--- a/Nominal/Ex/LetRecB.thy Tue Jun 28 14:34:07 2011 +0100
+++ b/Nominal/Ex/LetRecB.thy Tue Jun 28 14:49:48 2011 +0100
@@ -29,16 +29,16 @@
lemma Abs_lst_fcb2:
- fixes as bs :: "atom list"
+ fixes as bs :: "'a :: fs"
and x y :: "'b :: fs"
and c::"'c::fs"
- assumes eq: "[bf as]lst. x = [bf bs]lst. y"
- and fcb1: "(set (bf as)) \<sharp>* f as x c"
- and fresh1: "set (bf as) \<sharp>* c"
- and fresh2: "set (bf bs) \<sharp>* c"
+ assumes eq: "[ba as]lst. x = [ba bs]lst. y"
+ and fcb1: "(set (ba as)) \<sharp>* f as x c"
+ and fresh1: "set (ba as) \<sharp>* c"
+ and fresh2: "set (ba bs) \<sharp>* c"
and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f as x c) = f (p \<bullet> as) (p \<bullet> x) c"
and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f bs y c) = f (p \<bullet> bs) (p \<bullet> y) c"
- and props: "eqvt bf" "inj bf"
+ and props: "eqvt ba" "inj ba"
shows "f as x c = f bs y c"
proof -
have "supp (as, x, c) supports (f as x c)"
@@ -52,20 +52,20 @@
then have fin2: "finite (supp (f bs y c))"
by (auto intro: supports_finite simp add: finite_supp)
obtain q::"perm" where
- fr1: "(q \<bullet> (set (bf as))) \<sharp>* (x, c, f as x c, f bs y c)" and
- fr2: "supp q \<sharp>* ([bf as]lst. x)" and
- inc: "supp q \<subseteq> (set (bf as)) \<union> q \<bullet> (set (bf as))"
- using at_set_avoiding3[where xs="set (bf as)" and c="(x, c, f as x c, f bs y c)" and x="[bf as]lst. x"]
+ fr1: "(q \<bullet> (set (ba as))) \<sharp>* (x, c, f as x c, f bs y c)" and
+ fr2: "supp q \<sharp>* ([ba as]lst. x)" and
+ inc: "supp q \<subseteq> (set (ba as)) \<union> q \<bullet> (set (ba as))"
+ using at_set_avoiding3[where xs="set (ba as)" and c="(x, c, f as x c, f bs y c)" and x="[ba as]lst. x"]
fin1 fin2
by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv)
- have "[q \<bullet> (bf as)]lst. (q \<bullet> x) = q \<bullet> ([bf as]lst. x)" by simp
- also have "\<dots> = [bf as]lst. x"
+ have "[q \<bullet> (ba as)]lst. (q \<bullet> x) = q \<bullet> ([ba as]lst. x)" by simp
+ also have "\<dots> = [ba as]lst. x"
by (simp only: fr2 perm_supp_eq)
- finally have "[q \<bullet> (bf as)]lst. (q \<bullet> x) = [bf bs]lst. y" using eq by simp
+ finally have "[q \<bullet> (ba as)]lst. (q \<bullet> x) = [ba bs]lst. y" using eq by simp
then obtain r::perm where
qq1: "q \<bullet> x = r \<bullet> y" and
- qq2: "q \<bullet> (bf as) = r \<bullet> (bf bs)" and
- qq3: "supp r \<subseteq> (q \<bullet> (set (bf as))) \<union> set (bf bs)"
+ qq2: "q \<bullet> (ba as) = r \<bullet> (ba bs)" and
+ qq3: "supp r \<subseteq> (q \<bullet> (set (ba as))) \<union> set (ba bs)"
apply(drule_tac sym)
apply(simp only: Abs_eq_iff2 alphas)
apply(erule exE)
@@ -78,24 +78,24 @@
apply(perm_simp)
apply(simp)
done
- have "(set (bf as)) \<sharp>* f as x c" by (rule fcb1)
- then have "q \<bullet> ((set (bf as)) \<sharp>* f as x c)"
+ have "(set (ba as)) \<sharp>* f as x c" by (rule fcb1)
+ then have "q \<bullet> ((set (ba as)) \<sharp>* f as x c)"
by (simp add: permute_bool_def)
- then have "set (q \<bullet> (bf as)) \<sharp>* f (q \<bullet> as) (q \<bullet> x) c"
+ then have "set (q \<bullet> (ba as)) \<sharp>* f (q \<bullet> as) (q \<bullet> x) c"
apply(simp add: fresh_star_eqvt set_eqvt)
apply(subst (asm) perm1)
using inc fresh1 fr1
apply(auto simp add: fresh_star_def fresh_Pair)
done
- then have "set (r \<bullet> (bf bs)) \<sharp>* f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 qq4
+ then have "set (r \<bullet> (ba bs)) \<sharp>* f (r \<bullet> bs) (r \<bullet> y) c" using qq1 qq2 qq4
by simp
- then have "r \<bullet> ((set (bf bs)) \<sharp>* f bs y c)"
+ then have "r \<bullet> ((set (ba bs)) \<sharp>* f bs y c)"
apply(simp add: fresh_star_eqvt set_eqvt)
apply(subst (asm) perm2[symmetric])
using qq3 fresh2 fr1
apply(auto simp add: set_eqvt fresh_star_def fresh_Pair)
done
- then have fcb2: "(set (bf bs)) \<sharp>* f bs y c" by (simp add: permute_bool_def)
+ then have fcb2: "(set (ba bs)) \<sharp>* f bs y c" by (simp add: permute_bool_def)
have "f as x c = q \<bullet> (f as x c)"
apply(rule perm_supp_eq[symmetric])
using inc fcb1 fr1 by (auto simp add: fresh_star_def)
@@ -144,7 +144,8 @@
apply(simp)
apply(simp add: inj_on_def)
--"HERE"
- apply (drule_tac c="()" in Abs_lst_fcb2)
+ thm Abs_lst_fcb Abs_lst_fcb2
+ apply (drule_tac c="()" and ba="bn" in Abs_lst_fcb2)
prefer 8
apply(assumption)
apply (drule_tac c="()" in Abs_lst_fcb2)