cleaned a bit
authorChristian Urban <urbanc@in.tum.de>
Wed, 10 Feb 2010 20:35:54 +0100
changeset 1125 68b8ebcc5240
parent 1124 4a4c714ff795
child 1126 dd6ce36a0616
cleaned a bit
Quot/QuotBase.thy
--- a/Quot/QuotBase.thy	Wed Feb 10 17:22:18 2010 +0100
+++ b/Quot/QuotBase.thy	Wed Feb 10 20:35:54 2010 +0100
@@ -67,6 +67,7 @@
   by auto
 
 text {* Composition of Relations *}
+
 abbreviation 
   rel_conj (infixr "OOO" 75)
 where
@@ -190,20 +191,20 @@
   shows "Quotient (R1 ===> R2) (rep1 ---> abs2) (abs1 ---> rep2)"
 proof -
   have "\<forall>a. (rep1 ---> abs2) ((abs1 ---> rep2) a) = a"
-    apply(simp add: expand_fun_eq)
-    using q1 q2
-    apply(simp add: Quotient_def)
-    done
+    using q1 q2 
+    unfolding Quotient_def
+    unfolding expand_fun_eq
+    by simp
   moreover
   have "\<forall>a. (R1 ===> R2) ((abs1 ---> rep2) a) ((abs1 ---> rep2) a)"
-    apply(auto)
-    using q1 q2 unfolding Quotient_def
-    apply(metis)
-    done
+    using q1 q2 
+    unfolding Quotient_def
+    by (simp (no_asm)) (metis)
   moreover
   have "\<forall>r s. (R1 ===> R2) r s = ((R1 ===> R2) r r \<and> (R1 ===> R2) s s \<and> 
         (rep1 ---> abs2) r  = (rep1 ---> abs2) s)"
-    apply(auto simp add: expand_fun_eq)
+    unfolding expand_fun_eq
+    apply(auto)
     using q1 q2 unfolding Quotient_def
     apply(metis)
     using q1 q2 unfolding Quotient_def
@@ -221,16 +222,16 @@
 lemma abs_o_rep:
   assumes a: "Quotient R Abs Rep"
   shows "Abs o Rep = id"
-  apply(rule ext)
-  apply(simp add: Quotient_abs_rep[OF a])
-  done
+  unfolding expand_fun_eq
+  by (simp add: Quotient_abs_rep[OF a])
 
 lemma equals_rsp:
   assumes q: "Quotient R Abs Rep"
   and     a: "R xa xb" "R ya yb"
   shows "R xa ya = R xb yb"
-  using Quotient_symp[OF q] Quotient_transp[OF q] unfolding symp_def transp_def
-  using a by blast
+  using a Quotient_symp[OF q] Quotient_transp[OF q] 
+  unfolding symp_def transp_def
+  by blast
 
 lemma lambda_prs:
   assumes q1: "Quotient R1 Abs1 Rep1"
@@ -252,21 +253,23 @@
   assumes q: "Quotient R Abs Rep"
   and     a: "R x1 x2"
   shows "R x1 (Rep (Abs x2))"
-  using a 
-  by (metis Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q])
+  using a Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q]
+  by metis
 
 lemma rep_abs_rsp_left:
   assumes q: "Quotient R Abs Rep"
   and     a: "R x1 x2"
   shows "R (Rep (Abs x1)) x2"
-  using a 
-  by (metis Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q])
+  using a Quotient_rel[OF q] Quotient_abs_rep[OF q] Quotient_rep_reflp[OF q]
+  by metis
 
-(* In the following theorem R1 can be instantiated with anything,
-   but we know some of the types of the Rep and Abs functions;
-   so by solving Quotient assumptions we can get a unique R1 that
-   will be provable; which is why we need to use apply_rsp and
-   not the primed version *)
+text{* 
+  In the following theorem R1 can be instantiated with anything,
+  but we know some of the types of the Rep and Abs functions;
+  so by solving Quotient assumptions we can get a unique R1 that
+  will be provable; which is why we need to use apply_rsp and
+  not the primed version *}
+
 lemma apply_rsp:
   fixes f g::"'a \<Rightarrow> 'c"
   assumes q: "Quotient R1 Abs1 Rep1"
@@ -285,33 +288,37 @@
   fixes P :: "'a \<Rightarrow> bool"
   assumes a: "equivp R"
   shows "Ball (Respects R) P = (All P)"
-  by (metis equivp_def in_respects a)
+  using a 
+  unfolding equivp_def
+  by (auto simp add: in_respects)
 
 lemma bex_reg_eqv:
   fixes P :: "'a \<Rightarrow> bool"
   assumes a: "equivp R"
   shows "Bex (Respects R) P = (Ex P)"
-  by (metis equivp_def in_respects a)
+  using a 
+  unfolding equivp_def
+  by (auto simp add: in_respects)
 
 lemma ball_reg_right:
   assumes a: "\<And>x. R x \<Longrightarrow> P x \<longrightarrow> Q x"
   shows "All P \<longrightarrow> Ball R Q"
-  by (metis COMBC_def Collect_def Collect_mem_eq a)
+  using a by (metis COMBC_def Collect_def Collect_mem_eq)
 
 lemma bex_reg_left:
   assumes a: "\<And>x. R x \<Longrightarrow> Q x \<longrightarrow> P x"
   shows "Bex R Q \<longrightarrow> Ex P"
-  by (metis COMBC_def Collect_def Collect_mem_eq a)
+  using a by (metis COMBC_def Collect_def Collect_mem_eq)
 
 lemma ball_reg_left:
   assumes a: "equivp R"
   shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ball (Respects R) Q \<longrightarrow> All P"
-  by (metis equivp_reflp in_respects a)
+  using a by (metis equivp_reflp in_respects)
 
 lemma bex_reg_right:
   assumes a: "equivp R"
   shows "(\<And>x. (Q x \<longrightarrow> P x)) \<Longrightarrow> Ex Q \<longrightarrow> Bex (Respects R) P"
-  by (metis equivp_reflp in_respects a)
+  using a by (metis equivp_reflp in_respects)
 
 lemma ball_reg_eqv_range:
   fixes P::"'a \<Rightarrow> bool"
@@ -351,7 +358,7 @@
   assumes a: "!x :: 'a. (P x --> Q x)"
   and     b: "Ex P"
   shows "Ex Q"
-  using a b by (metis)
+  using a b by metis
 
 lemma ball_reg:
   assumes a: "!x :: 'a. (R x --> P x --> Q x)"
@@ -366,12 +373,14 @@
   using a b by (metis COMBC_def Collect_def Collect_mem_eq)
 
 lemma ball_all_comm:
-  "(\<And>y. (\<forall>x\<in>P. A x y) \<longrightarrow> (\<forall>x. B x y)) \<Longrightarrow> ((\<forall>x\<in>P. \<forall>y. A x y) \<longrightarrow> (\<forall>x. \<forall>y. B x y))"
-  by auto
+  assumes "\<And>y. (\<forall>x\<in>P. A x y) \<longrightarrow> (\<forall>x. B x y)"
+  shows "(\<forall>x\<in>P. \<forall>y. A x y) \<longrightarrow> (\<forall>x. \<forall>y. B x y)"
+  using assms by auto
 
 lemma bex_ex_comm:
-  "((\<exists>y. \<exists>x. A x y) \<longrightarrow> (\<exists>y. \<exists>x\<in>P. B x y)) \<Longrightarrow> ((\<exists>x. \<exists>y. A x y) \<longrightarrow> (\<exists>x\<in>P. \<exists>y. B x y))"
-  by auto
+  assumes "(\<exists>y. \<exists>x. A x y) \<longrightarrow> (\<exists>y. \<exists>x\<in>P. B x y)"
+  shows "(\<exists>x. \<exists>y. A x y) \<longrightarrow> (\<exists>x\<in>P. \<exists>y. B x y)"
+  using assms by auto
 
 section {* Bounded abstraction *}
 
@@ -384,7 +393,7 @@
   assumes q: "Quotient R1 Abs1 Rep1"
   and     a: "(R1 ===> R2) f g"
   shows      "(R1 ===> R2) (Babs (Respects R1) f) (Babs (Respects R1) g)"
-  apply (auto simp add: Babs_def)
+  apply (auto simp add: Babs_def in_respects)
   apply (subgoal_tac "x \<in> Respects R1 \<and> y \<in> Respects R1")
   using a apply (simp add: Babs_def)
   apply (simp add: in_respects)