--- a/QuotMain.thy Thu Aug 20 10:31:44 2009 +0200
+++ b/QuotMain.thy Thu Aug 20 14:44:29 2009 +0200
@@ -583,3 +583,63 @@
apply(rule list_eq_sym)
done
+lemma helper:
+ assumes a : "list_eq l1 r1"
+ shows "list_eq (l1 @ l) (r1 @ l)"
+ using a
+ apply(induct)
+ apply(simp add:list_eq.intros)
+ apply(simp add:list_eq_sym)
+ apply(simp add:list_eq.intros(3))
+ apply(simp add:list_eq.intros(4))
+ apply(simp add:list_eq.intros(5))
+ apply(rule_tac list_eq.intros(6))
+ apply(assumption)
+ apply(assumption)
+done
+
+lemma yyy :
+ shows "
+ (
+ (UNION EMPTY s = s) &
+ ((UNION (INSERT e s1) s2) = (INSERT e (UNION s1 s2)))
+ ) = (
+ ((ABS_fset ([] @ REP_fset s)) = s) &
+ ((ABS_fset ((e # (REP_fset s1)) @ REP_fset s2)) = ABS_fset (e # (REP_fset s1 @ REP_fset s2)))
+ )"
+ unfolding UNION_def EMPTY_def INSERT_def
+ apply(rule_tac f="(op &)" in arg_cong2)
+ apply(rule_tac f="(op =)" in arg_cong2)
+ apply (unfold REP_fset_def ABS_fset_def)
+ apply(simp only: QUOT_TYPE.thm11[OF QUOT_TYPE_fset,symmetric])
+ apply(rule helper)
+ apply(rule list_eq.intros(3))
+ apply(rule QUOT_TYPE.REP_ABS_rsp[OF QUOT_TYPE_fset])
+ apply(rule list_eq_sym)
+ apply(simp)
+ apply(rule_tac f="(op =)" in arg_cong2)
+ apply(simp only: QUOT_TYPE.thm11[OF QUOT_TYPE_fset,symmetric])
+ apply(rule helper)
+ apply(rule list_eq.intros(3))
+ apply(rule QUOT_TYPE.REP_ABS_rsp[OF QUOT_TYPE_fset])
+ apply(rule list_eq_sym)
+ apply(simp only: QUOT_TYPE.thm11[OF QUOT_TYPE_fset,symmetric])
+ apply(fold REP_fset_def ABS_fset_def)
+ apply(rule list_eq.intros(5))
+ apply(rule list_eq.intros(3))
+ apply (unfold REP_fset_def ABS_fset_def)
+ apply(rule QUOT_TYPE.REP_ABS_rsp[OF QUOT_TYPE_fset])
+ apply(rule list_eq_sym)
+done
+
+lemma
+ shows "
+ (
+ (UNION EMPTY s = s) &
+ ((UNION (INSERT e s1) s2) = (INSERT e (UNION s1 s2)))
+ )"
+ apply(simp add:yyy)
+ apply (unfold REP_fset_def ABS_fset_def)
+ apply (rule QUOT_TYPE.thm10[OF QUOT_TYPE_fset])
+done
+
--- a/Quotients.thy Thu Aug 20 10:31:44 2009 +0200
+++ b/Quotients.thy Thu Aug 20 14:44:29 2009 +0200
@@ -138,7 +138,7 @@
lemma QUOTIENT_PROD:
assumes a: "QUOTIENT E1 Abs1 Rep1"
and b: "QUOTIENT E2 Abs2 Rep2"
- shows "QUOTIENT (PROD_REL E1 e2) (prod_map Abs1 Abs2) (prod_map Rep1 rep2)"
+ shows "QUOTIENT (PROD_REL E1 E2) (prod_map Abs1 Abs2) (prod_map Rep1 Rep2)"
using a b unfolding QUOTIENT_def
oops