--- a/LFex.thy Thu Dec 03 02:53:54 2009 +0100
+++ b/LFex.thy Thu Dec 03 11:28:19 2009 +0100
@@ -2,17 +2,17 @@
imports Nominal QuotMain
begin
-atom_decl name id
+atom_decl name ident
nominal_datatype kind =
Type
| KPi "ty" "name" "kind"
and ty =
- TConst "id"
+ TConst "ident"
| TApp "ty" "trm"
| TPi "ty" "name" "ty"
and trm =
- Const "id"
+ Const "ident"
| Var "name"
| App "trm" "trm"
| Lam "ty" "name" "trm"
@@ -93,7 +93,7 @@
"KPI \<equiv> KPi"
quotient_def
- TCONST :: "id \<Rightarrow> TY"
+ TCONST :: "ident \<Rightarrow> TY"
where
"TCONST \<equiv> TConst"
@@ -109,7 +109,7 @@
(* FIXME: does not work with CONST *)
quotient_def
- CONS :: "id \<Rightarrow> TRM"
+ CONS :: "ident \<Rightarrow> TRM"
where
"CONS \<equiv> Const"
@@ -264,6 +264,12 @@
using a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11
apply -
apply(tactic {* procedure_tac @{context} @{thm akind_aty_atrm.induct} 1 *})
+(*
+Profiling:
+ML_prf {* fun ith i = (#concl (fst (Subgoal.focus @{context} i (#goal (Isar.goal ()))))) *}
+ML_prf {* profile 2 Seq.list_of ((clean_tac @{context} quot defs 1) (ith 3)) *}
+ML_prf {* profile 2 Seq.list_of ((regularize_tac @{context} @{thms alpha_EQUIVs} 1) (ith 1)) *}
+*)
apply(tactic {* regularize_tac @{context} @{thms alpha_EQUIVs} 1 *})
prefer 2
apply(tactic {* clean_tac @{context} quot defs 1 *})
--- a/QuotMain.thy Thu Dec 03 02:53:54 2009 +0100
+++ b/QuotMain.thy Thu Dec 03 11:28:19 2009 +0100
@@ -938,7 +938,7 @@
(FIRST' [
(* "cong" rule of the of the relation / transitivity*)
(* (op =) (R a b) (R c d) ----> \<lbrakk>R a c; R b d\<rbrakk> *)
- DT ctxt "1" (resolve_tac trans2),
+ NDT ctxt "1" (resolve_tac trans2),
(* (R1 ===> R2) (\<lambda>x\<dots>) (\<lambda>y\<dots>) ----> \<lbrakk>R1 x y\<rbrakk> \<Longrightarrow> R2 (\<dots>x) (\<dots>y) *)
NDT ctxt "2" (lambda_rsp_tac),
@@ -1063,13 +1063,6 @@
(EqSubst.eqsubst_tac ctxt [0] @{thms all_prs ex_prs}) THEN' (quotient_tac ctxt quot)
*}
-(* Rewrites the term with LAMBDA_PRS thm.
-
-Replaces: (Rep1 ---> Abs2) (\<lambda>x. Rep2 (f (Abs1 x)))
- with: f
-
-It proves the QUOTIENT assumptions by calling quotient_tac
- *)
ML {*
fun make_inst lhs t =
let
@@ -1085,9 +1078,24 @@
in (f, Abs ("x", T, mk_abs 0 g)) end;
*}
+(* It proves the QUOTIENT assumptions by calling quotient_tac *)
ML {*
-fun lambda_prs_simple_conv quot_thms ctxt ctrm =
- case (term_of ctrm) of ((Const (@{const_name "fun_map"}, _) $ r1 $ a2) $ (Abs _)) =>
+fun solve_quotient_assum i quot_thms ctxt thm =
+ let
+ val tac =
+ (compose_tac (false, thm, i)) THEN_ALL_NEW
+ (quotient_tac ctxt quot_thms);
+ val gc = Drule.strip_imp_concl (cprop_of thm);
+ in
+ Goal.prove_internal [] gc (fn _ => tac 1)
+ end
+ handle _ => error "solve_quotient_assum"
+*}
+
+ML {*
+fun lambda_allex_prs_simple_conv quot_thms ctxt ctrm =
+ case (term_of ctrm) of
+ ((Const (@{const_name fun_map}, _) $ r1 $ a2) $ (Abs _)) =>
let
val (_, [ty_b, ty_a]) = dest_Type (fastype_of r1);
val (_, [ty_c, ty_d]) = dest_Type (fastype_of a2);
@@ -1096,17 +1104,37 @@
val tyinst = [SOME cty_a, SOME cty_b, SOME cty_c, SOME cty_d];
val tinst = [NONE, NONE, SOME (cterm_of thy r1), NONE, SOME (cterm_of thy a2)]
val lpi = Drule.instantiate' tyinst tinst @{thm LAMBDA_PRS};
- val tac =
- (compose_tac (false, lpi, 2)) THEN_ALL_NEW
- (quotient_tac ctxt quot_thms);
- val gc = Drule.strip_imp_concl (cprop_of lpi);
- val t = Goal.prove_internal [] gc (fn _ => tac 1)
- val te = @{thm eq_reflection} OF [t]
+ val te = @{thm eq_reflection} OF [solve_quotient_assum 2 quot_thms ctxt lpi]
val ts = MetaSimplifier.rewrite_rule @{thms id_simps} te
val tl = Thm.lhs_of ts;
val (insp, inst) = make_inst (term_of tl) (term_of ctrm);
val ti = Drule.instantiate ([], [(cterm_of thy insp, cterm_of thy inst)]) ts;
-(* val _ = writeln (Syntax.string_of_term @{context} (term_of (cprop_of ti)));*)
+ in
+ Conv.rewr_conv ti ctrm
+ end
+ | (Const (@{const_name Ball}, _) $ (Const (@{const_name Respects}, _) $ R) $
+ (((Const (@{const_name fun_map}, _) $ absf $ (Const (@{const_name id}, _)))) $ f)) =>
+ let
+ val (_, [ty_a, ty_b]) = dest_Type (fastype_of absf);
+ val thy = ProofContext.theory_of ctxt;
+ val (cty_a, cty_b) = (ctyp_of thy ty_a, ctyp_of thy ty_b);
+ val tyinst = [SOME cty_a, SOME cty_b];
+ val tinst = [SOME (cterm_of thy R), SOME (cterm_of thy absf), NONE, SOME (cterm_of thy f)];
+ val thm = Drule.instantiate' tyinst tinst @{thm all_prs};
+ val ti = @{thm eq_reflection} OF [solve_quotient_assum 1 quot_thms ctxt thm];
+ in
+ Conv.rewr_conv ti ctrm
+ end
+ | (Const (@{const_name Bex}, _) $ (Const (@{const_name Respects}, _) $ R) $
+ (((Const (@{const_name fun_map}, _) $ absf $ (Const (@{const_name id}, _)))) $ f)) =>
+ let
+ val (_, [ty_a, ty_b]) = dest_Type (fastype_of absf);
+ val thy = ProofContext.theory_of ctxt;
+ val (cty_a, cty_b) = (ctyp_of thy ty_a, ctyp_of thy ty_b);
+ val tyinst = [SOME cty_a, SOME cty_b];
+ val tinst = [SOME (cterm_of thy R), SOME (cterm_of thy absf), NONE, SOME (cterm_of thy f)];
+ val thm = Drule.instantiate' tyinst tinst @{thm ex_prs};
+ val ti = @{thm eq_reflection} OF [solve_quotient_assum 1 quot_thms ctxt thm];
in
Conv.rewr_conv ti ctrm
end
@@ -1116,12 +1144,12 @@
(* quot stands for the QUOTIENT theorems: *)
(* could be potentially all of them *)
ML {*
-fun lambda_prs_conv quot =
- More_Conv.top_conv (lambda_prs_simple_conv quot)
+fun lambda_allex_prs_conv quot =
+ More_Conv.top_conv (lambda_allex_prs_simple_conv quot)
*}
ML {*
-fun lambda_prs_tac quot ctxt = CONVERSION (lambda_prs_conv quot ctxt)
+fun lambda_allex_prs_tac quot ctxt = CONVERSION (lambda_allex_prs_conv quot ctxt)
*}
(*
@@ -1150,9 +1178,6 @@
The rest are a simp_tac and are fast.
*)
-thm all_prs ex_prs
-
-
ML {*
fun clean_tac lthy quot defs =
let
@@ -1164,20 +1189,17 @@
(@{thm eq_reflection[OF fun_map.simps]} :: @{thms id_simps} @ meta_absrep @ meta_reps_same @ defs)
in
EVERY' [
-
(* (Rep1 ---> Abs2) (\<lambda>x. Rep2 (f (Abs1 x))) ----> f *)
- DT lthy "a" (TRY o lambda_prs_tac quot lthy),
+ (* \<forall>x\<in>Respects R. (abs ---> id) f ----> \<forall>x. f *)
+ NDT lthy "a" (TRY o lambda_allex_prs_tac quot lthy),
- (* \<forall>x\<in>Respects R. (abs ---> id) f ----> \<forall>x. f *)
- DT lthy "b" (TRY o REPEAT_ALL_NEW (allex_prs_tac lthy quot)),
-
(* NewConst ----> (rep ---> abs) oldConst *)
(* Abs (Rep x) ----> x *)
(* id_simps; fun_map.simps *)
- DT lthy "c" (TRY o simp_tac simp_ctxt),
+ NDT lthy "c" (TRY o simp_tac simp_ctxt),
(* final step *)
- DT lthy "d" (TRY o rtac refl)
+ NDT lthy "d" (TRY o rtac refl)
]
end
*}