption{envcountsame}{\let\if@envcntsame\iftrue}
-\let\if@envcntsect\iffalse
-\DeclareOption{envcountsect}{\let\if@envcntsect\iftrue}
-\let\if@runhead\iffalse
-\DeclareOption{runningheads}{\let\if@runhead\iftrue}
-
-\let\if@openright\iftrue
-\let\if@openbib\iffalse
-\DeclareOption{openbib}{\let\if@openbib\iftrue}
-
-% languages
-\let\switcht@@therlang\relax
-\def\ds@deutsch{\def\switcht@@therlang{\switcht@deutsch}}
-\def\ds@francais{\def\switcht@@therlang{\switcht@francais}}
-
-\DeclareOption*{\PassOptionsToClass{\CurrentOption}{article}}
-
-\ProcessOptions
-
-\LoadClass[twoside]{article}
-\RequirePackage{multicol} % needed for the list of participants, index
-\RequirePackage{aliascnt}
-
-\setlength{\textwidth}{12.2cm}
-\setlength{\textheight}{19.3cm}
-\renewcommand\@pnumwidth{2em}
-\renewcommand\@tocrmarg{3.5em}
-%
-\def\@dottedtocline#1#2#3#4#5{%
-  \ifnum #1>\c@tocdepth \else
-    \vskip \z@ \@plus.2\p@
-    {\leftskip #2\relax \rightskip \@tocrmarg \advance\rightskip by 0pt plus 2cm
-               \parfillskip -\rightskip \pretolerance=10000
-     \parindent #2\relax\@afterindenttrue
-     \interlinepenalty\@M
-     \leavevmode
-     \@tempdima #3\relax
-     \advance\leftskip \@tempdima \null\nobreak\hskip -\leftskip
-     {#4}\nobreak
-     \leaders\hbox{$\m@th
-        \mkern \@dotsep mu\hbox{.}\mkern \@dotsep
-        mu$}\hfill
-     \nobreak
-     \hb@xt@\@pnumwidth{\hfil\normalfont \normalcolor #5}%
-     \par}%
-  \fi}
-%
-\def\switcht@albion{%
-\def\abstractname{Abstract.}
-\def\ackname{Acknowledgement.}
-\def\andname{and}
-\def\lastandname{\unskip, and}
-\def\appendixname{Appendix}
-\def\chaptername{Chapter}
-\def\claimname{Claim}
-\def\conjecturename{Conjecture}
-\def\contentsname{Table of Contents}
-\def\corollaryname{Corollary}
-\def\definitionname{Definition}
-\def\examplename{Example}
-\def\exercisename{Exercise}
-\def\figurename{Fig.}
-\def\keywordname{{\bf Keywords:}}
-\def\indexname{Index}
-\def\lemmaname{Lemma}
-\def\contriblistname{List of Contributors}
-\def\listfigurename{List of Figures}
-\def\listtablename{List of Tables}
-\def\mailname{{\it Correspondence to\/}:}
-\def\noteaddname{Note added in proof}
-\def\notename{Note}
-\def\partname{Part}
-\def\problemname{Problem}
-\def\proofname{Proof}
-\def\propertyname{Property}
-\def\propositionname{Proposition}
-\def\questionname{Question}
-\def\remarkname{Remark}
-\def\seename{see}
-\def\solutionname{Solution}
-\def\subclassname{{\it Subject Classifications\/}:}
-\def\tablename{Table}
-\def\theoremname{Theorem}}
-\switcht@albion
-% Names of theorem like environments are already defined
-% but must be translated if another language is chosen
-%
-% French section
-\def\switcht@francais{%\typeout{On parle francais.}%
- \def\abstractname{R\'esum\'e.}%
- \def\ackname{Remerciements.}%
- \def\andname{et}%
- \def\lastandname{ et}%
- \def\appendixname{Appendice}
- \def\chaptername{Chapitre}%
- \def\claimname{Pr\'etention}%
- \def\conjecturename{Hypoth\`ese}%
- \def\contentsname{Table des mati\`eres}%
- \def\corollaryname{Corollaire}%
- \def\definitionname{D\'efinition}%
- \def\examplename{Exemple}%
- \def\exercisename{Exercice}%
- \def\figurename{Fig.}%
- \def\keywordname{{\bf Mots-cl\'e:}}
- \def\indexname{Index}
- \def\lemmaname{Lemme}%
- \def\contriblistname{Liste des contributeurs}
- \def\listfigurename{Liste des figures}%
- \def\listtablename{Liste des tables}%
- \def\mailname{{\it Correspondence to\/}:}
- \def\noteaddname{Note ajout\'ee \`a l'\'epreuve}%
- \def\notename{Remarque}%
- \def\partname{Partie}%
- \def\problemname{Probl\`eme}%
- \def\proofname{Preuve}%
- \def\propertyname{Caract\'eristique}%
-%\def\propositionname{Proposition}%
- \def\questionname{Question}%
- \def\remarkname{Remarque}%
- \def\seename{voir}
- \def\solutionname{Solution}%
- \def\subclassname{{\it Subject Classifications\/}:}
- \def\tablename{Tableau}%
- \def\theoremname{Th\'eor\`eme}%
-}
-%
-% German section
-\def\switcht@deutsch{%\typeout{Man spricht deutsch.}%
- \def\abstractname{Zusammenfassung.}%
- \def\ackname{Danksagung.}%
- \def\andname{und}%
- \def\lastandname{ und}%
- \def\appendixname{Anhang}%
- \def\chaptername{Kapitel}%
- \def\claimname{Behauptung}%
- \def\conjecturename{Hypothese}%
- \def\contentsname{Inhaltsverzeichnis}%
- \def\corollaryname{Korollar}%
-%\def\definitionname{Definition}%
- \def\examplename{Beispiel}%
- \def\exercisename{\"Ubung}%
- \def\figurename{Abb.}%
- \def\keywordname{{\bf Schl\"usselw\"orter:}}
- \def\indexname{Index}
-%\def\lemmaname{Lemma}%
- \def\contriblistname{Mitarbeiter}
- \def\listfigurename{Abbildungsverzeichnis}%
- \def\listtablename{Tabellenverzeichnis}%
- \def\mailname{{\it Correspondence to\/}:}
- \def\noteaddname{Nachtrag}%
- \def\notename{Anmerkung}%
- \def\partname{Teil}%
-%\def\problemname{Problem}%
- \def\proofname{Beweis}%
- \def\propertyname{Eigenschaft}%
-%\def\propositionname{Proposition}%
- \def\questionname{Frage}%
- \def\remarkname{Anmerkung}%
- \def\seename{siehe}
- \def\solutionname{L\"osung}%
- \def\subclassname{{\it Subject Classifications\/}:}
- \def\tablename{Tabelle}%
-%\def\theoremname{Theorem}%
-}
-
-% Ragged bottom for the actual page
-\def\thisbottomragged{\def\@textbottom{\vskip\z@ plus.0001fil
-\global\let\@textbottom\relax}}
-
-\renewcommand\small{%
-   \@setfontsize\small\@ixpt{11}%
-   \abovedisplayskip 8.5\p@ \@plus3\p@ \@minus4\p@
-   \abovedisplayshortskip \z@ \@plus2\p@
-   \belowdisplayshortskip 4\p@ \@plus2\p@ \@minus2\p@
-   \def\@listi{\leftmargin\leftmargini
-               \parsep 0\p@ \@plus1\p@ \@minus\p@
-               \topsep 8\p@ \@plus2\p@ \@minus4\p@
-               \itemsep0\p@}%
-   \belowdisplayskip \abovedisplayskip
-}
-
-\frenchspacing
-\widowpenalty=10000
-\clubpenalty=10000
-
-\setlength\oddsidemargin   {63\p@}
-\setlength\evensidemargin  {63\p@}
-\setlength\marginparwidth  {90\p@}
-
-\setlength\headsep   {16\p@}
-
-\setlength\footnotesep{7.7\p@}
-\setlength\textfloatsep{8mm\@plus 2\p@ \@minus 4\p@}
-\setlength\intextsep   {8mm\@plus 2\p@ \@minus 2\p@}
-
-\setcounter{secnumdepth}{2}
-
-\newcounter {chapter}
-\renewcommand\thechapter      {\@arabic\c@chapter}
-
-\newif\if@mainmatter \@mainmattertrue
-\newcommand\frontmatter{\cleardoublepage
-            \@mainmatterfalse\pagenumbering{Roman}}
-\newcommand\mainmatter{\cleardoublepage
-       \@mainmattertrue\pagenumbering{arabic}}
-\newcommand\backmatter{\if@openright\cleardoublepage\else\clearpage\fi
-      \@mainmatterfalse}
-
-\renewcommand\part{\cleardoublepage
-                 \thispagestyle{empty}%
-                 \if@twocolumn
-                     \onecolumn
-                     \@tempswatrue
-                   \else
-                     \@tempswafalse
-                 \fi
-                 \null\vfil
-                 \secdef\@part\@spart}
-
-\def\@part[#1]#2{%
-    \ifnum \c@secnumdepth >-2\relax
-      \refstepcounter{part}%
-      \addcontentsline{toc}{part}{\thepart\hspace{1em}#1}%
-    \else
-      \addcontentsline{toc}{part}{#1}%
-    \fi
-    \markboth{}{}%
-    {\centering
-     \interlinepenalty \@M
-     \normalfont
-     \ifnum \c@secnumdepth >-2\relax
-       \huge\bfseries \partname~\thepart
-       \par
-       \vskip 20\p@
-     \fi
-     \Huge \bfseries #2\par}%
-    \@endpart}
-\def\@spart#1{%
-    {\centering
-     \interlinepenalty \@M
-     \normalfont
-     \Huge \bfseries #1\par}%
-    \@endpart}
-\def\@endpart{\vfil\newpage
-              \if@twoside
-                \null
-                \thispagestyle{empty}%
-                \newpage
-              \fi
-              \if@tempswa
-                \twocolumn
-              \fi}
-
-\newcommand\chapter{\clearpage
-                    \thispagestyle{empty}%
-                    \global\@topnum\z@
-                    \@afterindentfalse
-                    \secdef\@chapter\@schapter}
-\def\@chapter[#1]#2{\ifnum \c@secnumdepth >\m@ne
-                       \if@mainmatter
-                         \refstepcounter{chapter}%
-                         \typeout{\@chapapp\space\thechapter.}%
-                         \addcontentsline{toc}{chapter}%
-                                  {\protect\numberline{\thechapter}#1}%
-                       \else
-                         \addcontentsline{toc}{chapter}{#1}%
-                       \fi
-                    \else
-                      \addcontentsline{toc}{chapter}{#1}%
-                    \fi
-                    \chaptermark{#1}%
-                    \addtocontents{lof}{\protect\addvspace{10\p@}}%
-                    \addtocontents{lot}{\protect\addvspace{10\p@}}%
-                    \if@twocolumn
-                      \@topnewpage[\@makechapterhead{#2}]%
-                    \else
-                      \@makechapterhead{#2}%
-                      \@afterheading
-                    \fi}
-\def\@makechapterhead#1{%
-% \vspace*{50\p@}%
-  {\centering
-    \ifnum \c@secnumdepth >\m@ne
-      \if@mainmatter
-        \large\bfseries \@chapapp{} \thechapter
-        \par\nobreak
-        \vskip 20\p@
-      \fi
-    \fi
-    \interlinepenalty\@M
-    \Large \bfseries #1\par\nobreak
-    \vskip 40\p@
-  }}
-\def\@schapter#1{\if@twocolumn
-                   \@topnewpage[\@makeschapterhead{#1}]%
-                 \else
-                   \@makeschapterhead{#1}%
-                   \@afterheading
-                 \fi}
-\def\@makeschapterhead#1{%
-% \vspace*{50\p@}%
-  {\centering
-    \normalfont
-    \interlinepenalty\@M
-    \Large \bfseries  #1\par\nobreak
-    \vskip 40\p@
-  }}
-
-\renewcommand\section{\@startsection{section}{1}{\z@}%
-                       {-18\p@ \@plus -4\p@ \@minus -4\p@}%
-                       {12\p@ \@plus 4\p@ \@minus 4\p@}%
-                       {\normalfont\large\bfseries\boldmath
-                        \rightskip=\z@ \@plus 8em\pretolerance=10000 }}
-\renewcommand\subsection{\@startsection{subsection}{2}{\z@}%
-                       {-18\p@ \@plus -4\p@ \@minus -4\p@}%
-                       {8\p@ \@plus 4\p@ \@minus 4\p@}%
-                       {\normalfont\normalsize\bfseries\boldmath
-                        \rightskip=\z@ \@plus 8em\pretolerance=10000 }}
-\renewcommand\subsubsection{\@startsection{subsubsection}{3}{\z@}%
-                       {-18\p@ \@plus -4\p@ \@minus -4\p@}%
-                       {-0.5em \@plus -0.22em \@minus -0.1em}%
-                       {\normalfont\normalsize\bfseries\boldmath}}
-\renewcommand\paragraph{\@startsection{paragraph}{4}{\z@}%
-                       {-12\p@ \@plus -4\p@ \@minus -4\p@}%
-                       {-0.5em \@plus -0.22em \@minus -0.1em}%
-                       {\normalfont\normalsize\itshape}}
-\renewcommand\subparagraph[1]{\typeout{LLNCS warning: You should not use
-                  \string\subparagraph\space with this class}\vskip0.5cm
-You should not use \verb|\subparagraph| with this class.\vskip0.5cm}
-
-\DeclareMathSymbol{\Gamma}{\mathalpha}{letters}{"00}
-\DeclareMathSymbol{\Delta}{\mathalpha}{letters}{"01}
-\DeclareMathSymbol{\Theta}{\mathalpha}{letters}{"02}
-\DeclareMathSymbol{\Lambda}{\mathalpha}{letters}{"03}
-\DeclareMathSymbol{\Xi}{\mathalpha}{letters}{"04}
-\DeclareMathSymbol{\Pi}{\mathalpha}{letters}{"05}
-\DeclareMathSymbol{\Sigma}{\mathalpha}{letters}{"06}
-\DeclareMathSymbol{\Upsilon}{\mathalpha}{letters}{"07}
-\DeclareMathSymbol{\Phi}{\mathalpha}{letters}{"08}
-\DeclareMathSymbol{\Psi}{\mathalpha}{letters}{"09}
-\DeclareMathSymbol{\Omega}{\mathalpha}{letters}{"0A}
-
-\let\footnotesize\small
-
-\if@custvec
-\def\vec#1{\mathchoice{\mbox{\boldmath$\displaystyle#1$}}
-{\mbox{\boldmath$\textstyle#1$}}
-{\mbox{\boldmath$\scriptstyle#1$}}
-{\mbox{\boldmath$\scriptscriptstyle#1$}}}
-\fi
-
-\def\squareforqed{\hbox{\rlap{$\sqcap$}$\sqcup$}}
-\def\qed{\ifmmode\squareforqed\else{\unskip\nobreak\hfil
-\penalty50\hskip1em\null\nobreak\hfil\squareforqed
-\parfillskip=0pt\finalhyphendemerits=0\endgraf}\fi}
-
-\def\getsto{\mathrel{\mathchoice {\vcenter{\offinterlineskip
-\halign{\hfil
-$\displaystyle##$\hfil\cr\gets\cr\to\cr}}}
-{\vcenter{\offinterlineskip\halign{\hfil$\textstyle##$\hfil\cr\gets
-\cr\to\cr}}}
-{\vcenter{\offinterlineskip\halign{\hfil$\scriptstyle##$\hfil\cr\gets
-\cr\to\cr}}}
-{\vcenter{\offinterlineskip\halign{\hfil$\scriptscriptstyle##$\hfil\cr
-\gets\cr\to\cr}}}}}
-\def\lid{\mathrel{\mathchoice {\vcenter{\offinterlineskip\halign{\hfil
-$\displaystyle##$\hfil\cr<\cr\noalign{\vskip1.2pt}=\cr}}}
-{\vcenter{\offinterlineskip\halign{\hfil$\textstyle##$\hfil\cr<\cr
-\noalign{\vskip1.2pt}=\cr}}}
-{\vcenter{\offinterlineskip\halign{\hfil$\scriptstyle##$\hfil\cr<\cr
-\noalign{\vskip1pt}=\cr}}}
-{\vcenter{\offinterlineskip\halign{\hfil$\scriptscriptstyle##$\hfil\cr
-<\cr
-\noalign{\vskip0.9pt}=\cr}}}}}
-\def\gid{\mathrel{\mathchoice {\vcenter{\offinterlineskip\halign{\hfil
-$\displaystyle##$\hfil\cr>\cr\noalign{\vskip1.2pt}=\cr}}}
-{\vcenter{\offinterlineskip\halign{\hfil$\textstyle##$\hfil\cr>\cr
-\noalign{\vskip1.2pt}=\cr}}}
-{\vcenter{\offinterlineskip\halign{\hfil$\scriptstyle##$\hfil\cr>\cr
-\noalign{\vskip1pt}=\cr}}}
-{\vcenter{\offinterlineskip\halign{\hfil$\scriptscriptstyle##$\hfil\cr
->\cr
-\noalign{\vskip0.9pt}=\cr}}}}}
-\def\grole{\mathrel{\mathchoice {\vcenter{\offinterlineskip
-\halign{\hfil
-$\displaystyle##$\hfil\cr>\cr\noalign{\vskip-1pt}<\cr}}}
-{\vcenter{\offinterlineskip\halign{\hfil$\textstyle##$\hfil\cr
->\cr\noalign{\vskip-1pt}<\cr}}}
-{\vcenter{\offinterlineskip\halign{\hfil$\scriptstyle##$\hfil\cr
->\cr\noalign{\vskip-0.8pt}<\cr}}}
-{\vcenter{\offinterlineskip\halign{\hfil$\scriptscriptstyle##$\hfil\cr
->\cr\noalign{\vskip-0.3pt}<\cr}}}}}
-\def\bbbr{{\rm I\!R}} %reelle Zahlen
-\def\bbbm{{\rm I\!M}}
-\def\bbbn{{\rm I\!N}} %natuerliche Zahlen
-\def\bbbf{{\rm I\!F}}
-\def\bbbh{{\rm I\!H}}
-\def\bbbk{{\rm I\!K}}
-\def\bbbp{{\rm I\!P}}
-\def\bbbone{{\mathchoice {\rm 1\mskip-4mu l} {\rm 1\mskip-4mu l}
-{\rm 1\mskip-4.5mu l} {\rm 1\mskip-5mu l}}}
-\def\bbbc{{\mathchoice {\setbox0=\hbox{$\displaystyle\rm C$}\hbox{\hbox
-to0pt{\kern0.4\wd0\vrule height0.9\ht0\hss}\box0}}
-{\setbox0=\hbox{$\textstyle\rm C$}\hbox{\hbox
-to0pt{\kern0.4\wd0\vrule height0.9\ht0\hss}\box0}}
-{\setbox0=\hbox{$\scriptstyle\rm C$}\hbox{\hbox
-to0pt{\kern0.4\wd0\vrule height0.9\ht0\hss}\box0}}
-{\setbox0=\hbox{$\scriptscriptstyle\rm C$}\hbox{\hbox
-to0pt{\kern0.4\wd0\vrule height0.9\ht0\hss}\box0}}}}
-\def\bbbq{{\mathchoice {\setbox0=\hbox{$\displaystyle\rm
-Q$}\hbox{\raise
-0.15\ht0\hbox to0pt{\kern0.4\wd0\vrule height0.8\ht0\hss}\box0}}
-{\setbox0=\hbox{$\textstyle\rm Q$}\hbox{\raise
-0.15\ht0\hbox to0pt{\kern0.4\wd0\vrule height0.8\ht0\hss}\box0}}
-{\setbox0=\hbox{$\scriptstyle\rm Q$}\hbox{\raise
-0.15\ht0\hbox to0pt{\kern0.4\wd0\vrule height0.7\ht0\hss}\box0}}
-{\setbox0=\hbox{$\scriptscriptstyle\rm Q$}\hbox{\raise
-0.15\ht0\hbox to0pt{\kern0.4\wd0\vrule height0.7\ht0\hss}\box0}}}}
-\def\bbbt{{\mathchoice {\setbox0=\hbox{$\displaystyle\rm
-T$}\hbox{\hbox to0pt{\kern0.3\wd0\vrule height0.9\ht0\hss}\box0}}
-{\setbox0=\hbox{$\textstyle\rm T$}\hbox{\hbox
-to0pt{\kern0.3\wd0\vrule height0.9\ht0\hss}\box0}}
-{\setbox0=\hbox{$\scriptstyle\rm T$}\hbox{\hbox
-to0pt{\kern0.3\wd0\vrule height0.9\ht0\hss}\box0}}
-{\setbox0=\hbox{$\scriptscriptstyle\rm T$}\hbox{\hbox
-to0pt{\kern0.3\wd0\vrule height0.9\ht0\hss}\box0}}}}
-\def\bbbs{{\mathchoice
-{\setbox0=\hbox{$\displaystyle     \rm S$}\hbox{\raise0.5\ht0\hbox
-to0pt{\kern0.35\wd0\vrule height0.45\ht0\hss}\hbox
-to0pt{\kern0.55\wd0\vrule height0.5\ht0\hss}\box0}}
-{\setbox0=\hbox{$\textstyle        \rm S$}\hbox{\raise0.5\ht0\hbox
-to0pt{\kern0.35\wd0\vrule height0.45\ht0\hss}\hbox
-to0pt{\kern0.55\wd0\vrule height0.5\ht0\hss}\box0}}
-{\setbox0=\hbox{$\scriptstyle      \rm S$}\hbox{\raise0.5\ht0\hbox
-to0pt{\kern0.35\wd0\vrule height0.45\ht0\hss}\raise0.05\ht0\hbox
-to0pt{\kern0.5\wd0\vrule height0.45\ht0\hss}\box0}}
-{\setbox0=\hbox{$\scriptscriptstyle\rm S$}\hbox{\raise0.5\ht0\hbox
-to0pt{\kern0.4\wd0\vrule height0.45\ht0\hss}\raise0.05\ht0\hbox
-to0pt{\kern0.55\wd0\vrule height0.45\ht0\hss}\box0}}}}
-\def\bbbz{{\mathchoice {\hbox{$\mathsf\textstyle Z\kern-0.4em Z$}}
-{\hbox{$\mathsf\textstyle Z\kern-0.4em Z$}}
-{\hbox{$\mathsf\scriptstyle Z\kern-0.3em Z$}}
-{\hbox{$\mathsf\scriptscriptstyle Z\kern-0.2em Z$}}}}
-
-\let\ts\,
-
-\setlength\leftmargini  {17\p@}
-\setlength\leftmargin    {\leftmargini}
-\setlength\leftmarginii  {\leftmargini}
-\setlength\leftmarginiii {\leftmargini}
-\setlength\leftmarginiv  {\leftmargini}
-\setlength  \labelsep  {.5em}
-\setlength  \labelwidth{\leftmargini}
-\addtolength\labelwidth{-\labelsep}
-
-\def\@listI{\leftmargin\leftmargini
-            \parsep 0\p@ \@plus1\p@ \@minus\p@
-            \topsep 8\p@ \@plus2\p@ \@minus4\p@
-            \itemsep0\p@}
-\let\@listi\@listI
-\@listi
-\def\@listii {\leftmargin\leftmarginii
-              \labelwidth\leftmarginii
-              \advance\labelwidth-\labelsep
-              \topsep    0\p@ \@plus2\p@ \@minus\p@}
-\def\@listiii{\leftmargin\leftmarginiii
-              \labelwidth\leftmarginiii
-              \advance\labelwidth-\labelsep
-              \topsep    0\p@ \@plus\p@\@minus\p@
-              \parsep    \z@
-              \partopsep \p@ \@plus\z@ \@minus\p@}
-
-\renewcommand\labelitemi{\normalfont\bfseries --}
-\renewcommand\labelitemii{$\m@th\bullet$}
-
-\setlength\arraycolsep{1.4\p@}
-\setlength\tabcolsep{1.4\p@}
-
-\def\tableofcontents{\chapter*{\contentsname\@mkboth{{\contentsname}}%
-                                                    {{\contentsname}}}
- \def\authcount##1{\setcounter{auco}{##1}\setcounter{@auth}{1}}
- \def\lastand{\ifnum\value{auco}=2\relax
-                 \unskip{} \andname\
-              \else
-                 \unskip \lastandname\
-              \fi}%
- \def\and{\stepcounter{@auth}\relax
-          \ifnum\value{@auth}=\value{auco}%
-             \lastand
-          \else
-             \unskip,
-          \fi}%
- \@starttoc{toc}\if@restonecol\twocolumn\fi}
-
-\def\l@part#1#2{\addpenalty{\@secpenalty}%
-   \addvspace{2em plus\p@}%  % space above part line
-   \begingroup
-     \parindent \z@
-     \rightskip \z@ plus 5em
-     \hrule\vskip5pt
-     \large               % same size as for a contribution heading
-     \bfseries\boldmath   % set line in boldface
-     \leavevmode          % TeX command to enter horizontal mode.
-     #1\par
-     \vskip5pt
-     \hrule
-     \vskip1pt
-     \nobreak             % Never break after part entry
-   \endgroup}
-
-\def\@dotsep{2}
-
-\let\phantomsection=\relax
-
-\def\hyperhrefextend{\ifx\hyper@anchor\@undefined\else
-{}\fi}
-
-\def\addnumcontentsmark#1#2#3{%
-\addtocontents{#1}{\protect\contentsline{#2}{\protect\numberline
-                     {\thechapter}#3}{\thepage}\hyperhrefextend}}%
-\def\addcontentsmark#1#2#3{%
-\addtocontents{#1}{\protect\contentsline{#2}{#3}{\thepage}\hyperhrefextend}}%
-\def\addcontentsmarkwop#1#2#3{%
-\addtocontents{#1}{\protect\contentsline{#2}{#3}{0}\hyperhrefextend}}%
-
-\def\@adcmk[#1]{\ifcase #1 \or
-\def\@gtempa{\addnumcontentsmark}%
-  \or    \def\@gtempa{\addcontentsmark}%
-  \or    \def\@gtempa{\addcontentsmarkwop}%
-  \fi\@gtempa{toc}{chapter}%
-}
-\def\addtocmark{%
-\phantomsection
-\@ifnextchar[{\@adcmk}{\@adcmk[3]}%
-}
-
-\def\l@chapter#1#2{\addpenalty{-\@highpenalty}
- \vskip 1.0em plus 1pt \@tempdima 1.5em \begingroup
- \parindent \z@ \rightskip \@tocrmarg
- \advance\rightskip by 0pt plus 2cm
- \parfillskip -\rightskip \pretolerance=10000
- \leavevmode \advance\leftskip\@tempdima \hskip -\leftskip
- {\large\bfseries\boldmath#1}\ifx0#2\hfil\null
- \else
-      \nobreak
-      \leaders\hbox{$\m@th \mkern \@dotsep mu.\mkern
-      \@dotsep mu$}\hfill
-      \nobreak\hbox to\@pnumwidth{\hss #2}%
- \fi\par
- \penalty\@highpenalty \endgroup}
-
-\def\l@title#1#2{\addpenalty{-\@highpenalty}
- \addvspace{8pt plus 1pt}
- \@tempdima \z@
- \begingroup
- \parindent \z@ \rightskip \@tocrmarg
- \advance\rightskip by 0pt plus 2cm
- \parfillskip -\rightskip \pretolerance=10000
- \leavevmode \advance\leftskip\@tempdima \hskip -\leftskip
- #1\nobreak
- \leaders\hbox{$\m@th \mkern \@dotsep mu.\mkern
- \@dotsep mu$}\hfill
- \nobreak\hbox to\@pnumwidth{\hss #2}\par
- \penalty\@highpenalty \endgroup}
-
-\def\l@author#1#2{\addpenalty{\@highpenalty}
- \@tempdima=15\p@ %\z@
- \begingroup
- \parindent \z@ \rightskip \@tocrmarg
- \advance\rightskip by 0pt plus 2cm
- \pretolerance=10000
- \leavevmode \advance\leftskip\@tempdima %\hskip -\leftskip
- \textit{#1}\par
- \penalty\@highpenalty \endgroup}
-
-\setcounter{tocdepth}{0}
-\newdimen\tocchpnum
-\newdimen\tocsecnum
-\newdimen\tocsectotal
-\newdimen\tocsubsecnum
-\newdimen\tocsubsectotal
-\newdimen\tocsubsubsecnum
-\newdimen\tocsubsubsectotal
-\newdimen\tocparanum
-\newdimen\tocparatotal
-\newdimen\tocsubparanum
-\tocchpnum=\z@            % no chapter numbers
-\tocsecnum=15\p@          % section 88. plus 2.222pt
-\tocsubsecnum=23\p@       % subsection 88.8 plus 2.222pt
-\tocsubsubsecnum=27\p@    % subsubsection 88.8.8 plus 1.444pt
-\tocparanum=35\p@         % paragraph 88.8.8.8 plus 1.666pt
-\tocsubparanum=43\p@      % subparagraph 88.8.8.8.8 plus 1.888pt
-\def\calctocindent{%
-\tocsectotal=\tocchpnum
-\advance\tocsectotal by\tocsecnum
-\tocsubsectotal=\tocsectotal
-\advance\tocsubsectotal by\tocsubsecnum
-\tocsubsubsectotal=\tocsubsectotal
-\advance\tocsubsubsectotal by\tocsubsubsecnum
-\tocparatotal=\tocsubsubsectotal
-\advance\tocparatotal by\tocparanum}
-\calctocindent
-
-\def\l@section{\@dottedtocline{1}{\tocchpnum}{\tocsecnum}}
-\def\l@subsection{\@dottedtocline{2}{\tocsectotal}{\tocsubsecnum}}
-\def\l@subsubsection{\@dottedtocline{3}{\tocsubsectotal}{\tocsubsubsecnum}}
-\def\l@paragraph{\@dottedtocline{4}{\tocsubsubsectotal}{\tocparanum}}
-\def\l@subparagraph{\@dottedtocline{5}{\tocparatotal}{\tocsubparanum}}
-
-\def\listoffigures{\@restonecolfalse\if@twocolumn\@restonecoltrue\onecolumn
- \fi\section*{\listfigurename\@mkboth{{\listfigurename}}{{\listfigurename}}}
- \@starttoc{lof}\if@restonecol\twocolumn\fi}
-\def\l@figure{\@dottedtocline{1}{0em}{1.5em}}
-
-\def\listoftables{\@restonecolfalse\if@twocolumn\@restonecoltrue\onecolumn
- \fi\section*{\listtablename\@mkboth{{\listtablename}}{{\listtablename}}}
- \@starttoc{lot}\if@restonecol\twocolumn\fi}
-\let\l@table\l@figure
-
-\renewcommand\listoffigures{%
-    \section*{\listfigurename
-      \@mkboth{\listfigurename}{\listfigurename}}%
-    \@starttoc{lof}%
-    }
-
-\renewcommand\listoftables{%
-    \section*{\listtablename
-      \@mkboth{\listtablename}{\listtablename}}%
-    \@starttoc{lot}%
-    }
-
-\ifx\oribibl\undefined
-\ifx\citeauthoryear\undefined
-\renewenvironment{thebibliography}[1]
-     {\section*{\refname}
-      \def\@biblabel##1{##1.}
-      \small
-      \list{\@biblabel{\@arabic\c@enumiv}}%
-           {\settowidth\labelwidth{\@biblabel{#1}}%
-            \leftmargin\labelwidth
-            \advance\leftmargin\labelsep
-            \if@openbib
-              \advance\leftmargin\bibindent
-              \itemindent -\bibindent
-              \listparindent \itemindent
-              \parsep \z@
-            \fi
-            \usecounter{enumiv}%
-            \let\p@enumiv\@empty
-            \renewcommand\theenumiv{\@arabic\c@enumiv}}%
-      \if@openbib
-        \renewcommand\newblock{\par}%
-      \else
-        \renewcommand\newblock{\hskip .11em \@plus.33em \@minus.07em}%
-      \fi
-      \sloppy\clubpenalty4000\widowpenalty4000%
-      \sfcode`\.=\@m}
-     {\def\@noitemerr
-       {\@latex@warning{Empty `thebibliography' environment}}%
-      \endlist}
-\def\@lbibitem[#1]#2{\item[{[#1]}\hfill]\if@filesw
-     {\let\protect\noexpand\immediate
-     \write\@auxout{\string\bibcite{#2}{#1}}}\fi\ignorespaces}
-\newcount\@tempcntc
-\def\@citex[#1]#2{\if@filesw\immediate\write\@auxout{\string\citation{#2}}\fi
-  \@tempcnta\z@\@tempcntb\m@ne\def\@citea{}\@cite{\@for\@citeb:=#2\do
-    {\@ifundefined
-       {b@\@citeb}{\@citeo\@tempcntb\m@ne\@citea\def\@citea{,}{\bfseries
-        ?}\@warning
-       {Citation `\@citeb' on page \thepage \space undefined}}%
-    {\setbox\z@\hbox{\global\@tempcntc0\csname b@\@citeb\endcsname\relax}%
-     \ifnum\@tempcntc=\z@ \@citeo\@tempcntb\m@ne
-       \@citea\def\@citea{,}\hbox{\csname b@\@citeb\endcsname}%
-     \else
-      \advance\@tempcntb\@ne
-      \ifnum\@tempcntb=\@tempcntc
-      \else\advance\@tempcntb\m@ne\@citeo
-      \@tempcnta\@tempcntc\@tempcntb\@tempcntc\fi\fi}}\@citeo}{#1}}
-\def\@citeo{\ifnum\@tempcnta>\@tempcntb\else
-               \@citea\def\@citea{,\,\hskip\z@skip}%
-               \ifnum\@tempcnta=\@tempcntb\the\@tempcnta\else
-               {\advance\@tempcnta\@ne\ifnum\@tempcnta=\@tempcntb \else
-                \def\@citea{--}\fi
-      \advance\@tempcnta\m@ne\the\@tempcnta\@citea\the\@tempcntb}\fi\fi}
-\else
-\renewenvironment{thebibliography}[1]
-     {\section*{\refname}
-      \small
-      \list{}%
-           {\settowidth\labelwidth{}%
-            \leftmargin\parindent
-            \itemindent=-\parindent
-            \labelsep=\z@
-            \if@openbib
-              \advance\leftmargin\bibindent
-              \itemindent -\bibindent
-              \listparindent \itemindent
-              \parsep \z@
-            \fi
-            \usecounter{enumiv}%
-            \let\p@enumiv\@empty
-            \renewcommand\theenumiv{}}%
-      \if@openbib
-        \renewcommand\newblock{\par}%
-      \else
-        \renewcommand\newblock{\hskip .11em \@plus.33em \@minus.07em}%
-      \fi
-      \sloppy\clubpenalty4000\widowpenalty4000%
-      \sfcode`\.=\@m}
-     {\def\@noitemerr
-       {\@latex@warning{Empty `thebibliography' environment}}%
-      \endlist}
-      \def\@cite#1{#1}%
-      \def\@lbibitem[#1]#2{\item[]\if@filesw
-        {\def\protect##1{\string ##1\space}\immediate
-      \write\@auxout{\string\bibcite{#2}{#1}}}\fi\ignorespaces}
-   \fi
-\else
-\@cons\@openbib@code{\noexpand\small}
-\fi
-
-\def\idxquad{\hskip 10\p@}% space that divides entry from number
-
-\def\@idxitem{\par\hangindent 10\p@}
-
-\def\subitem{\par\setbox0=\hbox{--\enspace}% second order
-                \noindent\hangindent\wd0\box0}% index entry
-
-\def\subsubitem{\par\setbox0=\hbox{--\,--\enspace}% third
-                \noindent\hangindent\wd0\box0}% order index entry
-
-\def\indexspace{\par \vskip 10\p@ plus5\p@ minus3\p@\relax}
-
-\renewenvironment{theindex}
-               {\@mkboth{\indexname}{\indexname}%
-                \thispagestyle{empty}\parindent\z@
-                \parskip\z@ \@plus .3\p@\relax
-                \let\item\par
-                \def\,{\relax\ifmmode\mskip\thinmuskip
-                             \else\hskip0.2em\ignorespaces\fi}%
-                \normalfont\small
-                \begin{multicols}{2}[\@makeschapterhead{\indexname}]%
-                }
-                {\end{multicols}}
-
-\renewcommand\footnoterule{%
-  \kern-3\p@
-  \hrule\@width 2truecm
-  \kern2.6\p@}
-  \newdimen\fnindent
-  \fnindent1em
-\long\def\@makefntext#1{%
-    \parindent \fnindent%
-    \leftskip \fnindent%
-    \noindent
-    \llap{\hb@xt@1em{\hss\@makefnmark\ }}\ignorespaces#1}
-
-\long\def\@makecaption#1#2{%
-  \small
-  \vskip\abovecaptionskip
-  \sbox\@tempboxa{{\bfseries #1.} #2}%
-  \ifdim \wd\@tempboxa >\hsize
-    {\bfseries #1.} #2\par
-  \else
-    \global \@minipagefalse
-    \hb@xt@\hsize{\hfil\box\@tempboxa\hfil}%
-  \fi
-  \vskip\belowcaptionskip}
-
-\def\fps@figure{htbp}
-\def\fnum@figure{\figurename\thinspace\thefigure}
-\def \@floatboxreset {%
-        \reset@font
-        \small
-        \@setnobreak
-        \@setminipage
-}
-\def\fps@table{htbp}
-\def\fnum@table{\tablename~\thetable}
-\renewenvironment{table}
-               {\setlength\abovecaptionskip{0\p@}%
-                \setlength\belowcaptionskip{10\p@}%
-                \@float{table}}
-               {\end@float}
-\renewenvironment{table*}
-               {\setlength\abovecaptionskip{0\p@}%
-                \setlength\belowcaptionskip{10\p@}%
-                \@dblfloat{table}}
-               {\end@dblfloat}
-
-\long\def\@caption#1[#2]#3{\par\addcontentsline{\csname
-  ext@#1\endcsname}{#1}{\protect\numberline{\csname
-  the#1\endcsname}{\ignorespaces #2}}\begingroup
-    \@parboxrestore
-    \@makecaption{\csname fnum@#1\endcsname}{\ignorespaces #3}\par
-  \endgroup}
-
-% LaTeX does not provide a command to enter the authors institute
-% addresses. The \institute command is defined here.
-
-\newcounter{@inst}
-\newcounter{@auth}
-\newcounter{auco}
-\newdimen\instindent
-\newbox\authrun
-\newtoks\authorrunning
-\newtoks\tocauthor
-\newbox\titrun
-\newtoks\titlerunning
-\newtoks\toctitle
-
-\def\clearheadinfo{\gdef\@author{No Author Given}%
-                   \gdef\@title{No Title Given}%
-                   \gdef\@subtitle{}%
-                   \gdef\@institute{No Institute Given}%
-                   \gdef\@thanks{}%
-                   \global\titlerunning={}\global\authorrunning={}%
-                   \global\toctitle={}\global\tocauthor={}}
-
-\def\institute#1{\gdef\@institute{#1}}
-
-\def\institutename{\par
- \begingroup
- \parskip=\z@
- \parindent=\z@
- \setcounter{@inst}{1}%
- \def\and{\par\stepcounter{@inst}%
- \noindent$^{\the@inst}$\enspace\ignorespaces}%
- \setbox0=\vbox{\def\thanks##1{}\@institute}%
- \ifnum\c@@inst=1\relax
-   \gdef\fnnstart{0}%
- \else
-   \xdef\fnnstart{\c@@inst}%
-   \setcounter{@inst}{1}%
-   \noindent$^{\the@inst}$\enspace
- \fi
- \ignorespaces
- \@institute\par
- \endgroup}
-
-\def\@fnsymbol#1{\ensuremath{\ifcase#1\or\star\or{\star\star}\or
-   {\star\star\star}\or \dagger\or \ddagger\or
-   \mathchar "278\or \mathchar "27B\or \|\or **\or \dagger\dagger
-   \or \ddagger\ddagger \else\@ctrerr\fi}}
-
-\def\inst#1{\unskip$^{#1}$}
-\def\fnmsep{\unskip$^,$}
-\def\email#1{{\tt#1}}
-\AtBeginDocument{\@ifundefined{url}{\def\url#1{#1}}{}%
-\@ifpackageloaded{babel}{%
-\@ifundefined{extrasenglish}{}{\addto\extrasenglish{\switcht@albion}}%
-\@ifundefined{extrasfrenchb}{}{\addto\extrasfrenchb{\switcht@francais}}%
-\@ifundefined{extrasgerman}{}{\addto\extrasgerman{\switcht@deutsch}}%
-}{\switcht@@therlang}%
-\providecommand{\keywords}[1]{\par\addvspace\baselineskip
-\noindent\keywordname\enspace\ignorespaces#1}%
-}
-\def\homedir{\~{ }}
-
-\def\subtitle#1{\gdef\@subtitle{#1}}
-\clearheadinfo
-%
-%%% to avoid hyperref warnings
-\providecommand*{\toclevel@author}{999}
-%%% to make title-entry parent of section-entries
-\providecommand*{\toclevel@title}{0}
-%
-\renewcommand\maketitle{\newpage
-\phantomsection
-  \refstepcounter{chapter}%
-  \stepcounter{section}%
-  \setcounter{section}{0}%
-  \setcounter{subsection}{0}%
-  \setcounter{figure}{0}
-  \setcounter{table}{0}
-  \setcounter{equation}{0}
-  \setcounter{footnote}{0}%
-  \begingroup
-    \parindent=\z@
-    \renewcommand\thefootnote{\@fnsymbol\c@footnote}%
-    \if@twocolumn
-      \ifnum \col@number=\@ne
-        \@maketitle
-      \else
-        \twocolumn[\@maketitle]%
-      \fi
-    \else
-      \newpage
-      \global\@topnum\z@   % Prevents figures from going at top of page.
-      \@maketitle
-    \fi
-    \thispagestyle{empty}\@thanks
-%
-    \def\\{\unskip\ \ignorespaces}\def\inst##1{\unskip{}}%
-    \def\thanks##1{\unskip{}}\def\fnmsep{\unskip}%
-    \instindent=\hsize
-    \advance\instindent by-\headlineindent
-    \if!\the\toctitle!\addcontentsline{toc}{title}{\@title}\else
-       \addcontentsline{toc}{title}{\the\toctitle}\fi
-    \if@runhead
-       \if!\the\titlerunning!\else
-         \edef\@title{\the\titlerunning}%
-       \fi
-       \global\setbox\titrun=\hbox{\small\rm\unboldmath\ignorespaces\@title}%
-       \ifdim\wd\titrun>\instindent
-          \typeout{Title too long for running head. Please supply}%
-          \typeout{a shorter form with \string\titlerunning\space prior to
-                   \string\maketitle}%
-          \global\setbox\titrun=\hbox{\small\rm
-          Title Suppressed Due to Excessive Length}%
-       \fi
-       \xdef\@title{\copy\titrun}%
-    \fi
-%
-    \if!\the\tocauthor!\relax
-      {\def\and{\noexpand\protect\noexpand\and}%
-      \protected@xdef\toc@uthor{\@author}}%
-    \else
-      \def\\{\noexpand\protect\noexpand\newline}%
-      \protected@xdef\scratch{\the\tocauthor}%
-      \protected@xdef\toc@uthor{\scratch}%
-    \fi
-    \addtocontents{toc}{\noexpand\protect\noexpand\authcount{\the\c@auco}}%
-    \addcontentsline{toc}{author}{\toc@uthor}%
-    \if@runhead
-       \if!\the\authorrunning!
-         \value{@inst}=\value{@auth}%
-         \setcounter{@auth}{1}%
-       \else
-         \edef\@author{\the\authorrunning}%
-       \fi
-       \global\setbox\authrun=\hbox{\small\unboldmath\@author\unskip}%
-       \ifdim\wd\authrun>\instindent
-          \typeout{Names of authors too long for running head. Please supply}%
-          \typeout{a shorter form with \string\authorrunning\space prior to
-                   \string\maketitle}%
-          \global\setbox\authrun=\hbox{\small\rm
-          Authors Suppressed Due to Excessive Length}%
-       \fi
-       \xdef\@author{\copy\authrun}%
-       \markboth{\@author}{\@title}%
-     \fi
-  \endgroup
-  \setcounter{footnote}{\fnnstart}%
-  \clearheadinfo}
-%
-\def\@maketitle{\newpage
- \markboth{}{}%
- \def\lastand{\ifnum\value{@inst}=2\relax
-                 \unskip{} \andname\
-              \else
-                 \unskip \lastandname\
-              \fi}%
- \def\and{\stepcounter{@auth}\relax
-          \ifnum\value{@auth}=\value{@inst}%
-             \lastand
-          \else
-             \unskip,
-          \fi}%
- \begin{center}%
- \let\newline\\
- {\Large \bfseries\boldmath
-  \pretolerance=10000
-  \@title \par}\vskip .8cm
-\if!\@subtitle!\else {\large \bfseries\boldmath
-  \vskip -.65cm
-  \pretolerance=10000
-  \@subtitle \par}\vskip .8cm\fi
- \setbox0=\vbox{\setcounter{@auth}{1}\def\and{\stepcounter{@auth}}%
- \def\thanks##1{}\@author}%
- \global\value{@inst}=\value{@auth}%
- \global\value{auco}=\value{@auth}%
- \setcounter{@auth}{1}%
-{\lineskip .5em
-\noindent\ignorespaces
-\@author\vskip.35cm}
- {\small\institutename}
- \end{center}%
- }
-
-% definition of the "\spnewtheorem" command.
-%
-% Usage:
-%
-%     \spnewtheorem{env_nam}{caption}[within]{cap_font}{body_font}
-% or  \spnewtheorem{env_nam}[numbered_like]{caption}{cap_font}{body_font}
-% or  \spnewtheorem*{env_nam}{caption}{cap_font}{body_font}
-%
-% New is "cap_font" and "body_font". It stands for
-% fontdefinition of the caption and the text itself.
-%
-% "\spnewtheorem*" gives a theorem without number.
-%
-% A defined spnewthoerem environment is used as described
-% by Lamport.
-%
-%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-
-\def\@thmcountersep{}
-\def\@thmcounterend{.}
-
-\def\spnewtheorem{\@ifstar{\@sthm}{\@Sthm}}
-
-% definition of \spnewtheorem with number
-
-\def\@spnthm#1#2{%
-  \@ifnextchar[{\@spxnthm{#1}{#2}}{\@spynthm{#1}{#2}}}
-\def\@Sthm#1{\@ifnextchar[{\@spothm{#1}}{\@spnthm{#1}}}
-
-\def\@spxnthm#1#2[#3]#4#5{\expandafter\@ifdefinable\csname #1\endcsname
-   {\@definecounter{#1}\@addtoreset{#1}{#3}%
-   \expandafter\xdef\csname the#1\endcsname{\expandafter\noexpand
-     \csname the#3\endcsname \noexpand\@thmcountersep \@thmcounter{#1}}%
-   \expandafter\xdef\csname #1name\endcsname{#2}%
-   \global\@namedef{#1}{\@spthm{#1}{\csname #1name\endcsname}{#4}{#5}}%
-                              \global\@namedef{end#1}{\@endtheorem}}}
-
-\def\@spynthm#1#2#3#4{\expandafter\@ifdefinable\csname #1\endcsname
-   {\@definecounter{#1}%
-   \expandafter\xdef\csname the#1\endcsname{\@thmcounter{#1}}%
-   \expandafter\xdef\csname #1name\endcsname{#2}%
-   \global\@namedef{#1}{\@spthm{#1}{\csname #1name\endcsname}{#3}{#4}}%
-                               \global\@namedef{end#1}{\@endtheorem}}}
-
-\def\@spothm#1[#2]#3#4#5{%
-  \@ifundefined{c@#2}{\@latexerr{No theorem environment `#2' defined}\@eha}%
-  {\expandafter\@ifdefinable\csname #1\endcsname
-  {\newaliascnt{#1}{#2}%
-  \expandafter\xdef\csname #1name\endcsname{#3}%
-  \global\@namedef{#1}{\@spthm{#1}{\csname #1name\endcsname}{#4}{#5}}%
-  \global\@namedef{end#1}{\@endtheorem}}}}
-
-\def\@spthm#1#2#3#4{\topsep 7\p@ \@plus2\p@ \@minus4\p@
-\refstepcounter{#1}%
-\@ifnextchar[{\@spythm{#1}{#2}{#3}{#4}}{\@spxthm{#1}{#2}{#3}{#4}}}
-
-\def\@spxthm#1#2#3#4{\@spbegintheorem{#2}{\csname the#1\endcsname}{#3}{#4}%
-                    \ignorespaces}
-
-\def\@spythm#1#2#3#4[#5]{\@spopargbegintheorem{#2}{\csname
-       the#1\endcsname}{#5}{#3}{#4}\ignorespaces}
-
-\def\@spbegintheorem#1#2#3#4{\trivlist
-                 \item[\hskip\labelsep{#3#1\ #2\@thmcounterend}]#4}
-
-\def\@spopargbegintheorem#1#2#3#4#5{\trivlist
-      \item[\hskip\labelsep{#4#1\ #2}]{#4(#3)\@thmcounterend\ }#5}
-
-% definition of \spnewtheorem* without number
-
-\def\@sthm#1#2{\@Ynthm{#1}{#2}}
-
-\def\@Ynthm#1#2#3#4{\expandafter\@ifdefinable\csname #1\endcsname
-   {\global\@namedef{#1}{\@Thm{\csname #1name\endcsname}{#3}{#4}}%
-    \expandafter\xdef\csname #1name\endcsname{#2}%
-    \global\@namedef{end#1}{\@endtheorem}}}
-
-\def\@Thm#1#2#3{\topsep 7\p@ \@plus2\p@ \@minus4\p@
-\@ifnextchar[{\@Ythm{#1}{#2}{#3}}{\@Xthm{#1}{#2}{#3}}}
-
-\def\@Xthm#1#2#3{\@Begintheorem{#1}{#2}{#3}\ignorespaces}
-
-\def\@Ythm#1#2#3[#4]{\@Opargbegintheorem{#1}
-       {#4}{#2}{#3}\ignorespaces}
-
-\def\@Begintheorem#1#2#3{#3\trivlist
-                           \item[\hskip\labelsep{#2#1\@thmcounterend}]}
-
-\def\@Opargbegintheorem#1#2#3#4{#4\trivlist
-      \item[\hskip\labelsep{#3#1}]{#3(#2)\@thmcounterend\ }}
-
-\if@envcntsect
-   \def\@thmcountersep{.}
-   \spnewtheorem{theorem}{Theorem}[section]{\bfseries}{\itshape}
-\else
-   \spnewtheorem{theorem}{Theorem}{\bfseries}{\itshape}
-   \if@envcntreset
-      \@addtoreset{theorem}{section}
-   \else
-      \@addtoreset{theorem}{chapter}
-   \fi
-\fi
-
-%definition of divers theorem environments
-\spnewtheorem*{claim}{Claim}{\itshape}{\rmfamily}
-\spnewtheorem*{proof}{Proof}{\itshape}{\rmfamily}
-\if@envcntsame % alle Umgebungen wie Theorem.
-   \def\spn@wtheorem#1#2#3#4{\@spothm{#1}[theorem]{#2}{#3}{#4}}
-\else % alle Umgebungen mit eigenem Zaehler
-   \if@envcntsect % mit section numeriert
-      \def\spn@wtheorem#1#2#3#4{\@spxnthm{#1}{#2}[section]{#3}{#4}}
-   \else % nicht mit section numeriert
-      \if@envcntreset
-         \def\spn@wtheorem#1#2#3#4{\@spynthm{#1}{#2}{#3}{#4}
-                                   \@addtoreset{#1}{section}}
-      \else
-         \def\spn@wtheorem#1#2#3#4{\@spynthm{#1}{#2}{#3}{#4}
-                                   \@addtoreset{#1}{chapter}}%
-      \fi
-   \fi
-\fi
-\spn@wtheorem{case}{Case}{\itshape}{\rmfamily}
-\spn@wtheorem{conjecture}{Conjecture}{\itshape}{\rmfamily}
-\spn@wtheorem{corollary}{Corollary}{\bfseries}{\itshape}
-\spn@wtheorem{definition}{Definition}{\bfseries}{\itshape}
-\spn@wtheorem{example}{Example}{\itshape}{\rmfamily}
-\spn@wtheorem{exercise}{Exercise}{\itshape}{\rmfamily}
-\spn@wtheorem{lemma}{Lemma}{\bfseries}{\itshape}
-\spn@wtheorem{note}{Note}{\itshape}{\rmfamily}
-\spn@wtheorem{problem}{Problem}{\itshape}{\rmfamily}
-\spn@wtheorem{property}{Property}{\itshape}{\rmfamily}
-\spn@wtheorem{proposition}{Proposition}{\bfseries}{\itshape}
-\spn@wtheorem{question}{Question}{\itshape}{\rmfamily}
-\spn@wtheorem{solution}{Solution}{\itshape}{\rmfamily}
-\spn@wtheorem{remark}{Remark}{\itshape}{\rmfamily}
-
-\def\@takefromreset#1#2{%
-    \def\@tempa{#1}%
-    \let\@tempd\@elt
-    \def\@elt##1{%
-        \def\@tempb{##1}%
-        \ifx\@tempa\@tempb\else
-            \@addtoreset{##1}{#2}%
-        \fi}%
-    \expandafter\expandafter\let\expandafter\@tempc\csname cl@#2\endcsname
-    \expandafter\def\csname cl@#2\endcsname{}%
-    \@tempc
-    \let\@elt\@tempd}
-
-\def\theopargself{\def\@spopargbegintheorem##1##2##3##4##5{\trivlist
-      \item[\hskip\labelsep{##4##1\ ##2}]{##4##3\@thmcounterend\ }##5}
-                  \def\@Opargbegintheorem##1##2##3##4{##4\trivlist
-      \item[\hskip\labelsep{##3##1}]{##3##2\@thmcounterend\ }}
-      }
-
-\renewenvironment{abstract}{%
-      \list{}{\advance\topsep by0.35cm\relax\small
-      \leftmargin=1cm
-      \labelwidth=\z@
-      \listparindent=\z@
-      \itemindent\listparindent
-      \rightmargin\leftmargin}\item[\hskip\labelsep
-                                    \bfseries\abstractname]}
-    {\endlist}
-
-\newdimen\headlineindent             % dimension for space between
-\headlineindent=1.166cm              % number and text of headings.
-
-\def\ps@headings{\let\@mkboth\@gobbletwo
-   \let\@oddfoot\@empty\let\@evenfoot\@empty
-   \def\@evenhead{\normalfont\small\rlap{\thepage}\hspace{\headlineindent}%
-                  \leftmark\hfil}
-   \def\@oddhead{\normalfont\small\hfil\rightmark\hspace{\headlineindent}%
-                 \llap{\thepage}}
-   \def\chaptermark##1{}%
-   \def\sectionmark##1{}%
-   \def\subsectionmark##1{}}
-
-\def\ps@titlepage{\let\@mkboth\@gobbletwo
-   \let\@oddfoot\@empty\let\@evenfoot\@empty
-   \def\@evenhead{\normalfont\small\rlap{\thepage}\hspace{\headlineindent}%
-                  \hfil}
-   \def\@oddhead{\normalfont\small\hfil\hspace{\headlineindent}%
-                 \llap{\thepage}}
-   \def\chaptermark##1{}%
-   \def\sectionmark##1{}%
-   \def\subsectionmark##1{}}
-
-\if@runhead\ps@headings\else
-\ps@empty\fi
-
-\setlength\arraycolsep{1.4\p@}
-\setlength\tabcolsep{1.4\p@}
-
-\endinput
-%end of file llncs.cls
--- a/Paper/document/proof.sty	Wed Mar 16 21:14:43 2011 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,278 +0,0 @@
-%       proof.sty       (Proof Figure Macros)
-%
-%       version 3.0 (for both LaTeX 2.09 and LaTeX 2e)
-%       Mar 6, 1997
-%       Copyright (C) 1990 -- 1997, Makoto Tatsuta (tatsuta@kusm.kyoto-u.ac.jp)
-% 
-% This program is free software; you can redistribute it or modify
-% it under the terms of the GNU General Public License as published by
-% the Free Software Foundation; either versions 1, or (at your option)
-% any later version.
-% 
-% This program is distributed in the hope that it will be useful
-% but WITHOUT ANY WARRANTY; without even the implied warranty of
-% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-% GNU General Public License for more details.
-%
-%       Usage:
-%               In \documentstyle, specify an optional style `proof', say,
-%                       \documentstyle[proof]{article}.
-%
-%       The following macros are available:
-%
-%       In all the following macros, all the arguments such as
-%       <Lowers> and <Uppers> are processed in math mode.
-%
-%       \infer<Lower><Uppers>
-%               draws an inference.
-%
-%               Use & in <Uppers> to delimit upper formulae.
-%               <Uppers> consists more than 0 formulae.
-%
-%               \infer returns \hbox{ ... } or \vbox{ ... } and
-%               sets \@LeftOffset and \@RightOffset globally.
-%
-%       \infer[<Label>]<Lower><Uppers>
-%               draws an inference labeled with <Label>.
-%
-%       \infer*<Lower><Uppers>
-%               draws a many step deduction.
-%
-%       \infer*[<Label>]<Lower><Uppers>
-%               draws a many step deduction labeled with <Label>.
-%
-%       \infer=<Lower><Uppers>
-%               draws a double-ruled deduction.
-%
-%       \infer=[<Label>]<Lower><Uppers>
-%               draws a double-ruled deduction labeled with <Label>.
-%
-%       \deduce<Lower><Uppers>
-%               draws an inference without a rule.
-%
-%       \deduce[<Proof>]<Lower><Uppers>
-%               draws a many step deduction with a proof name.
-%
-%       Example:
-%               If you want to write
-%                           B C
-%                          -----
-%                      A     D
-%                     ----------
-%                         E
-%       use
-%               \infer{E}{
-%                       A
-%                       &
-%                       \infer{D}{B & C}
-%               }
-%
-
-%       Style Parameters
-
-\newdimen\inferLineSkip         \inferLineSkip=2pt
-\newdimen\inferLabelSkip        \inferLabelSkip=5pt
-\def\inferTabSkip{\quad}
-
-%       Variables
-
-\newdimen\@LeftOffset   % global
-\newdimen\@RightOffset  % global
-\newdimen\@SavedLeftOffset      % safe from users
-
-\newdimen\UpperWidth
-\newdimen\LowerWidth
-\newdimen\LowerHeight
-\newdimen\UpperLeftOffset
-\newdimen\UpperRightOffset
-\newdimen\UpperCenter
-\newdimen\LowerCenter
-\newdimen\UpperAdjust
-\newdimen\RuleAdjust
-\newdimen\LowerAdjust
-\newdimen\RuleWidth
-\newdimen\HLabelAdjust
-\newdimen\VLabelAdjust
-\newdimen\WidthAdjust
-
-\newbox\@UpperPart
-\newbox\@LowerPart
-\newbox\@LabelPart
-\newbox\ResultBox
-
-%       Flags
-
-\newif\if@inferRule     % whether \@infer draws a rule.
-\newif\if@DoubleRule    % whether \@infer draws doulbe rules.
-\newif\if@ReturnLeftOffset      % whether \@infer returns \@LeftOffset.
-\newif\if@MathSaved     % whether inner math mode where \infer or
-                       % \deduce appears.
-
-%       Special Fonts
-
-\def\DeduceSym{\vtop{\baselineskip4\p@ \lineskiplimit\z@
-    \vbox{\hbox{.}\hbox{.}\hbox{.}}\hbox{.}}}
-
-%       Math Save Macros
-%
-%       \@SaveMath is called in the very begining of toplevel macros
-%       which are \infer and \deduce.
-%       \@RestoreMath is called in the very last before toplevel macros end.
-%       Remark \infer and \deduce ends calling \@infer.
-
-\def\@SaveMath{\@MathSavedfalse \ifmmode \ifinner
-       \relax $\relax \@MathSavedtrue \fi\fi }
-
-\def\@RestoreMath{\if@MathSaved \relax $\relax\fi }
-
-%       Macros
-
-% Renaming @ifnextchar and @ifnch of LaTeX2e to @IFnextchar and @IFnch.
-
-\def\@IFnextchar#1#2#3{%
-  \let\reserved@e=#1\def\reserved@a{#2}\def\reserved@b{#3}\futurelet
-    \reserved@c\@IFnch}
-\def\@IFnch{\ifx \reserved@c \@sptoken \let\reserved@d\@xifnch
-      \else \ifx \reserved@c \reserved@e\let\reserved@d\reserved@a\else
-          \let\reserved@d\reserved@b\fi
-      \fi \reserved@d}
-
-\def\@ifEmpty#1#2#3{\def\@tempa{\@empty}\def\@tempb{#1}\relax
-       \ifx \@tempa \@tempb #2\else #3\fi }
-
-\def\infer{\@SaveMath \@IFnextchar *{\@inferSteps}{\relax
-       \@IFnextchar ={\@inferDoubleRule}{\@inferOneStep}}}
-
-\def\@inferOneStep{\@inferRuletrue \@DoubleRulefalse
-       \@IFnextchar [{\@infer}{\@infer[\@empty]}}
-
-\def\@inferDoubleRule={\@inferRuletrue \@DoubleRuletrue
-       \@IFnextchar [{\@infer}{\@infer[\@empty]}}
-
-\def\@inferSteps*{\@IFnextchar [{\@@inferSteps}{\@@inferSteps[\@empty]}}
-
-\def\@@inferSteps[#1]{\@deduce{#1}[\DeduceSym]}
-
-\def\deduce{\@SaveMath \@IFnextchar [{\@deduce{\@empty}}
-       {\@inferRulefalse \@infer[\@empty]}}
-
-%       \@deduce<Proof Label>[<Proof>]<Lower><Uppers>
-
-\def\@deduce#1[#2]#3#4{\@inferRulefalse
-       \@infer[\@empty]{#3}{\@SaveMath \@infer[{#1}]{#2}{#4}}}
-
-%       \@infer[<Label>]<Lower><Uppers>
-%               If \@inferRuletrue, it draws a rule and <Label> is right to
-%               a rule. In this case, if \@DoubleRuletrue, it draws
-%               double rules.
-%
-%               Otherwise, draws no rule and <Label> is right to <Lower>.
-
-\def\@infer[#1]#2#3{\relax
-% Get parameters
-       \if@ReturnLeftOffset \else \@SavedLeftOffset=\@LeftOffset \fi
-       \setbox\@LabelPart=\hbox{$#1$}\relax
-       \setbox\@LowerPart=\hbox{$#2$}\relax
-%
-       \global\@LeftOffset=0pt
-       \setbox\@UpperPart=\vbox{\tabskip=0pt \halign{\relax
-               \global\@RightOffset=0pt \@ReturnLeftOffsettrue $##$&&
-               \inferTabSkip
-               \global\@RightOffset=0pt \@ReturnLeftOffsetfalse $##$\cr
-               #3\cr}}\relax
-%                       Here is a little trick.
-%                       \@ReturnLeftOffsettrue(false) influences on \infer or
-%                       \deduce placed in ## locally
-%                       because of \@SaveMath and \@RestoreMath.
-       \UpperLeftOffset=\@LeftOffset
-       \UpperRightOffset=\@RightOffset
-% Calculate Adjustments
-       \LowerWidth=\wd\@LowerPart
-       \LowerHeight=\ht\@LowerPart
-       \LowerCenter=0.5\LowerWidth
-%
-       \UpperWidth=\wd\@UpperPart \advance\UpperWidth by -\UpperLeftOffset
-       \advance\UpperWidth by -\UpperRightOffset
-       \UpperCenter=\UpperLeftOffset
-       \advance\UpperCenter by 0.5\UpperWidth
-%
-       \ifdim \UpperWidth > \LowerWidth
-               % \UpperCenter > \LowerCenter
-       \UpperAdjust=0pt
-       \RuleAdjust=\UpperLeftOffset
-       \LowerAdjust=\UpperCenter \advance\LowerAdjust by -\LowerCenter
-       \RuleWidth=\UpperWidth
-       \global\@LeftOffset=\LowerAdjust
-%
-       \else   % \UpperWidth <= \LowerWidth
-       \ifdim \UpperCenter > \LowerCenter
-%
-       \UpperAdjust=0pt
-       \RuleAdjust=\UpperCenter \advance\RuleAdjust by -\LowerCenter
-       \LowerAdjust=\RuleAdjust
-       \RuleWidth=\LowerWidth
-       \global\@LeftOffset=\LowerAdjust
-%
-       \else   % \UpperWidth <= \LowerWidth
-               % \UpperCenter <= \LowerCenter
-%
-       \UpperAdjust=\LowerCenter \advance\UpperAdjust by -\UpperCenter
-       \RuleAdjust=0pt
-       \LowerAdjust=0pt
-       \RuleWidth=\LowerWidth
-       \global\@LeftOffset=0pt
-%
-       \fi\fi
-% Make a box
-       \if@inferRule
-%
-       \setbox\ResultBox=\vbox{
-               \moveright \UpperAdjust \box\@UpperPart
-               \nointerlineskip \kern\inferLineSkip
-               \if@DoubleRule
-               \moveright \RuleAdjust \vbox{\hrule width\RuleWidth
-                       \kern 1pt\hrule width\RuleWidth}\relax
-               \else
-               \moveright \RuleAdjust \vbox{\hrule width\RuleWidth}\relax
-               \fi
-               \nointerlineskip \kern\inferLineSkip
-               \moveright \LowerAdjust \box\@LowerPart }\relax
-%
-       \@ifEmpty{#1}{}{\relax
-%
-       \HLabelAdjust=\wd\ResultBox     \advance\HLabelAdjust by -\RuleAdjust
-       \advance\HLabelAdjust by -\RuleWidth
-       \WidthAdjust=\HLabelAdjust
-       \advance\WidthAdjust by -\inferLabelSkip
-       \advance\WidthAdjust by -\wd\@LabelPart
-       \ifdim \WidthAdjust < 0pt \WidthAdjust=0pt \fi
-%
-       \VLabelAdjust=\dp\@LabelPart
-       \advance\VLabelAdjust by -\ht\@LabelPart
-       \VLabelAdjust=0.5\VLabelAdjust  \advance\VLabelAdjust by \LowerHeight
-       \advance\VLabelAdjust by \inferLineSkip
-%
-       \setbox\ResultBox=\hbox{\box\ResultBox
-               \kern -\HLabelAdjust \kern\inferLabelSkip
-               \raise\VLabelAdjust \box\@LabelPart \kern\WidthAdjust}\relax
-%
-       }\relax % end @ifEmpty
-%
-       \else % \@inferRulefalse
-%
-       \setbox\ResultBox=\vbox{
-               \moveright \UpperAdjust \box\@UpperPart
-               \nointerlineskip \kern\inferLineSkip
-               \moveright \LowerAdjust \hbox{\unhbox\@LowerPart
-                       \@ifEmpty{#1}{}{\relax
-                       \kern\inferLabelSkip \unhbox\@LabelPart}}}\relax
-       \fi
-%
-       \global\@RightOffset=\wd\ResultBox
-       \global\advance\@RightOffset by -\@LeftOffset
-       \global\advance\@RightOffset by -\LowerWidth
-       \if@ReturnLeftOffset \else \global\@LeftOffset=\@SavedLeftOffset \fi
-%
-       \box\ResultBox
-       \@RestoreMath
-}
--- a/Paper/document/root.bib	Wed Mar 16 21:14:43 2011 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,319 +0,0 @@
-
-@Unpublished{KaliszykUrban11,
-  author = 	 {C.~Kaliszyk and C.~Urban},
-  title = 	 {{Q}uotients {R}evisited for {I}sabelle/{HOL}},
-  note = 	 {To appear in the Proc.~of the 26th ACM Symposium On Applied Computing},
-  year = 	 {2011}
-}
-
-@InProceedings{cheney05a,
-  author = 	 {J.~Cheney},
-  title = 	 {{S}crap your {N}ameplate ({F}unctional {P}earl)},
-  booktitle = 	 {Proc.~of the 10th ICFP Conference},
-  pages = 	 {180--191},
-  year = 	 {2005}
-}
-
-@Inproceedings{Altenkirch10,
-  author = {T.~Altenkirch and N.~A.~Danielsson and A.~L\"oh and N.~Oury},
-  title =  {{PiSigma}: {D}ependent {T}ypes {W}ithout the {S}ugar},
-  booktitle = "Proc.~of the 10th FLOPS Conference",
-  year = 2010,
-  series = "LNCS",
-  pages = "40--55",
-  volume = 6009
-}
-
-
-@InProceedings{ UrbanTasson05,
-	author = "C. Urban and C. Tasson",
-	title = "{N}ominal {T}echniques in {I}sabelle/{HOL}",
-	booktitle = "Proc.~of the 20th CADE Conference",
-	year = 2005,
-	series = "LNCS",
-	pages = "38--53",
-	volume = 3632
-}
-
-@InProceedings{ UrbanBerghofer06,
-	author = "C. Urban and S. Berghofer",
-	title = "{A} {R}ecursion {C}ombinator for {N}ominal {D}atatypes {I}mplemented in {I}sabelle/{HOL}",
-	booktitle = "Proc.~of the 3rd IJCAR Conference",
-	year = 2006,
-	series = "LNAI",
-	volume = 4130,
-	pages = "498--512"
-}
-
-@InProceedings{LeeCraryHarper07,
-  author = 	 {D.~K.~Lee and K.~Crary and R.~Harper},
-  title = 	 {{T}owards a {M}echanized {M}etatheory of {Standard ML}},
-  booktitle =    {Proc.~of the 34th POPL Symposium},
-  year = 	 2007,
-  pages =        {173--184}
-}
-
-@Unpublished{chargueraud09,
-  author       = "A.~Chargu{\'e}raud",
-  title        = "{T}he {L}ocally {N}ameless {R}epresentation",
-  Note         = "To appear in J.~of Automated Reasoning."                  
-}
-
-@article{NaraschewskiNipkow99,
-  author={W.~Naraschewski and T.~Nipkow},
-  title={{T}ype {I}nference {V}erified: {A}lgorithm {W} in {Isabelle/HOL}},
-  journal={J.~of Automated Reasoning},
-  year=1999,
-  volume=23,
-  pages={299--318}}
-
-@InProceedings{Berghofer99,
-  author = 	 {S.~Berghofer and M.~Wenzel},
-  title = 	 {{I}nductive {D}atatypes in {HOL} - {L}essons {L}earned in 
-                  {F}ormal-{L}ogic {E}ngineering},
-  booktitle = 	 {Proc.~of the 12th TPHOLs conference},
-  pages = 	 {19--36},
-  year = 	 1999,
-  volume = 	 1690,
-  series = 	 {LNCS}
-}
-
-@InProceedings{CoreHaskell,
-  author = 	 {M.~Sulzmann and M.~Chakravarty and S.~Peyton Jones and K.~Donnelly},
-  title = 	 {{S}ystem {F} with {T}ype {E}quality {C}oercions},
-  booktitle = 	 {Proc.~of the TLDI Workshop},
-  pages = 	 {53-66},
-  year = 	 {2007}
-}
-
-@inproceedings{cheney05,
-  author    = {J.~Cheney},
-  title     = {{T}oward a {G}eneral {T}heory of {N}ames: {B}inding and {S}cope},
-  booktitle = {Proc.~of the 3rd MERLIN workshop},
-  year      = {2005},
-  pages     = {33-40}
-}
-
-@Unpublished{Pitts04,
-  author = 	 {A.~Pitts},
-  title = 	 {{N}otes on the {R}estriction {M}onad for {N}ominal {S}ets and {C}pos},
-  note = 	 {Unpublished notes for an invited talk given at CTCS},
-  year = 	 {2004}
-}
-
-@incollection{UrbanNipkow09,
-  author = {C.~Urban and T.~Nipkow},
-  title = {{N}ominal {V}erification of {A}lgorithm {W}},
-  booktitle={From Semantics to Computer Science. Essays in Honour of Gilles Kahn},
-  editor={G.~Huet and J.-J.~L{\'e}vy and G.~Plotkin},
-  publisher={Cambridge University Press},
-  pages={363--382},
-  year=2009
-}
-
-@InProceedings{Homeier05,
-  author = 	 {P.~Homeier},
-  title = 	 {{A} {D}esign {S}tructure for {H}igher {O}rder {Q}uotients},
-  booktitle = 	 {Proc.~of the 18th TPHOLs Conference},
-  pages = 	 {130--146},
-  year = 	 {2005},
-  volume = 	 {3603},
-  series = 	 {LNCS}
-}
-
-@article{ott-jfp,
- author     = {P.~Sewell and 
-               F.~Z.~Nardelli and 
-               S.~Owens and 
-               G.~Peskine and 
-               T.~Ridge and 
-               S.~Sarkar and 
-               R.~Strni\v{s}a},
- title      = {{Ott}: {E}ffective {T}ool {S}upport for the {W}orking {S}emanticist},
- journal    = {J.~of Functional Programming},
- year       = {2010},
- volume     = {20},
- number     = {1},
- pages      = {70--122}
-}
-
-@INPROCEEDINGS{Pottier06,
-  author = {F.~Pottier},
-  title = {{A}n {O}verview of {C$\alpha$ml}},
-  year = {2006},
-  booktitle = {ACM Workshop on ML},
-  pages = {27--52},
-  volume = {148},
-  number = {2},
-  series = {ENTCS}
-}
-
-@inproceedings{HuffmanUrban10,
-  author = 	 {B.~Huffman and C.~Urban},
-  title = 	 {{P}roof {P}earl: {A} {N}ew {F}oundation for {N}ominal {I}sabelle},
-  booktitle = {Proc.~of the 1st ITP Conference}, 
-  pages = {35--50},
-  volume = {6172},
-  series = {LNCS},
-  year = 	 {2010}
-}
-
-@PhdThesis{Leroy92,
-  author = 	 {X.~Leroy},
-  title = 	 {{P}olymorphic {T}yping of an {A}lgorithmic {L}anguage},
-  school = 	 {University Paris 7},
-  year = 	 {1992},
-  note = 	 {INRIA Research Report, No~1778}
-}
-
-@Unpublished{SewellBestiary,
-  author = 	 {P.~Sewell},
-  title = 	 {{A} {B}inding {B}estiary},
-  note = 	 {Unpublished notes.}
-}
-
-@InProceedings{challenge05,
-  author = 	 {B.~E.~Aydemir and A.~Bohannon and M.~Fairbairn and
-                  J.~N.~Foster and B.~C.~Pierce and P.~Sewell and 
-                  D.~Vytiniotis and G.~Washburn and S.~Weirich and
-                  S.~Zdancewic},
-  title = 	 {{M}echanized {M}etatheory for the {M}asses: {T}he \mbox{Popl}{M}ark 
-                  {C}hallenge},
-  booktitle = 	 {Proc.~of the 18th TPHOLs Conference},
-  pages = 	 {50--65},
-  year = 	 {2005},
-  volume = 	 {3603},
-  series = 	 {LNCS}
-}
-
-@article{MckinnaPollack99,
-  author =	 {J.~McKinna and R.~Pollack},
-  title =	 {{S}ome {T}ype {T}heory and {L}ambda {C}alculus {F}ormalised},
-  journal =	 {J.~of Automated Reasoning},
-  volume =       23,
-  number =       {1-4},
-  year =	 1999
-}
-
-@article{SatoPollack10,
-  author = 	 {M.~Sato and R.~Pollack},
-  title = 	 {{E}xternal and {I}nternal {S}yntax of the {L}ambda-{C}alculus},
-  journal = 	 {J.~of Symbolic Computation},
-  volume =       45,
-  pages =        {598--616},
-  year =	 2010
-}
-
-@article{GabbayPitts02,
-  author =	 {M.~J.~Gabbay and A.~M.~Pitts},
-  title =	 {A New Approach to Abstract Syntax with Variable
-                  Binding},
-  journal =	 {Formal Aspects of Computing},
-  volume =	 {13},
-  year =	 2002,
-  pages =	 {341--363}
-}
-
-@article{Pitts03,
-  author =	 {A.~M.~Pitts},
-  title =	 {{N}ominal {L}ogic, {A} {F}irst {O}rder {T}heory of {N}ames and
-                  {B}inding},
-  journal =	 {Information and Computation},
-  year =	 {2003},
-  volume =	 {183},
-  pages =	 {165--193}
-}
-
-@InProceedings{BengtsonParrow07,
-  author    = {J.~Bengtson and J.~Parrow},
-  title     = {Formalising the pi-{C}alculus using {N}ominal {L}ogic},
-  booktitle = {Proc.~of the 10th FOSSACS Conference},
-  year      = 2007,
-  pages     = {63--77},
-  series    = {LNCS},
-  volume    = {4423}
-}
-
-@inproceedings{BengtsonParow09,
-  author    = {J.~Bengtson and J.~Parrow},
-  title     = {{P}si-{C}alculi in {I}sabelle},
-  booktitle = {Proc of the 22nd TPHOLs Conference},
-  year      = 2009,
-  pages     = {99--114},
-  series    = {LNCS},
-  volume    = {5674}
-}
-
-@inproceedings{TobinHochstadtFelleisen08,
-  author    = {S.~Tobin-Hochstadt and M.~Felleisen},
-  booktitle = {Proc.~of the 35rd POPL Symposium},
-  title     = {{T}he {D}esign and {I}mplementation of {T}yped {S}cheme},
-  year      = {2008},
-  pages     = {395--406}
-}
-
-@InProceedings{UrbanCheneyBerghofer08,
-  author = "C.~Urban and J.~Cheney and S.~Berghofer",
-  title = "{M}echanizing the {M}etatheory of {LF}",
-  pages = "45--56",
-  year = 2008,
-  booktitle = "Proc.~of the 23rd LICS Symposium"
-}
-
-@InProceedings{UrbanZhu08,
-  title = "{R}evisiting {C}ut-{E}limination: {O}ne {D}ifficult {P}roof is {R}eally a {P}roof",
-  author = "C.~Urban and B.~Zhu",
-  booktitle = "Proc.~of the 9th RTA Conference",
-  year = "2008",
-  pages = "409--424",
-  series = "LNCS",
-  volume = 5117
-}
-
-@Article{UrbanPittsGabbay04,
-  title = "{N}ominal {U}nification",
-  author = "C.~Urban and A.M.~Pitts and M.J.~Gabbay",
-  journal = "Theoretical Computer Science",
-  pages = "473--497",
-  volume = "323",
-  number = "1-3",
-  year = "2004"
-}
-
-@Article{Church40,
-  author = 	 {A.~Church},
-  title = 	 {{A} {F}ormulation of the {S}imple {T}heory of {T}ypes},
-  journal = 	 {Journal of Symbolic Logic},
-  year = 	 {1940},
-  volume = 	 {5},
-  number = 	 {2},
-  pages = 	 {56--68}
-}
-
-
-@Manual{PittsHOL4,
-  title = 	 {{S}yntax and {S}emantics},
-  author = 	 {A.~M.~Pitts},
-  note = 	 {Part of the documentation for the HOL4 system.}
-}
-
-
-@book{PaulsonBenzmueller,
-  year={2009},
-  author={Benzm{\"u}ller, Christoph and Paulson, Lawrence C.},
-  title={Quantified Multimodal Logics in Simple Type Theory},
-  note={{http://arxiv.org/abs/0905.2435}},
-  series={{SEKI Report SR--2009--02 (ISSN 1437-4447)}},
-  publisher={{SEKI Publications}}
-}
-
-@Article{Cheney06,
-  author = 	 {J.~Cheney},
-  title = 	 {{C}ompleteness and {H}erbrand theorems for {N}ominal {L}ogic},
-  journal = 	 {Journal of Symbolic Logic},
-  year = 	 {2006},
-  volume = 	 {71},
-  number = 	 {1},
-  pages = 	 {299--320}
-}
-
--- a/Paper/document/root.tex	Wed Mar 16 21:14:43 2011 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,112 +0,0 @@
-\documentclass{llncs}
-\usepackage{times}
-\usepackage{isabelle}
-\usepackage{isabellesym}
-\usepackage{amsmath}
-\usepackage{amssymb}
-%%\usepackage{amsthm}
-\usepackage{tikz}
-\usepackage{pgf}
-\usepackage{pdfsetup}
-\usepackage{ot1patch}
-\usepackage{times}
-\usepackage{boxedminipage}
-\usepackage{proof}
-\usepackage{setspace}
-
-\allowdisplaybreaks
-\urlstyle{rm}
-\isabellestyle{it}
-\renewcommand{\isastyleminor}{\it}%
-\renewcommand{\isastyle}{\normalsize\it}%
-
-\DeclareRobustCommand{\flqq}{\mbox{\guillemotleft}}
-\DeclareRobustCommand{\frqq}{\mbox{\guillemotright}}
-\renewcommand{\isacharunderscore}{\mbox{$\_\!\_$}}
-\renewcommand{\isasymbullet}{{\raisebox{-0.4mm}{\Large$\boldsymbol{\hspace{-0.5mm}\cdot\hspace{-0.5mm}}$}}}
-\def\dn{\,\stackrel{\mbox{\scriptsize def}}{=}\,}
-\renewcommand{\isasymequiv}{$\dn$}
-%%\renewcommand{\isasymiota}{}
-\renewcommand{\isasymxi}{$..$}
-\renewcommand{\isasymemptyset}{$\varnothing$}
-\newcommand{\isasymnotapprox}{$\not\approx$}
-\newcommand{\isasymLET}{$\mathtt{let}$}
-\newcommand{\isasymAND}{$\mathtt{and}$}
-\newcommand{\isasymIN}{$\mathtt{in}$}
-\newcommand{\isasymEND}{$\mathtt{end}$}
-\newcommand{\isasymBIND}{$\mathtt{bind}$}
-\newcommand{\isasymANIL}{$\mathtt{anil}$}
-\newcommand{\isasymACONS}{$\mathtt{acons}$}
-\newcommand{\isasymCASE}{$\mathtt{case}$}
-\newcommand{\isasymOF}{$\mathtt{of}$}
-\newcommand{\isasymAL}{\makebox[0mm][l]{$^\alpha$}}
-\newcommand{\isasymPRIME}{\makebox[0mm][l]{$'$}}
-\newcommand{\isasymFRESH}{\#}
-\newcommand{\LET}{\;\mathtt{let}\;}
-\newcommand{\IN}{\;\mathtt{in}\;}
-\newcommand{\END}{\;\mathtt{end}\;}
-\newcommand{\AND}{\;\mathtt{and}\;}
-\newcommand{\fv}{\mathit{fv}}
-
-\newcommand{\numbered}[1]{\refstepcounter{equation}{\rm(\arabic{equation})}\label{#1}}
-%----------------- theorem definitions ----------
-%%\theoremstyle{plain}
-%%\spnewtheorem{thm}[section]{Theorem}
-%%\newtheorem{property}[thm]{Property}
-%%\newtheorem{lemma}[thm]{Lemma}
-%%\spnewtheorem{defn}[theorem]{Definition}
-%%\spnewtheorem{exmple}[theorem]{Example}
-\spnewtheorem{myproperty}{Property}{\bfseries}{\rmfamily}
-%-------------------- environment definitions -----------------
-\newenvironment{proof-of}[1]{{\em Proof of #1:}}{}
-
-%\addtolength{\textwidth}{2mm}
-\addtolength{\parskip}{-0.33mm}
-\begin{document}
-
-\title{General Bindings and Alpha-Equivalence\\ in Nominal Isabelle}
-\author{Christian Urban and Cezary Kaliszyk}
-\institute{TU Munich, Germany}
-%%%{\{urbanc, kaliszyk\}@in.tum.de}
-\maketitle
-
-\begin{abstract} 
-Nominal Isabelle is a definitional extension of the Isabelle/HOL theorem
-prover. It provides a proving infrastructure for reasoning about
-programming language calculi involving named bound variables (as
-opposed to de-Bruijn indices). In this paper we present an extension of
-Nominal Isabelle for dealing with general bindings, that means
-term-constructors where multiple variables are bound at once. Such general
-bindings are ubiquitous in programming language research and only very
-poorly supported with single binders, such as lambda-abstractions. Our
-extension includes new definitions of $\alpha$-equivalence and establishes
-automatically the reasoning infrastructure for $\alpha$-equated terms. We
-also prove strong induction principles that have the usual variable
-convention already built in.
-\end{abstract}
-
-%\category{F.4.1}{subcategory}{third-level}
-
-%\terms
-%formal reasoning, programming language calculi
-
-%\keywords
-%nominal logic work, variable convention
-
-
-\input{session}
-
-\begin{spacing}{0.9}
-  \bibliographystyle{plain}
-  \bibliography{root}
-\end{spacing}
-
-%\pagebreak
-%\input{Appendix} 
-
-\end{document}
-
-%%% Local Variables:
-%%% mode: latex
-%%% TeX-master: t
-%%% End:
--- a/Slides/ROOT1.ML	Wed Mar 16 21:14:43 2011 +0100
+++ b/Slides/ROOT1.ML	Tue Mar 29 23:52:14 2011 +0200
@@ -1,6 +1,6 @@
 (* show_question_marks := false; *)
 quick_and_dirty := true;
 
-no_document use_thy "LaTeXsugar";
+no_document use_thy "~~/src/HOL/Library/LaTeXsugar";
 
 use_thy "Slides1"
\ No newline at end of file
--- a/Slides/ROOT2.ML	Wed Mar 16 21:14:43 2011 +0100
+++ b/Slides/ROOT2.ML	Tue Mar 29 23:52:14 2011 +0200
@@ -3,6 +3,6 @@
 quick_and_dirty := true;
 
 
-no_document use_thy "LaTeXsugar";
+no_document use_thy "~~/src/HOL/Library/LaTeXsugar";
 
 use_thy "Slides2"
\ No newline at end of file
--- a/Slides/ROOT3.ML	Wed Mar 16 21:14:43 2011 +0100
+++ b/Slides/ROOT3.ML	Tue Mar 29 23:52:14 2011 +0200
@@ -1,6 +1,6 @@
-show_question_marks := false;
+(*show_question_marks := false;*)
 quick_and_dirty := true;
 
-no_document use_thy "LaTeXsugar";
+no_document use_thy "~~/src/HOL/Library/LaTeXsugar";
 
 use_thy "Slides3"
\ No newline at end of file
--- a/Slides/ROOT4.ML	Wed Mar 16 21:14:43 2011 +0100
+++ b/Slides/ROOT4.ML	Tue Mar 29 23:52:14 2011 +0200
@@ -1,6 +1,6 @@
-show_question_marks := false;
+(*show_question_marks := false;*)
 quick_and_dirty := true;
 
-no_document use_thy "LaTeXsugar";
+no_document use_thy "~~/src/HOL/Library/LaTeXsugar";
 
 use_thy "Slides4"
\ No newline at end of file
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Slides/ROOT5.ML	Tue Mar 29 23:52:14 2011 +0200
@@ -0,0 +1,6 @@
+(* show_question_marks := false; *)
+quick_and_dirty := true;
+
+no_document use_thy "~~/src/HOL/Library/LaTeXsugar";
+
+use_thy "Slides5"
\ No newline at end of file
--- a/Slides/Slides1.thy	Wed Mar 16 21:14:43 2011 +0100
+++ b/Slides/Slides1.thy	Tue Mar 29 23:52:14 2011 +0200
@@ -1,6 +1,6 @@
 (*<*)
 theory Slides1
-imports "LaTeXsugar" "Nominal"
+imports "~~/src/HOL/Library/LaTeXsugar" "Nominal"
 begin
 
 notation (latex output)
--- a/Slides/Slides2.thy	Wed Mar 16 21:14:43 2011 +0100
+++ b/Slides/Slides2.thy	Tue Mar 29 23:52:14 2011 +0200
@@ -1,6 +1,6 @@
 (*<*)
 theory Slides2
-imports "LaTeXsugar" "Nominal"
+imports "~~/src/HOL/Library/LaTeXsugar" "Nominal"
 begin
 
 notation (latex output)
--- a/Slides/Slides3.thy	Wed Mar 16 21:14:43 2011 +0100
+++ b/Slides/Slides3.thy	Tue Mar 29 23:52:14 2011 +0200
@@ -1,8 +1,10 @@
 (*<*)
 theory Slides3
-imports "LaTeXsugar" "Nominal"
+imports "~~/src/HOL/Library/LaTeXsugar" "Nominal"
 begin
 
+declare [[show_question_marks = false]]
+
 notation (latex output)
   set ("_") and
   Cons  ("_::/_" [66,65] 65) 
--- a/Slides/Slides4.thy	Wed Mar 16 21:14:43 2011 +0100
+++ b/Slides/Slides4.thy	Tue Mar 29 23:52:14 2011 +0200
@@ -1,8 +1,10 @@
 (*<*)
 theory Slides4
-imports "LaTeXsugar" "Nominal"
+imports "~~/src/HOL/Library/LaTeXsugar" "Nominal"
 begin
 
+declare [[show_question_marks = false]]
+
 notation (latex output)
   set ("_") and
   Cons  ("_::/_" [66,65] 65) 
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Slides/Slides5.thy	Tue Mar 29 23:52:14 2011 +0200
@@ -0,0 +1,1122 @@
+(*<*)
+theory Slides5
+imports "~~/src/HOL/Library/LaTeXsugar" "Nominal"
+begin
+
+notation (latex output)
+  set ("_") and
+  Cons  ("_::/_" [66,65] 65) 
+
+(*>*)
+
+
+text_raw {*
+  %%\renewcommand{\slidecaption}{Cambridge, 8.~June 2010}
+  %%\renewcommand{\slidecaption}{Uppsala, 3.~March 2011}
+  \renewcommand{\slidecaption}{Saarbrücken, 31.~March 2011}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1>[t]
+  \frametitle{%
+  \begin{tabular}{@ {\hspace{-3mm}}c@ {}}
+  \\
+  \huge General Bindings and Alpha-Equivalence in Nominal Isabelle\\[-2mm] 
+  \large Or, Nominal 2\\[-5mm]
+  \end{tabular}}
+  \begin{center}
+  Christian Urban
+  \end{center}
+  \begin{center}
+  joint work with {\bf Cezary Kaliszyk}\\[0mm] 
+  \end{center}
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1-2>
+  \frametitle{\begin{tabular}{c}Binding in Old Nominal\end{tabular}}
+  \mbox{}\\[-6mm]
+
+  \begin{itemize}
+  \item the old Nominal Isabelle provided a reasoning infrastructure for single binders\medskip
+  
+  \begin{center}
+  Lam [a].(Var a)
+  \end{center}\bigskip
+
+  \item<2-> but representing 
+
+  \begin{center}
+  $\forall\{a_1,\ldots,a_n\}.\; T$ 
+  \end{center}\medskip
+
+  with single binders and reasoning about it is a \alert{\bf major} pain; 
+  take my word for it!
+  \end{itemize}
+
+  \only<1>{
+  \begin{textblock}{6}(1.5,11)
+  \small
+  for example\\
+  \begin{tabular}{l@ {\hspace{2mm}}l}
+   & a $\fresh$ Lam [a]. t\\
+   & Lam [a]. (Var a) \alert{$=$} Lam [b]. (Var b)\\
+   & Barendregt-style reasoning about bound variables\\
+  \end{tabular}
+  \end{textblock}}
+  
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1-4>
+  \frametitle{\begin{tabular}{c}Binding Sets of Names\end{tabular}}
+  \mbox{}\\[-3mm]
+
+  \begin{itemize}
+  \item binding sets of names has some interesting properties:\medskip
+  
+  \begin{center}
+  \begin{tabular}{l}
+  $\forall\{x, y\}.\, x \rightarrow y \;\;\approx_\alpha\;\; \forall\{y, x\}.\, y \rightarrow x$
+  \bigskip\smallskip\\
+
+  \onslide<2->{%
+  $\forall\{x, y\}.\, x \rightarrow y \;\;\not\approx_\alpha\;\; \forall\{z\}.\, z \rightarrow z$
+  }\bigskip\smallskip\\
+
+  \onslide<3->{%
+  $\forall\{x\}.\, x \rightarrow y \;\;\approx_\alpha\;\; \forall\{x, \alert{z}\}.\, x \rightarrow y$
+  }\medskip\\
+  \onslide<3->{\hspace{4cm}\small provided $z$ is fresh for the type}
+  \end{tabular}
+  \end{center}
+  \end{itemize}
+  
+  \begin{textblock}{8}(2,14.5)
+  \footnotesize $^*$ $x$, $y$, $z$ are assumed to be distinct
+  \end{textblock}
+
+  \only<4>{
+  \begin{textblock}{6}(2.5,4)
+  \begin{tikzpicture}
+  \draw (0,0) node[inner sep=3mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
+  {\normalsize\color{darkgray}
+  \begin{minipage}{8cm}\raggedright
+  For type-schemes the order of bound names does not matter, and
+  alpha-equivalence is preserved under \alert{vacuous} binders.
+  \end{minipage}};
+  \end{tikzpicture}
+  \end{textblock}}
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1-3>
+  \frametitle{\begin{tabular}{c}Other Binding Modes\end{tabular}}
+  \mbox{}\\[-3mm]
+
+  \begin{itemize}
+  \item alpha-equivalence being preserved under vacuous binders is \underline{not} always
+  wanted:\bigskip\bigskip\normalsize
+  
+  \begin{tabular}{@ {\hspace{-8mm}}l}
+  $\text{let}\;x = 3\;\text{and}\;y = 2\;\text{in}\;x - y\;\text{end}$\medskip\\
+  \onslide<2->{$\;\;\;\only<2>{\approx_\alpha}\only<3>{\alert{\not\approx_\alpha}}
+   \text{let}\;y = 2\;\text{and}\;x = 3\only<3->{\alert{\;\text{and}
+    \;z = \text{loop}}}\;\text{in}\;x - y\;\text{end}$}
+  \end{tabular}
+  
+
+  \end{itemize}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1>
+  \frametitle{\begin{tabular}{c}\LARGE{}Even Another Binding Mode\end{tabular}}
+  \mbox{}\\[-3mm]
+
+  \begin{itemize}
+  \item sometimes one wants to abstract more than one name, but the order \underline{does} matter\bigskip
+  
+  \begin{center}
+  \begin{tabular}{@ {\hspace{-8mm}}l}
+  $\text{let}\;(x, y) = (3, 2)\;\text{in}\;x - y\;\text{end}$\medskip\\
+  $\;\;\;\not\approx_\alpha
+   \text{let}\;(y, x) = (3, 2)\;\text{in}\;x - y\;\text{end}$
+  \end{tabular}
+  \end{center}
+  
+
+  \end{itemize}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1-2>
+  \frametitle{\begin{tabular}{c}\LARGE{}Three Binding Modes\end{tabular}}
+  \mbox{}\\[-3mm]
+
+  \begin{itemize}
+  \item the order does not matter and alpha-equivelence is preserved under
+  vacuous binders \textcolor{gray}{(restriction)}\medskip
+  
+  \item the order does not matter, but the cardinality of the binders 
+  must be the same \textcolor{gray}{(abstraction)}\medskip
+
+  \item the order does matter \textcolor{gray}{(iterated single binders)}
+  \end{itemize}
+
+  \onslide<2->{
+  \begin{center}
+  \isacommand{bind (set+)}\hspace{6mm}
+  \isacommand{bind (set)}\hspace{6mm}
+  \isacommand{bind}
+  \end{center}}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1-3>
+  \frametitle{\begin{tabular}{c}Specification of Binding\end{tabular}}
+  \mbox{}\\[-6mm]
+
+  \mbox{}\hspace{10mm}
+  \begin{tabular}{ll}
+  \multicolumn{2}{l}{\isacommand{nominal\_datatype} trm $=$}\\
+  \hspace{5mm}\phantom{$|$} Var name\\
+  \hspace{5mm}$|$ App trm trm\\
+  \hspace{5mm}$|$ Lam \only<2->{x::}name \only<2->{t::}trm
+  & \onslide<2->{\isacommand{bind} x \isacommand{in} t}\\
+  \hspace{5mm}$|$ Let \only<2->{as::}assn \only<2->{t::}trm
+  & \onslide<2->{\isacommand{bind} bn(as) \isacommand{in} t}\\
+  \multicolumn{2}{l}{\isacommand{and} assn $=$}\\
+  \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} ANil}\\
+  \multicolumn{2}{l}{\hspace{5mm}$|$ ACons name trm assn}\\
+  \multicolumn{2}{l}{\onslide<3->{\isacommand{binder} bn \isacommand{where}}}\\
+  \multicolumn{2}{l}{\onslide<3->{\hspace{5mm}\phantom{$|$} bn(ANil) $=$ []}}\\
+  \multicolumn{2}{l}{\onslide<3->{\hspace{5mm}$|$ bn(ACons a t as) $=$ [a] @ bn(as)}}\\
+  \end{tabular}
+
+
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1-5>
+  \frametitle{\begin{tabular}{c}Inspiration from Ott\end{tabular}}
+  \mbox{}\\[-3mm]
+
+  \begin{itemize}
+  \item this way of specifying binding is inspired by 
+  {\bf Ott}\onslide<2->{, \alert{\bf but} we made some adjustments:}\medskip
+  
+
+  \only<2>{
+  \begin{itemize}
+  \item Ott allows specifications like\smallskip
+  \begin{center}
+  $t ::= t\;t\; |\;\lambda x.t$
+  \end{center}
+  \end{itemize}}
+
+  \only<3-4>{
+  \begin{itemize}
+  \item whether something is bound can depend in Ott on other bound things\smallskip
+  \begin{center}
+  \begin{tikzpicture}
+  \node (A) at (-0.5,1) {Foo $(\lambda y. \lambda x. t)$};
+  \node (B) at ( 1.1,1) {$s$};
+  \onslide<4>{\node (C) at (0.5,0) {$\{y, x\}$};}
+  \onslide<4>{\draw[->,red,line width=1mm] (A) -- (C);}
+  \onslide<4>{\draw[->,red,line width=1mm] (C) -- (B);}
+  \end{tikzpicture}
+  \end{center}
+  \onslide<4>{this might make sense for ``raw'' terms, but not at all 
+  for $\alpha$-equated terms}
+  \end{itemize}}
+
+  \only<5>{
+  \begin{itemize}
+  \item we allow multiple ``binders'' and ``bodies''\smallskip
+  \begin{center}
+  \begin{tabular}{l}
+  \isacommand{bind} a b c \ldots \isacommand{in} x y z \ldots\\
+  \isacommand{bind (set)} a b c \ldots \isacommand{in} x y z \ldots\\
+  \isacommand{bind (set+)} a b c \ldots \isacommand{in} x y z \ldots
+  \end{tabular}
+  \end{center}\bigskip\medskip
+  the reason is that with our definition of $\alpha$-equivalence\medskip
+  \begin{center}
+  \begin{tabular}{l}
+  \isacommand{bind (set+)} as \isacommand{in} x y $\not\Leftrightarrow$\\ 
+  \hspace{8mm}\isacommand{bind (set+)} as \isacommand{in} x, \isacommand{bind (set+)} as \isacommand{in} y
+  \end{tabular}
+  \end{center}\medskip
+
+  same with \isacommand{bind (set)}
+  \end{itemize}}
+  \end{itemize}
+
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1>
+  \frametitle{\begin{tabular}{c}Alpha-Equivalence\end{tabular}}
+  \mbox{}\\[-3mm]
+
+  \begin{itemize}
+  \item in the old Nominal Isabelle, we represented single binders as partial functions:\bigskip
+  
+  \begin{center}
+  \begin{tabular}{l}
+  Lam [$a$].\,$t$ $\;{^\text{``}}\!\dn{}\!^{\text{''}}$\\[2mm]
+  \;\;\;\;$\lambda b.$\;$\text{if}\;a = b\;\text{then}\;t\;\text{else}$\\
+  \phantom{\;\;\;\;$\lambda b.$\;\;\;\;\;\;}$\text{if}\;b \fresh t\;
+  \text{then}\;(a\;b)\act t\;\text{else}\;\text{error}$ 
+  \end{tabular}
+  \end{center}
+  \end{itemize}
+
+  \begin{textblock}{10}(2,14)
+  \footnotesize $^*$ alpha-equality coincides with equality on functions
+  \end{textblock}
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1->
+  \frametitle{\begin{tabular}{c}New Design\end{tabular}}
+  \mbox{}\\[4mm]
+
+  \begin{center}
+  \begin{tikzpicture}
+  {\draw (0,0) node[inner sep=3mm, ultra thick, draw=fg, rounded corners=2mm]
+  (A) {\begin{minipage}{1.1cm}bind.\\spec.\end{minipage}};}
+  
+  {\draw (3,0) node[inner sep=3mm, ultra thick, draw=fg, rounded corners=2mm]
+  (B) {\begin{minipage}{1.1cm}raw\\terms\end{minipage}};}
+
+  \alt<2>
+  {\draw (6,0) node[inner sep=3mm, ultra thick, draw=red, rounded corners=2mm]
+  (C) {\textcolor{red}{\begin{minipage}{1.1cm}$\alpha$-\\equiv.\end{minipage}}};}
+  {\draw (6,0) node[inner sep=3mm, ultra thick, draw=fg, rounded corners=2mm]
+  (C) {\begin{minipage}{1.1cm}$\alpha$-\\equiv.\end{minipage}};}
+  
+  {\draw (0,-3) node[inner sep=3mm, ultra thick, draw=fg, rounded corners=2mm]
+  (D) {\begin{minipage}{1.1cm}quot.\\type\end{minipage}};}
+
+  {\draw (3,-3) node[inner sep=3mm, ultra thick, draw=fg, rounded corners=2mm]
+  (E) {\begin{minipage}{1.1cm}lift\\thms\end{minipage}};}
+
+  {\draw (6,-3) node[inner sep=3mm, ultra thick, draw=fg, rounded corners=2mm]
+  (F) {\begin{minipage}{1.1cm}add.\\thms\end{minipage}};}
+  
+  \draw[->,fg!50,line width=1mm] (A) -- (B);
+  \draw[->,fg!50,line width=1mm] (B) -- (C);
+  \draw[->,fg!50,line width=1mm, line join=round, rounded corners=2mm] 
+  (C) -- (8,0) -- (8,-1.5) -- (-2,-1.5) -- (-2,-3) -- (D);
+  \draw[->,fg!50,line width=1mm] (D) -- (E);
+  \draw[->,fg!50,line width=1mm] (E) -- (F);
+  \end{tikzpicture}
+  \end{center}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1-8>
+  \frametitle{\begin{tabular}{c}Alpha-Equivalence\end{tabular}}
+  \mbox{}\\[-3mm]
+
+  \begin{itemize}
+  \item lets first look at pairs\bigskip\medskip
+
+  \begin{tabular}{@ {\hspace{1cm}}l}
+  $(as, x) \onslide<2->{\approx\!}\makebox[0mm][l]{\only<2-6>{${}_{\text{set}}$}%
+           \only<7>{${}_{\text{\alert{list}}}$}%
+           \only<8>{${}_{\text{\alert{set+}}}$}}%
+           \onslide<3->{^{R,\text{fv}}}\,\onslide<2->{(bs,y)}$
+  \end{tabular}\bigskip
+  \end{itemize}
+
+  \only<1>{
+  \begin{textblock}{8}(3,8.5)
+  \begin{tabular}{l@ {\hspace{2mm}}p{8cm}}
+   & $as$ is a set of names\ldots the binders\\
+   & $x$ is the body (might be a tuple)\\
+   & $\approx_{\text{set}}$ is where the cardinality 
+  of the binders has to be the same\\
+  \end{tabular}
+  \end{textblock}}
+
+  \only<4->{
+  \begin{textblock}{12}(5,8)
+  \begin{tabular}{ll@ {\hspace{1mm}}l}
+  $\dn$ & \onslide<5->{$\exists \pi.\,$} & $\text{fv}(x) - as = \text{fv}(y) - bs$\\[1mm]
+        & \onslide<5->{$\;\;\;\wedge$} & \onslide<5->{$\text{fv}(x) - as \fresh^* \pi$}\\[1mm]
+        & \onslide<5->{$\;\;\;\wedge$} & \onslide<5->{$(\pi \act x)\;R\;y$}\\[1mm]
+        & \onslide<6-7>{$\;\;\;\wedge$} & \onslide<6-7>{$\pi \act as = bs$}\\
+  \end{tabular}
+  \end{textblock}}
+  
+  \only<7>{
+  \begin{textblock}{7}(3,13.8)
+  \footnotesize $^*$ $as$ and $bs$ are \alert{lists} of names 
+  \end{textblock}}
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1-3>
+  \frametitle{\begin{tabular}{c}Examples\end{tabular}}
+  \mbox{}\\[-3mm]
+
+  \begin{itemize}
+  \item lets look at ``type-schemes'':\medskip\medskip
+
+  \begin{center}
+  $(as, x) \approx\!\makebox[0mm][l]{${}_{\text{set}}$}\only<1>{{}^{R,\text{fv}}}\only<2->{{}^{\alert{=},\alert{\text{fv}}}} (bs, y)$
+  \end{center}\medskip
+
+  \onslide<2->{
+  \begin{center}
+  \begin{tabular}{l}
+  $\text{fv}(x) = \{x\}$\\[1mm]
+  $\text{fv}(T_1 \rightarrow T_2) = \text{fv}(T_1) \cup \text{fv}(T_2)$\\
+  \end{tabular}
+  \end{center}}
+  \end{itemize}
+
+  
+  \only<3->{
+  \begin{textblock}{4}(0.3,12)
+  \begin{tikzpicture}
+  \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
+  {\tiny\color{darkgray}
+  \begin{minipage}{3.4cm}\raggedright
+  \begin{tabular}{r@ {\hspace{1mm}}l}
+  \multicolumn{2}{@ {}l}{set+:}\\
+  $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
+  $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
+  $\wedge$ & $\pi \cdot x = y$\\
+  \\
+  \end{tabular}
+  \end{minipage}};
+  \end{tikzpicture}
+  \end{textblock}}
+  \only<3->{
+  \begin{textblock}{4}(5.2,12)
+  \begin{tikzpicture}
+  \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
+  {\tiny\color{darkgray}
+  \begin{minipage}{3.4cm}\raggedright
+  \begin{tabular}{r@ {\hspace{1mm}}l}
+  \multicolumn{2}{@ {}l}{set:}\\
+  $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
+  $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
+  $\wedge$ & $\pi \cdot x = y$\\
+  $\wedge$ & $\pi \cdot as = bs$\\
+  \end{tabular}
+  \end{minipage}};
+  \end{tikzpicture}
+  \end{textblock}}
+  \only<3->{
+  \begin{textblock}{4}(10.2,12)
+  \begin{tikzpicture}
+  \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
+  {\tiny\color{darkgray}
+  \begin{minipage}{3.4cm}\raggedright
+  \begin{tabular}{r@ {\hspace{1mm}}l}
+  \multicolumn{2}{@ {}l}{list:}\\
+  $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
+  $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
+  $\wedge$ & $\pi \cdot x = y$\\
+  $\wedge$ & $\pi \cdot as = bs$\\
+  \end{tabular}
+  \end{minipage}};
+  \end{tikzpicture}
+  \end{textblock}}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1-2>
+  \frametitle{\begin{tabular}{c}Examples\end{tabular}}
+  \mbox{}\\[-3mm]
+
+  \begin{center}
+  \only<1>{$(\{x, y\}, x \rightarrow y) \approx_? (\{x, y\}, y \rightarrow x)$}
+  \only<2>{$([x, y], x \rightarrow y) \approx_? ([x, y], y \rightarrow x)$}
+  \end{center}
+
+  \begin{itemize}
+  \item $\approx_{\text{set+}}$, $\approx_{\text{set}}$% 
+  \only<2>{, \alert{$\not\approx_{\text{list}}$}}
+  \end{itemize}
+
+  
+  \only<1->{
+  \begin{textblock}{4}(0.3,12)
+  \begin{tikzpicture}
+  \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
+  {\tiny\color{darkgray}
+  \begin{minipage}{3.4cm}\raggedright
+  \begin{tabular}{r@ {\hspace{1mm}}l}
+  \multicolumn{2}{@ {}l}{set+:}\\
+  $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
+  $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
+  $\wedge$ & $\pi \cdot x = y$\\
+  \\
+  \end{tabular}
+  \end{minipage}};
+  \end{tikzpicture}
+  \end{textblock}}
+  \only<1->{
+  \begin{textblock}{4}(5.2,12)
+  \begin{tikzpicture}
+  \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
+  {\tiny\color{darkgray}
+  \begin{minipage}{3.4cm}\raggedright
+  \begin{tabular}{r@ {\hspace{1mm}}l}
+  \multicolumn{2}{@ {}l}{set:}\\
+  $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
+  $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
+  $\wedge$ & $\pi \cdot x = y$\\
+  $\wedge$ & $\pi \cdot as = bs$\\
+  \end{tabular}
+  \end{minipage}};
+  \end{tikzpicture}
+  \end{textblock}}
+  \only<1->{
+  \begin{textblock}{4}(10.2,12)
+  \begin{tikzpicture}
+  \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
+  {\tiny\color{darkgray}
+  \begin{minipage}{3.4cm}\raggedright
+  \begin{tabular}{r@ {\hspace{1mm}}l}
+  \multicolumn{2}{@ {}l}{list:}\\
+  $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
+  $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
+  $\wedge$ & $\pi \cdot x = y$\\
+  $\wedge$ & $\pi \cdot as = bs$\\
+  \end{tabular}
+  \end{minipage}};
+  \end{tikzpicture}
+  \end{textblock}}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1-2>
+  \frametitle{\begin{tabular}{c}Examples\end{tabular}}
+  \mbox{}\\[-3mm]
+
+  \begin{center}
+  \only<1>{$(\{x\}, x) \approx_? (\{x, y\}, x)$}
+  \end{center}
+
+  \begin{itemize}
+  \item $\approx_{\text{set+}}$, $\not\approx_{\text{set}}$,
+        $\not\approx_{\text{list}}$
+  \end{itemize}
+
+  
+  \only<1->{
+  \begin{textblock}{4}(0.3,12)
+  \begin{tikzpicture}
+  \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
+  {\tiny\color{darkgray}
+  \begin{minipage}{3.4cm}\raggedright
+  \begin{tabular}{r@ {\hspace{1mm}}l}
+  \multicolumn{2}{@ {}l}{set+:}\\
+  $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
+  $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
+  $\wedge$ & $\pi \cdot x = y$\\
+  \\
+  \end{tabular}
+  \end{minipage}};
+  \end{tikzpicture}
+  \end{textblock}}
+  \only<1->{
+  \begin{textblock}{4}(5.2,12)
+  \begin{tikzpicture}
+  \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
+  {\tiny\color{darkgray}
+  \begin{minipage}{3.4cm}\raggedright
+  \begin{tabular}{r@ {\hspace{1mm}}l}
+  \multicolumn{2}{@ {}l}{set:}\\
+  $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
+  $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
+  $\wedge$ & $\pi \cdot x = y$\\
+  $\wedge$ & $\pi \cdot as = bs$\\
+  \end{tabular}
+  \end{minipage}};
+  \end{tikzpicture}
+  \end{textblock}}
+  \only<1->{
+  \begin{textblock}{4}(10.2,12)
+  \begin{tikzpicture}
+  \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
+  {\tiny\color{darkgray}
+  \begin{minipage}{3.4cm}\raggedright
+  \begin{tabular}{r@ {\hspace{1mm}}l}
+  \multicolumn{2}{@ {}l}{list:}\\
+  $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
+  $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
+  $\wedge$ & $\pi \cdot x = y$\\
+  $\wedge$ & $\pi \cdot as = bs$\\
+  \end{tabular}
+  \end{minipage}};
+  \end{tikzpicture}
+  \end{textblock}}
+
+  \only<2>{
+  \begin{textblock}{6}(2.5,4)
+  \begin{tikzpicture}
+  \draw (0,0) node[inner sep=5mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
+  {\normalsize
+  \begin{minipage}{8cm}\raggedright
+  \begin{itemize}
+  \item \color{darkgray}$\alpha$-equivalences coincide when a single name is
+  abstracted
+  \item \color{darkgray}in that case they are equivalent to ``old-fashioned'' definitions of $\alpha$ 
+  \end{itemize}
+  \end{minipage}};
+  \end{tikzpicture}
+  \end{textblock}}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1-3>
+  \frametitle{\begin{tabular}{c}General Abstractions\end{tabular}}
+  \mbox{}\\[-7mm]
+
+  \begin{itemize}
+  \item we take $(as, x) \approx\!\makebox[0mm][l]{${}_{{}*{}}$}^{=,\text{supp}} (bs, y)$\medskip
+  \item they are equivalence relations\medskip  
+  \item we can therefore use the quotient package to introduce the 
+  types $\beta\;\text{abs}_*$\bigskip 
+  \begin{center}
+  \only<1>{$[as].\,x$}
+  \only<2>{$\text{supp}([as].x) = \text{supp}(x) - as$}
+  \only<3>{%
+  \begin{tabular}{r@ {\hspace{1mm}}l}
+  \multicolumn{2}{@ {\hspace{-7mm}}l}{$[as]. x \alert{=}  [bs].y\;\;\;\text{if\!f}$}\\[2mm]
+  $\exists \pi.$ & $\text{supp}(x) - as = \text{supp}(y) - bs$\\
+  $\wedge$       & $\text{supp}(x) - as \fresh^* \pi$\\
+  $\wedge$       & $\pi \act x = y $\\
+  $(\wedge$       & $\pi \act as = bs)\;^*$\\
+  \end{tabular}}
+  \end{center}
+  \end{itemize}
+
+  \only<1->{
+  \begin{textblock}{8}(12,3.8)
+  \footnotesize $^*$ set, set+, list
+  \end{textblock}}
+  
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1>
+  \frametitle{\begin{tabular}{c}A Problem\end{tabular}}
+  \mbox{}\\[-3mm]
+
+  \begin{center}
+  $\text{let}\;x_1=t_1 \ldots x_n=t_n\;\text{in}\;s$
+  \end{center}
+
+  \begin{itemize}
+  \item we cannot represent this as\medskip
+  \begin{center}
+  $\text{let}\;[x_1,\ldots,x_n]\alert{.}s\;\;[t_1,\ldots,t_n]$
+  \end{center}\bigskip
+
+  because\medskip
+  \begin{center}
+  $\text{let}\;[x].s\;\;[t_1,t_2]$
+  \end{center}
+  \end{itemize}
+
+  
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1->
+  \frametitle{\begin{tabular}{c}Our Specifications\end{tabular}}
+  \mbox{}\\[-6mm]
+
+  \mbox{}\hspace{10mm}
+  \begin{tabular}{ll}
+  \multicolumn{2}{l}{\isacommand{nominal\_datatype} trm $=$}\\
+  \hspace{5mm}\phantom{$|$} Var name\\
+  \hspace{5mm}$|$ App trm trm\\
+  \hspace{5mm}$|$ Lam x::name t::trm
+  & \isacommand{bind} x \isacommand{in} t\\
+  \hspace{5mm}$|$ Let as::assn t::trm
+  & \isacommand{bind} bn(as) \isacommand{in} t\\
+  \multicolumn{2}{l}{\isacommand{and} assn $=$}\\
+  \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} ANil}\\
+  \multicolumn{2}{l}{\hspace{5mm}$|$ ACons name trm assn}\\
+  \multicolumn{2}{l}{\isacommand{binder} bn \isacommand{where}}\\
+  \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} bn(ANil) $=$ $[]$}\\
+  \multicolumn{2}{l}{\hspace{5mm}$|$ bn(ACons a t as) $=$ $[$a$]$ @ bn(as)}\\
+  \end{tabular}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1-2>
+  \frametitle{\begin{tabular}{c}``Raw'' Definitions\end{tabular}}
+  \mbox{}\\[-6mm]
+
+  \mbox{}\hspace{10mm}
+  \begin{tabular}{ll}
+  \multicolumn{2}{l}{\isacommand{datatype} trm $=$}\\
+  \hspace{5mm}\phantom{$|$} Var name\\
+  \hspace{5mm}$|$ App trm trm\\
+  \hspace{5mm}$|$ Lam name trm\\
+  \hspace{5mm}$|$ Let assn trm\\
+  \multicolumn{2}{l}{\isacommand{and} assn $=$}\\
+  \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} ANil}\\
+  \multicolumn{2}{l}{\hspace{5mm}$|$ ACons name trm assn}\\[5mm]
+  \multicolumn{2}{l}{\isacommand{function} bn \isacommand{where}}\\
+  \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} bn(ANil) $=$ $[]$}\\
+  \multicolumn{2}{l}{\hspace{5mm}$|$ bn(ACons a t as) $=$ $[$a$]$ @ bn(as)}\\
+  \end{tabular}
+
+  \only<2>{
+  \begin{textblock}{5}(10,5)
+  $+$ \begin{tabular}{l}automatically\\ 
+  generate fv's\end{tabular}
+  \end{textblock}}
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1>
+  \frametitle{\begin{tabular}{c}\LARGE``Raw'' Alpha-Equivalence\end{tabular}}
+  \mbox{}\\[6mm]
+
+  \begin{center}
+  Lam x::name t::trm \hspace{10mm}\isacommand{bind} x \isacommand{in} t\\
+  \end{center}
+
+
+  \[
+  \infer[\text{Lam-}\!\approx_\alpha]
+  {\text{Lam}\;x\;t \approx_\alpha \text{Lam}\;x'\;t'}
+  {([x], t) \approx\!\makebox[0mm][l]{${}_{\text{list}}$}
+    ^{\approx_\alpha,\text{fv}} ([x'], t')}
+  \]
+
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1>
+  \frametitle{\begin{tabular}{c}\LARGE``Raw'' Alpha-Equivalence\end{tabular}}
+  \mbox{}\\[6mm]
+
+  \begin{center}
+  Lam x::name y::name t::trm s::trm \hspace{5mm}\isacommand{bind} x y \isacommand{in} t s\\
+  \end{center}
+
+
+  \[
+  \infer[\text{Lam-}\!\approx_\alpha]
+  {\text{Lam}\;x\;y\;t\;s \approx_\alpha \text{Lam}\;x'\;y'\;t'\;s'}
+  {([x, y], (t, s)) \approx\!\makebox[0mm][l]{${}_{\text{list}}$}
+    ^{R, fv} ([x', y'], (t', s'))}
+  \]
+
+  \footnotesize
+  where $R =\;\approx_\alpha\times\approx_\alpha$ and $fv = \text{fv}\cup\text{fv}$
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1-2>
+  \frametitle{\begin{tabular}{c}\LARGE``Raw'' Alpha-Equivalence\end{tabular}}
+  \mbox{}\\[6mm]
+
+  \begin{center}
+  Let as::assn t::trm \hspace{10mm}\isacommand{bind} bn(as) \isacommand{in} t\\
+  \end{center}
+
+
+  \[
+  \infer[\text{Let-}\!\approx_\alpha]
+  {\text{Let}\;as\;t \approx_\alpha \text{Let}\;as'\;t'}
+  {(\text{bn}(as), t) \approx\!\makebox[0mm][l]{${}_{\text{list}}$}
+    ^{\approx_\alpha,\text{fv}} (\text{bn}(as'), t') &
+   \onslide<2->{as \approx_\alpha^{\text{bn}} as'}}
+  \]\bigskip
+
+
+  \onslide<1->{\small{}bn-function $\Rightarrow$ \alert{deep binders}}
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1->
+  \frametitle{\begin{tabular}{c}\LARGE{}$\alpha$ for Binding Functions\end{tabular}}
+  \mbox{}\\[-6mm]
+
+  \mbox{}\hspace{10mm}
+  \begin{tabular}{l}
+  \ldots\\
+  \isacommand{binder} bn \isacommand{where}\\
+  \phantom{$|$} bn(ANil) $=$ $[]$\\
+  $|$ bn(ACons a t as) $=$ $[$a$]$ @ bn(as)\\
+  \end{tabular}\bigskip
+
+  \begin{center}
+  \mbox{\infer{\text{ANil} \approx_\alpha^{\text{bn}} \text{ANil}}{}}\bigskip
+
+  \mbox{\infer{\text{ACons}\;a\;t\;as \approx_\alpha^{\text{bn}} \text{ACons}\;a'\;t'\;as'}
+  {t \approx_\alpha t' & as \approx_\alpha^{bn} as'}}
+  \end{center}
+
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1>
+  \frametitle{\begin{tabular}{c}\LARGE``Raw'' Alpha-Equivalence\end{tabular}}
+  \mbox{}\\[6mm]
+
+  \begin{center}
+  LetRec as::assn t::trm \hspace{10mm}\isacommand{bind} bn(as) \isacommand{in} t \alert{as}\\
+  \end{center}
+
+
+  \[\mbox{}\hspace{-4mm}
+  \infer[\text{LetRec-}\!\approx_\alpha]
+  {\text{LetRec}\;as\;t \approx_\alpha \text{LetRec}\;as'\;t'}
+  {(\text{bn}(as), (t, as)) \approx\!\makebox[0mm][l]{${}_{\text{list}}$}
+    ^{R,\text{fv}} (\text{bn}(as'), (t', as'))} 
+  \]\bigskip
+  
+  \onslide<1->{\alert{deep recursive binders}}
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1->
+  \frametitle{\begin{tabular}{c}Restrictions\end{tabular}}
+  \mbox{}\\[-6mm]
+
+  Our restrictions on binding specifications:
+
+  \begin{itemize}
+  \item a body can only occur once in a list of binding clauses\medskip
+  \item you can only have one binding function for a deep binder\medskip
+  \item binding functions can return: the empty set, singletons, unions (similarly for lists)
+  \end{itemize}
+
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1->
+  \frametitle{\begin{tabular}{c}Automatic Proofs\end{tabular}}
+  \mbox{}\\[-6mm]
+
+  \begin{itemize}
+  \item we can show that $\alpha$'s are equivalence relations\medskip
+  \item as a result we can use our quotient package to introduce the type(s)
+  of $\alpha$-equated terms
+
+  \[
+  \infer
+  {\text{Lam}\;x\;t \alert{=} \text{Lam}\;x'\;t'}
+  {\only<1>{([x], t) \approx\!\makebox[0mm][l]{${}_{\text{list}}$}
+    ^{=,\text{supp}} ([x'], t')}%
+   \only<2>{[x].t = [x'].t'}}
+  \]
+
+
+  \item the properties for support are implied by the properties of $[\_].\_$
+  \item we can derive strong induction principles
+  \end{itemize}
+
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1>[t]
+  \frametitle{\begin{tabular}{c}Runtime is Acceptable\end{tabular}}
+  \mbox{}\\[-7mm]\mbox{}
+
+  \footnotesize
+  \begin{center}
+  \begin{tikzpicture}
+  \draw (0,0) node[inner sep=2mm, ultra thick, draw=fg, rounded corners=2mm]
+  (A) {\begin{minipage}{0.8cm}bind.\\spec.\end{minipage}};
+  
+  \draw (2,0) node[inner sep=2mm, ultra thick, draw=fg, rounded corners=2mm]
+  (B) {\begin{minipage}{0.8cm}raw\\terms\end{minipage}};
+
+  \draw (4,0) node[inner sep=2mm, ultra thick, draw=fg, rounded corners=2mm]
+  (C) {\begin{minipage}{0.8cm}$\alpha$-\\equiv.\end{minipage}};
+  
+  \draw (0,-2) node[inner sep=2mm, ultra thick, draw=fg, rounded corners=2mm]
+  (D) {\begin{minipage}{0.8cm}quot.\\type\end{minipage}};
+
+  \draw (2,-2) node[inner sep=2mm, ultra thick, draw=fg, rounded corners=2mm]
+  (E) {\begin{minipage}{0.8cm}lift\\thms\end{minipage}};
+
+  \draw (4,-2) node[inner sep=2mm, ultra thick, draw=fg, rounded corners=2mm]
+  (F) {\begin{minipage}{0.8cm}add.\\thms\end{minipage}};
+  
+  \draw[->,fg!50,line width=1mm] (A) -- (B);
+  \draw[->,fg!50,line width=1mm] (B) -- (C);
+  \draw[->,fg!50,line width=1mm, line join=round, rounded corners=2mm] 
+  (C) -- (5,0) -- (5,-1) -- (-1,-1) -- (-1,-2) -- (D);
+  \draw[->,fg!50,line width=1mm] (D) -- (E);
+  \draw[->,fg!50,line width=1mm] (E) -- (F);
+  \end{tikzpicture}
+  \end{center}
+
+  \begin{itemize}
+  \item Core Haskell: 11 types, 49 term-constructors, 7 binding functions
+  \begin{center}
+  $\sim$ 2 mins
+  \end{center}
+  \end{itemize}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1->
+  \frametitle{\begin{tabular}{c}Interesting Phenomenon\end{tabular}}
+  \mbox{}\\[-6mm]
+
+  \small
+  \mbox{}\hspace{20mm}
+  \begin{tabular}{ll}
+  \multicolumn{2}{l}{\isacommand{nominal\_datatype} trm $=$}\\
+  \hspace{5mm}\phantom{$|$} Var name\\
+  \hspace{5mm}$|$ App trm trm\\
+  \hspace{5mm}$|$ Lam x::name t::trm
+  & \isacommand{bind} x \isacommand{in} t\\
+  \hspace{5mm}$|$ Let as::assn t::trm
+  & \isacommand{bind} bn(as) \isacommand{in} t\\
+  \multicolumn{2}{l}{\isacommand{and} assn $=$}\\
+  \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} ANil}\\
+  \multicolumn{2}{l}{\hspace{5mm}$|$ ACons name trm assn}\\
+  \multicolumn{2}{l}{\isacommand{binder} bn \isacommand{where}}\\
+  \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} bn(ANil) $=$ $[]$}\\
+  \multicolumn{2}{l}{\hspace{5mm}$|$ bn(ACons a t as) $=$ $[$a$]$ @ bn(as)}\\
+  \end{tabular}\bigskip\medskip
+
+  we cannot quotient assn: ACons a \ldots $\not\approx_\alpha$ ACons b \ldots
+
+  \only<1->{
+  \begin{textblock}{8}(0.2,7.3)
+  \alert{\begin{tabular}{p{2.6cm}}
+  \raggedright\footnotesize{}Should a ``naked'' assn be quotient?
+  \end{tabular}\hspace{-3mm}
+  $\begin{cases}
+  \mbox{} \\ \mbox{}
+  \end{cases}$} 
+  \end{textblock}}
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1->
+  \frametitle{\begin{tabular}{c}Conclusion\end{tabular}}
+  \mbox{}\\[-6mm]
+
+  \begin{itemize}
+  \item the user does not see anything of the raw level\medskip
+  \only<1>{\begin{center}
+  Lam a (Var a) \alert{$=$} Lam b (Var b)
+  \end{center}\bigskip}
+
+  \item<2-> we have not yet done function definitions (will come soon and
+  we hope to make improvements over the old way there too)\medskip
+  \item<3-> it took quite some time to get here, but it seems worthwhile 
+  (Barendregt's variable convention is unsound in general, 
+  found bugs in two paper proofs, quotient package, POPL 2011 tutorial)\medskip
+  \end{itemize}
+
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1->[c]
+  \frametitle{\begin{tabular}{c}Future Work\end{tabular}}
+  \mbox{}\\[-6mm]
+
+  \begin{itemize}
+  \item Function definitions 
+  \end{itemize}
+  
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1->[c]
+  \frametitle{\begin{tabular}{c}Questions?\end{tabular}}
+  \mbox{}\\[-6mm]
+
+  \begin{center}
+  \alert{\huge{Thanks!}}
+  \end{center}
+  
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1-2>[c]
+  \frametitle{\begin{tabular}{c}Examples\end{tabular}}
+  \mbox{}\\[-6mm]
+
+  \begin{center}
+  $(\{a,b\}, a \rightarrow b) \approx_\alpha (\{a, b\}, a \rightarrow b)$
+  $(\{a,b\}, a \rightarrow b) \approx_\alpha (\{a, b\}, b \rightarrow a)$
+  \end{center}
+
+  \begin{center}
+  $(\{a,b\}, (a \rightarrow b, a \rightarrow b))$\\ 
+  \hspace{17mm}$\not\approx_\alpha (\{a, b\}, (a \rightarrow b, b \rightarrow a))$
+  \end{center}
+  
+  \onslide<2->
+  {1.) \hspace{3mm}\isacommand{bind (set)} as \isacommand{in} $\tau_1$, 
+   \isacommand{bind (set)} as \isacommand{in} $\tau_2$\medskip
+
+   2.) \hspace{3mm}\isacommand{bind (set)} as \isacommand{in} $\tau_1$ $\tau_2$ 
+  }
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+(*<*)
+end
+(*>*)
\ No newline at end of file