--- a/Nominal/Ex/Foo1.thy Mon Nov 15 20:54:01 2010 +0000
+++ b/Nominal/Ex/Foo1.thy Sun Nov 21 02:17:19 2010 +0000
@@ -127,6 +127,30 @@
done
+lemma Let1_rename:
+ assumes "supp ([bn1 assn]lst. trm) \<sharp>* p"
+ shows "Let1 assn trm = Let1 (permute_bn1 p assn) (p \<bullet> trm)"
+using assms
+apply -
+apply(drule supp_perm_eq[symmetric])
+apply(simp only: permute_Abs)
+apply(simp only: tt1)
+apply(simp only: foo.eq_iff)
+apply(rule conjI)
+apply(rule refl)
+apply(rule uu1)
+done
+
+lemma Let1_rename_a:
+ fixes c::"'a::fs"
+ assumes "y = Let1 assn trm"
+ shows "\<exists>p. (p \<bullet> (set (bn1 assn))) \<sharp>* c \<and> y = Let1 (permute_bn1 p assn) (p \<bullet> trm)"
+using assms
+apply(simp only: foo.eq_iff uu1 tt1[symmetric] permute_Abs[symmetric])
+apply(simp del: permute_Abs)
+apply(rule at_set_avoiding3)
+apply(simp_all only: finite_supp Abs_fresh_star finite_set)
+done
lemma strong_exhaust1:
fixes c::"'a::fs"
@@ -158,20 +182,12 @@
apply(simp add: finite_supp)
apply(simp add: finite_supp)
apply(simp add: foo.fresh fresh_star_def)
-apply(subgoal_tac "\<exists>q. (q \<bullet> (set (bn1 assg))) \<sharp>* c \<and> supp ([bn1 assg]lst.trm) \<sharp>* q")
+apply(drule Let1_rename_a)
apply(erule exE)
apply(erule conjE)
apply(rule assms(4))
-apply(perm_simp add: tt1)
+apply(simp only: set_eqvt tt1)
apply(assumption)
-apply(drule supp_perm_eq[symmetric])
-apply(simp add: foo.eq_iff)
-apply(simp add: tt1 uu1)
-apply(rule at_set_avoiding2)
-apply(simp add: finite_supp)
-apply(simp add: finite_supp)
-apply(simp add: finite_supp)
-apply(simp add: Abs_fresh_star)
apply(subgoal_tac "\<exists>q. (q \<bullet> (set (bn2 assg))) \<sharp>* c \<and> supp ([bn2 assg]lst.trm) \<sharp>* q")
apply(erule exE)
apply(erule conjE)
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/Nominal/Ex/Foo2.thy Sun Nov 21 02:17:19 2010 +0000
@@ -0,0 +1,158 @@
+theory Foo2
+imports "../Nominal2"
+begin
+
+(*
+ Contrived example that has more than one
+ binding clause
+*)
+
+atom_decl name
+
+nominal_datatype foo: trm =
+ Var "name"
+| App "trm" "trm"
+| Lam x::"name" t::"trm" bind x in t
+| Let1 a1::"assg" t1::"trm" a2::"assg" t2::"trm" bind "bn a1" in t1, bind "bn a2" in t2
+| Let2 x::"name" y::"name" t1::"trm" t2::"trm" bind x y in t1, bind y in t2
+and assg =
+ As_Nil
+| As "name" x::"name" t::"trm" "assg"
+binder
+ bn::"assg \<Rightarrow> atom list"
+where
+ "bn (As x y t a) = [atom x] @ bn a"
+| "bn (As_Nil) = []"
+
+thm foo.perm_bn_simps
+
+
+thm foo.distinct
+thm foo.induct
+thm foo.inducts
+thm foo.exhaust
+thm foo.fv_defs
+thm foo.bn_defs
+thm foo.perm_simps
+thm foo.eq_iff
+thm foo.fv_bn_eqvt
+thm foo.size_eqvt
+thm foo.supports
+thm foo.fsupp
+thm foo.supp
+thm foo.fresh
+
+lemma uu1:
+ shows "alpha_bn as (permute_bn p as)"
+apply(induct as rule: foo.inducts(2))
+apply(auto)[5]
+apply(simp add: foo.perm_bn_simps)
+apply(simp add: foo.eq_iff)
+apply(simp add: foo.perm_bn_simps)
+apply(simp add: foo.eq_iff)
+done
+
+lemma tt1:
+ shows "(p \<bullet> bn as) = bn (permute_bn p as)"
+apply(induct as rule: foo.inducts(2))
+apply(auto)[5]
+apply(simp add: foo.perm_bn_simps foo.bn_defs)
+apply(simp add: foo.perm_bn_simps foo.bn_defs)
+apply(simp add: atom_eqvt)
+done
+
+
+lemma Let1_rename:
+ assumes "supp ([bn assn1]lst. trm1) \<sharp>* p" "supp ([bn assn2]lst. trm2) \<sharp>* p"
+ shows "Let1 assn1 trm1 assn2 trm2 = Let1 (permute_bn p assn1) (p \<bullet> trm1) (permute_bn p assn2) (p \<bullet> trm2)"
+using assms
+apply -
+apply(drule supp_perm_eq[symmetric])
+apply(drule supp_perm_eq[symmetric])
+apply(simp only: permute_Abs)
+apply(simp only: tt1)
+apply(simp only: foo.eq_iff)
+apply(simp add: uu1)
+done
+
+lemma strong_exhaust1:
+ fixes c::"'a::fs"
+ assumes "\<And>name. y = Var name \<Longrightarrow> P"
+ and "\<And>trm1 trm2. y = App trm1 trm2 \<Longrightarrow> P"
+ and "\<And>name trm. \<lbrakk>{atom name} \<sharp>* c; y = Lam name trm\<rbrakk> \<Longrightarrow> P"
+ and "\<And>assn1 trm1 assn2 trm2.
+ \<lbrakk>((set (bn assn1)) \<union> (set (bn assn2))) \<sharp>* c; y = Let1 assn1 trm1 assn2 trm2\<rbrakk> \<Longrightarrow> P"
+ and "\<And>x1 x2 trm1 trm2. \<lbrakk>{atom x1, atom x2} \<sharp>* c; y = Let2 x1 x2 trm1 trm2\<rbrakk> \<Longrightarrow> P"
+ shows "P"
+apply(rule_tac y="y" in foo.exhaust(1))
+apply(rule assms(1))
+apply(assumption)
+apply(rule assms(2))
+apply(assumption)
+apply(subgoal_tac "\<exists>q. (q \<bullet> {atom name}) \<sharp>* c \<and> supp (Lam name trm) \<sharp>* q")
+apply(erule exE)
+apply(erule conjE)
+apply(rule assms(3))
+apply(perm_simp)
+apply(assumption)
+apply(simp)
+apply(drule supp_perm_eq[symmetric])
+apply(perm_simp)
+apply(simp)
+apply(rule at_set_avoiding2)
+apply(simp add: finite_supp)
+apply(simp add: finite_supp)
+apply(simp add: finite_supp)
+apply(simp add: foo.fresh fresh_star_def)
+apply(subgoal_tac "\<exists>q. (q \<bullet> (set (bn assg1))) \<sharp>* c \<and> supp ([bn assg1]lst. trm1) \<sharp>* q")
+apply(subgoal_tac "\<exists>q. (q \<bullet> (set (bn assg2))) \<sharp>* c \<and> supp ([bn assg2]lst. trm2) \<sharp>* q")
+apply(erule exE)+
+apply(erule conjE)+
+apply(rule assms(4))
+apply(simp add: set_eqvt union_eqvt)
+apply(simp add: tt1)
+apply(simp add: fresh_star_union)
+apply(rule conjI)
+apply(assumption)
+apply(rotate_tac 3)
+apply(assumption)
+apply(simp add: foo.eq_iff)
+apply(drule supp_perm_eq[symmetric])+
+apply(simp add: tt1 uu1)
+apply(auto)[1]
+apply(rule at_set_avoiding2)
+apply(simp add: finite_supp)
+apply(simp add: finite_supp)
+apply(simp add: finite_supp)
+apply(simp add: Abs_fresh_star)
+apply(rule at_set_avoiding2)
+apply(simp add: finite_supp)
+apply(simp add: finite_supp)
+apply(simp add: finite_supp)
+apply(simp add: Abs_fresh_star)
+thm foo.eq_iff
+apply(subgoal_tac
+ "\<exists>q. (q \<bullet> {atom name1}) \<sharp>* c \<and> supp ([[atom name1]]lst. trm1) \<sharp>* q")
+apply(subgoal_tac
+ "\<exists>q. (q \<bullet> {atom name2}) \<sharp>* c \<and> supp ([[atom name2]]lst. trm2) \<sharp>* q")
+apply(erule exE)+
+apply(erule conjE)+
+apply(rule assms(5))
+apply(perm_simp)
+apply(simp (no_asm) add: fresh_star_insert)
+apply(rule conjI)
+apply(simp add: fresh_star_def)
+apply(rotate_tac 3)
+apply(simp add: fresh_star_def)
+apply(simp)
+apply(simp add: foo.eq_iff)
+apply(drule supp_perm_eq[symmetric])+
+apply(simp add: atom_eqvt)
+apply(rule conjI)
+oops
+
+
+end
+
+
+
--- a/Nominal/Nominal2_Base.thy Mon Nov 15 20:54:01 2010 +0000
+++ b/Nominal/Nominal2_Base.thy Sun Nov 21 02:17:19 2010 +0000
@@ -1579,6 +1579,15 @@
apply(auto simp add: fresh_star_def)
done
+lemma at_set_avoiding3:
+ assumes "finite xs"
+ and "finite (supp c)" "finite (supp x)"
+ and "xs \<sharp>* x"
+ shows "\<exists>p. (p \<bullet> xs) \<sharp>* c \<and> x = p \<bullet> x"
+using at_set_avoiding2[OF assms]
+by (auto simp add: supp_perm_eq)
+
+
lemma at_set_avoiding2_atom:
assumes "finite (supp c)" "finite (supp x)"
and b: "a \<sharp> x"