reorganised eqvt-file (now uses perm_simp already)
authorChristian Urban <urbanc@in.tum.de>
Fri, 30 Apr 2010 10:09:45 +0100
changeset 1995 652f310f0dba
parent 1994 abada9e6f943
child 1997 bc075a4ef02f
reorganised eqvt-file (now uses perm_simp already)
Nominal-General/Nominal2_Eqvt.thy
--- a/Nominal-General/Nominal2_Eqvt.thy	Fri Apr 30 10:04:24 2010 +0200
+++ b/Nominal-General/Nominal2_Eqvt.thy	Fri Apr 30 10:09:45 2010 +0100
@@ -12,254 +12,15 @@
      ("nominal_eqvt.ML")
 begin
 
-section {* Logical Operators *}
 
-lemma eq_eqvt:
-  shows "p \<bullet> (x = y) \<longleftrightarrow> (p \<bullet> x) = (p \<bullet> y)"
-  unfolding permute_eq_iff permute_bool_def ..
-
-lemma if_eqvt:
-  shows "p \<bullet> (if b then x else y) = (if p \<bullet> b then p \<bullet> x else p \<bullet> y)"
-  by (simp add: permute_fun_def permute_bool_def)
-
-lemma True_eqvt:
-  shows "p \<bullet> True = True"
-  unfolding permute_bool_def ..
-
-lemma False_eqvt:
-  shows "p \<bullet> False = False"
-  unfolding permute_bool_def ..
-
-lemma imp_eqvt:
-  shows "p \<bullet> (A \<longrightarrow> B) = ((p \<bullet> A) \<longrightarrow> (p \<bullet> B))"
-  by (simp add: permute_bool_def)
-
-lemma conj_eqvt:
-  shows "p \<bullet> (A \<and> B) = ((p \<bullet> A) \<and> (p \<bullet> B))"
-  by (simp add: permute_bool_def)
-
-lemma disj_eqvt:
-  shows "p \<bullet> (A \<or> B) = ((p \<bullet> A) \<or> (p \<bullet> B))"
-  by (simp add: permute_bool_def)
-
-lemma Not_eqvt:
-  shows "p \<bullet> (\<not> A) = (\<not> (p \<bullet> A))"
-  by (simp add: permute_bool_def)
-
-lemma all_eqvt:
-  shows "p \<bullet> (\<forall>x. P x) = (\<forall>x. (p \<bullet> P) x)"
-  unfolding permute_fun_def permute_bool_def
-  by (auto, drule_tac x="p \<bullet> x" in spec, simp)
-
-lemma all_eqvt2:
-  shows "p \<bullet> (\<forall>x. P x) = (\<forall>x. p \<bullet> P (- p \<bullet> x))"
-  unfolding permute_fun_def permute_bool_def
-  by (auto, drule_tac x="p \<bullet> x" in spec, simp)
-
-lemma ex_eqvt:
-  shows "p \<bullet> (\<exists>x. P x) = (\<exists>x. (p \<bullet> P) x)"
-  unfolding permute_fun_def permute_bool_def
-  by (auto, rule_tac x="p \<bullet> x" in exI, simp)
-
-lemma ex_eqvt2:
-  shows "p \<bullet> (\<exists>x. P x) = (\<exists>x. p \<bullet> P (- p \<bullet> x))"
-  unfolding permute_fun_def permute_bool_def
-  by (auto, rule_tac x="p \<bullet> x" in exI, simp)
-
-lemma ex1_eqvt:
-  shows "p \<bullet> (\<exists>!x. P x) = (\<exists>!x. (p \<bullet> P) x)"
-  unfolding Ex1_def 
-  by (simp add: ex_eqvt permute_fun_def conj_eqvt all_eqvt imp_eqvt eq_eqvt)
-
-lemma ex1_eqvt2:
-  shows "p \<bullet> (\<exists>!x. P x) = (\<exists>!x. p \<bullet> P (- p \<bullet> x))"
-  unfolding Ex1_def ex_eqvt2 conj_eqvt all_eqvt2 imp_eqvt eq_eqvt
-  by simp
-
-lemma the_eqvt:
-  assumes unique: "\<exists>!x. P x"
-  shows "(p \<bullet> (THE x. P x)) = (THE x. p \<bullet> P (- p \<bullet> x))"
-  apply(rule the1_equality [symmetric])
-  apply(simp add: ex1_eqvt2[symmetric])
-  apply(simp add: permute_bool_def unique)
-  apply(simp add: permute_bool_def)
-  apply(rule theI'[OF unique])
-  done
-
-section {* Set Operations *}
-
-lemma mem_permute_iff:
-  shows "(p \<bullet> x) \<in> (p \<bullet> X) \<longleftrightarrow> x \<in> X"
-unfolding mem_def permute_fun_def permute_bool_def
-by simp
-
-lemma mem_eqvt:
-  shows "p \<bullet> (x \<in> A) \<longleftrightarrow> (p \<bullet> x) \<in> (p \<bullet> A)"
-  unfolding mem_permute_iff permute_bool_def by simp
-
-lemma not_mem_eqvt:
-  shows "p \<bullet> (x \<notin> A) \<longleftrightarrow> (p \<bullet> x) \<notin> (p \<bullet> A)"
-  unfolding mem_def permute_fun_def by (simp add: Not_eqvt)
-
-lemma Collect_eqvt:
-  shows "p \<bullet> {x. P x} = {x. (p \<bullet> P) x}"
-  unfolding Collect_def permute_fun_def ..
-
-lemma Collect_eqvt2:
-  shows "p \<bullet> {x. P x} = {x. p \<bullet> (P (-p \<bullet> x))}"
-  unfolding Collect_def permute_fun_def ..
-
-lemma empty_eqvt:
-  shows "p \<bullet> {} = {}"
-  unfolding empty_def Collect_eqvt2 False_eqvt ..
-
-lemma supp_set_empty:
-  shows "supp {} = {}"
-  by (simp add: supp_def empty_eqvt)
-
-lemma fresh_set_empty:
-  shows "a \<sharp> {}"
-  by (simp add: fresh_def supp_set_empty)
-
-lemma UNIV_eqvt:
-  shows "p \<bullet> UNIV = UNIV"
-  unfolding UNIV_def Collect_eqvt2 True_eqvt ..
-
-lemma union_eqvt:
-  shows "p \<bullet> (A \<union> B) = (p \<bullet> A) \<union> (p \<bullet> B)"
-  unfolding Un_def Collect_eqvt2 disj_eqvt mem_eqvt by simp
-
-lemma inter_eqvt:
-  shows "p \<bullet> (A \<inter> B) = (p \<bullet> A) \<inter> (p \<bullet> B)"
-  unfolding Int_def Collect_eqvt2 conj_eqvt mem_eqvt by simp
-
-lemma Diff_eqvt:
-  fixes A B :: "'a::pt set"
-  shows "p \<bullet> (A - B) = p \<bullet> A - p \<bullet> B"
-  unfolding set_diff_eq Collect_eqvt2 conj_eqvt Not_eqvt mem_eqvt by simp
-
-lemma Compl_eqvt:
-  fixes A :: "'a::pt set"
-  shows "p \<bullet> (- A) = - (p \<bullet> A)"
-  unfolding Compl_eq_Diff_UNIV Diff_eqvt UNIV_eqvt ..
-
-lemma insert_eqvt:
-  shows "p \<bullet> (insert x A) = insert (p \<bullet> x) (p \<bullet> A)"
-  unfolding permute_set_eq_image image_insert ..
-
-lemma vimage_eqvt:
-  shows "p \<bullet> (f -` A) = (p \<bullet> f) -` (p \<bullet> A)"
-  unfolding vimage_def permute_fun_def [where f=f]
-  unfolding Collect_eqvt2 mem_eqvt ..
-
-lemma finite_permute_iff:
-  shows "finite (p \<bullet> A) \<longleftrightarrow> finite A"
-  unfolding permute_set_eq_vimage
-  using bij_permute by (rule finite_vimage_iff)
-
-lemma finite_eqvt:
-  shows "p \<bullet> finite A = finite (p \<bullet> A)"
-  unfolding finite_permute_iff permute_bool_def ..
-
-
-section {* List Operations *}
-
-lemma append_eqvt:
-  shows "p \<bullet> (xs @ ys) = (p \<bullet> xs) @ (p \<bullet> ys)"
-  by (induct xs) auto
-
-lemma supp_append:
-  shows "supp (xs @ ys) = supp xs \<union> supp ys"
-  by (induct xs) (auto simp add: supp_Nil supp_Cons)
-
-lemma fresh_append:
-  shows "a \<sharp> (xs @ ys) \<longleftrightarrow> a \<sharp> xs \<and> a \<sharp> ys"
-  by (induct xs) (simp_all add: fresh_Nil fresh_Cons)
-
-lemma rev_eqvt:
-  shows "p \<bullet> (rev xs) = rev (p \<bullet> xs)"
-  by (induct xs) (simp_all add: append_eqvt)
-
-lemma supp_rev:
-  shows "supp (rev xs) = supp xs"
-  by (induct xs) (auto simp add: supp_append supp_Cons supp_Nil)
-
-lemma fresh_rev:
-  shows "a \<sharp> rev xs \<longleftrightarrow> a \<sharp> xs"
-  by (induct xs) (auto simp add: fresh_append fresh_Cons fresh_Nil)
-
-lemma set_eqvt:
-  shows "p \<bullet> (set xs) = set (p \<bullet> xs)"
-  by (induct xs) (simp_all add: empty_eqvt insert_eqvt)
-
-(* needs finite support premise
-lemma supp_set:
-  fixes x :: "'a::pt"
-  shows "supp (set xs) = supp xs"
-*)
-
-lemma map_eqvt: 
-  shows "p \<bullet> (map f xs) = map (p \<bullet> f) (p \<bullet> xs)"
-  by (induct xs) (simp_all, simp only: permute_fun_app_eq)
-
-section {* Product Operations *}
-
-lemma fst_eqvt:
-  "p \<bullet> (fst x) = fst (p \<bullet> x)"
- by (cases x) simp
-
-lemma snd_eqvt:
-  "p \<bullet> (snd x) = snd (p \<bullet> x)"
- by (cases x) simp
-
-section {* Units *}
-
-lemma supp_unit:
-  shows "supp () = {}"
-  by (simp add: supp_def)
-
-lemma fresh_unit:
-  shows "a \<sharp> ()"
-  by (simp add: fresh_def supp_unit)
-
-lemma permute_eqvt_raw:
-  shows "p \<bullet> permute = permute"
-apply(simp add: expand_fun_eq permute_fun_def)
-apply(subst permute_eqvt)
-apply(simp)
-done
-
-
-section {* Equivariance automation *}
+section {* Permsimp and Eqvt infrastructure *}
 
 text {* Setup of the theorem attributes @{text eqvt} and @{text eqvt_raw} *}
 
 use "nominal_thmdecls.ML"
 setup "Nominal_ThmDecls.setup"
 
-ML {* Thm.full_rules *}
-lemmas [eqvt] = 
-  (* connectives *)
-  eq_eqvt if_eqvt imp_eqvt disj_eqvt conj_eqvt Not_eqvt 
-  True_eqvt False_eqvt ex_eqvt all_eqvt ex1_eqvt
-  imp_eqvt [folded induct_implies_def]
-
-  (* nominal *)
-  supp_eqvt fresh_eqvt add_perm_eqvt atom_eqvt
-
-  (* datatypes *)
-  permute_prod.simps append_eqvt rev_eqvt set_eqvt
-  map_eqvt fst_eqvt snd_eqvt Pair_eqvt permute_list.simps
-
-  (* sets *)
-  empty_eqvt UNIV_eqvt union_eqvt inter_eqvt mem_eqvt
-  Diff_eqvt Compl_eqvt insert_eqvt Collect_eqvt image_eqvt
-
- 
-lemmas [eqvt_raw] =
-  permute_eqvt_raw[THEN eq_reflection] (* the normal version of this lemma loops *)
-
-text {* helper lemmas for the eqvt_tac *}
+text {* helper lemmas for the perm_simp *}
 
 definition
   "unpermute p = permute (- p)"
@@ -279,7 +40,8 @@
   shows "p \<bullet> unpermute p x \<equiv> x"
   unfolding unpermute_def by simp
 
-(* provides perm_simp methods *)
+text {* provides perm_simp methods *}
+
 use "nominal_permeq.ML"
 setup Nominal_Permeq.setup
 
@@ -291,6 +53,249 @@
  {* Nominal_Permeq.args_parser >> Nominal_Permeq.perm_strict_simp_meth *}
  {* pushes permutations inside, raises an error if it cannot solve all permutations. *}
 
+(* the normal version of this lemma would cause loops *)
+lemma permute_eqvt_raw[eqvt_raw]:
+  shows "p \<bullet> permute \<equiv> permute"
+apply(simp add: expand_fun_eq permute_fun_def)
+apply(subst permute_eqvt)
+apply(simp)
+done
+
+section {* Logical Operators *}
+
+lemma eq_eqvt[eqvt]:
+  shows "p \<bullet> (x = y) \<longleftrightarrow> (p \<bullet> x) = (p \<bullet> y)"
+  unfolding permute_eq_iff permute_bool_def ..
+
+lemma if_eqvt[eqvt]:
+  shows "p \<bullet> (if b then x else y) = (if p \<bullet> b then p \<bullet> x else p \<bullet> y)"
+  by (simp add: permute_fun_def permute_bool_def)
+
+lemma True_eqvt[eqvt]:
+  shows "p \<bullet> True = True"
+  unfolding permute_bool_def ..
+
+lemma False_eqvt[eqvt]:
+  shows "p \<bullet> False = False"
+  unfolding permute_bool_def ..
+
+lemma imp_eqvt[eqvt]:
+  shows "p \<bullet> (A \<longrightarrow> B) = ((p \<bullet> A) \<longrightarrow> (p \<bullet> B))"
+  by (simp add: permute_bool_def)
+
+lemma conj_eqvt[eqvt]:
+  shows "p \<bullet> (A \<and> B) = ((p \<bullet> A) \<and> (p \<bullet> B))"
+  by (simp add: permute_bool_def)
+
+lemma disj_eqvt[eqvt]:
+  shows "p \<bullet> (A \<or> B) = ((p \<bullet> A) \<or> (p \<bullet> B))"
+  by (simp add: permute_bool_def)
+
+lemma Not_eqvt[eqvt]:
+  shows "p \<bullet> (\<not> A) \<longleftrightarrow> \<not> (p \<bullet> A)"
+  by (simp add: permute_bool_def)
+
+lemma all_eqvt[eqvt]:
+  shows "p \<bullet> (\<forall>x. P x) = (\<forall>x. (p \<bullet> P) x)"
+  unfolding permute_fun_def permute_bool_def
+  by (auto, drule_tac x="p \<bullet> x" in spec, simp)
+
+lemma all_eqvt2:
+  shows "p \<bullet> (\<forall>x. P x) = (\<forall>x. p \<bullet> P (- p \<bullet> x))"
+  by (perm_simp add: permute_minus_cancel) (rule refl)
+
+lemma ex_eqvt[eqvt]:
+  shows "p \<bullet> (\<exists>x. P x) = (\<exists>x. (p \<bullet> P) x)"
+  unfolding permute_fun_def permute_bool_def
+  by (auto, rule_tac x="p \<bullet> x" in exI, simp)
+
+lemma ex_eqvt2:
+  shows "p \<bullet> (\<exists>x. P x) = (\<exists>x. p \<bullet> P (- p \<bullet> x))"
+  by (perm_simp add: permute_minus_cancel) (rule refl)
+
+lemma ex1_eqvt[eqvt]:
+  shows "p \<bullet> (\<exists>!x. P x) = (\<exists>!x. (p \<bullet> P) x)"
+  unfolding Ex1_def
+  by (perm_simp) (rule refl)
+
+lemma ex1_eqvt2:
+  shows "p \<bullet> (\<exists>!x. P x) = (\<exists>!x. p \<bullet> P (- p \<bullet> x))"
+  by (perm_simp add: permute_minus_cancel) (rule refl)
+
+lemma the_eqvt:
+  assumes unique: "\<exists>!x. P x"
+  shows "(p \<bullet> (THE x. P x)) = (THE x. p \<bullet> P (- p \<bullet> x))"
+  apply(rule the1_equality [symmetric])
+  apply(simp add: ex1_eqvt2[symmetric])
+  apply(simp add: permute_bool_def unique)
+  apply(simp add: permute_bool_def)
+  apply(rule theI'[OF unique])
+  done
+
+section {* Set Operations *}
+
+lemma mem_permute_iff:
+  shows "(p \<bullet> x) \<in> (p \<bullet> X) \<longleftrightarrow> x \<in> X"
+  unfolding mem_def permute_fun_def permute_bool_def
+  by simp
+
+lemma mem_eqvt[eqvt]:
+  shows "p \<bullet> (x \<in> A) \<longleftrightarrow> (p \<bullet> x) \<in> (p \<bullet> A)"
+  unfolding mem_def
+  by (perm_simp) (rule refl)
+
+lemma not_mem_eqvt:
+  shows "p \<bullet> (x \<notin> A) \<longleftrightarrow> (p \<bullet> x) \<notin> (p \<bullet> A)"
+  by (perm_simp) (rule refl)
+
+lemma Collect_eqvt[eqvt]:
+  shows "p \<bullet> {x. P x} = {x. (p \<bullet> P) x}"
+  unfolding Collect_def permute_fun_def ..
+
+lemma Collect_eqvt2:
+  shows "p \<bullet> {x. P x} = {x. p \<bullet> (P (-p \<bullet> x))}"
+  by (perm_simp add: permute_minus_cancel) (rule refl)
+
+lemma empty_eqvt[eqvt]:
+  shows "p \<bullet> {} = {}"
+  unfolding empty_def
+  by (perm_simp) (rule refl)
+
+lemma supp_set_empty:
+  shows "supp {} = {}"
+  unfolding supp_def
+  by (simp add: empty_eqvt)
+
+lemma fresh_set_empty:
+  shows "a \<sharp> {}"
+  by (simp add: fresh_def supp_set_empty)
+
+lemma UNIV_eqvt[eqvt]:
+  shows "p \<bullet> UNIV = UNIV"
+  unfolding UNIV_def
+  by (perm_simp) (rule refl)
+
+lemma union_eqvt[eqvt]:
+  shows "p \<bullet> (A \<union> B) = (p \<bullet> A) \<union> (p \<bullet> B)"
+  unfolding Un_def
+  by (perm_simp) (rule refl)
+
+lemma inter_eqvt[eqvt]:
+  shows "p \<bullet> (A \<inter> B) = (p \<bullet> A) \<inter> (p \<bullet> B)"
+  unfolding Int_def 
+  by (perm_simp) (rule refl)
+
+lemma Diff_eqvt[eqvt]:
+  fixes A B :: "'a::pt set"
+  shows "p \<bullet> (A - B) = p \<bullet> A - p \<bullet> B"
+  unfolding set_diff_eq
+  by (perm_simp) (rule refl)
+
+lemma Compl_eqvt[eqvt]:
+  fixes A :: "'a::pt set"
+  shows "p \<bullet> (- A) = - (p \<bullet> A)"
+  unfolding Compl_eq_Diff_UNIV
+  by (perm_simp) (rule refl)
+
+lemma insert_eqvt[eqvt]:
+  shows "p \<bullet> (insert x A) = insert (p \<bullet> x) (p \<bullet> A)"
+  unfolding permute_set_eq_image image_insert ..
+
+lemma vimage_eqvt[eqvt]:
+  shows "p \<bullet> (f -` A) = (p \<bullet> f) -` (p \<bullet> A)"
+  unfolding vimage_def
+  by (perm_simp) (rule refl)
+
+lemma finite_permute_iff:
+  shows "finite (p \<bullet> A) \<longleftrightarrow> finite A"
+  unfolding permute_set_eq_vimage
+  using bij_permute by (rule finite_vimage_iff)
+
+lemma finite_eqvt[eqvt]:
+  shows "p \<bullet> finite A = finite (p \<bullet> A)"
+  unfolding finite_permute_iff permute_bool_def ..
+
+section {* List Operations *}
+
+lemma append_eqvt[eqvt]:
+  shows "p \<bullet> (xs @ ys) = (p \<bullet> xs) @ (p \<bullet> ys)"
+  by (induct xs) auto
+
+lemma supp_append:
+  shows "supp (xs @ ys) = supp xs \<union> supp ys"
+  by (induct xs) (auto simp add: supp_Nil supp_Cons)
+
+lemma fresh_append:
+  shows "a \<sharp> (xs @ ys) \<longleftrightarrow> a \<sharp> xs \<and> a \<sharp> ys"
+  by (induct xs) (simp_all add: fresh_Nil fresh_Cons)
+
+lemma rev_eqvt[eqvt]:
+  shows "p \<bullet> (rev xs) = rev (p \<bullet> xs)"
+  by (induct xs) (simp_all add: append_eqvt)
+
+lemma supp_rev:
+  shows "supp (rev xs) = supp xs"
+  by (induct xs) (auto simp add: supp_append supp_Cons supp_Nil)
+
+lemma fresh_rev:
+  shows "a \<sharp> rev xs \<longleftrightarrow> a \<sharp> xs"
+  by (induct xs) (auto simp add: fresh_append fresh_Cons fresh_Nil)
+
+lemma set_eqvt[eqvt]:
+  shows "p \<bullet> (set xs) = set (p \<bullet> xs)"
+  by (induct xs) (simp_all add: empty_eqvt insert_eqvt)
+
+(* needs finite support premise
+lemma supp_set:
+  fixes x :: "'a::pt"
+  shows "supp (set xs) = supp xs"
+*)
+
+lemma map_eqvt[eqvt]: 
+  shows "p \<bullet> (map f xs) = map (p \<bullet> f) (p \<bullet> xs)"
+  by (induct xs) (simp_all, simp only: permute_fun_app_eq)
+
+section {* Product Operations *}
+
+lemma fst_eqvt[eqvt]:
+  "p \<bullet> (fst x) = fst (p \<bullet> x)"
+ by (cases x) simp
+
+lemma snd_eqvt[eqvt]:
+  "p \<bullet> (snd x) = snd (p \<bullet> x)"
+ by (cases x) simp
+
+section {* Units *}
+
+lemma supp_unit:
+  shows "supp () = {}"
+  by (simp add: supp_def)
+
+lemma fresh_unit:
+  shows "a \<sharp> ()"
+  by (simp add: fresh_def supp_unit)
+
+
+section {* additional lemmas *}
+
+ML {* Nominal_ThmDecls.is_eqvt @{context} @{term "Pair"} *}
+
+lemmas [eqvt] = 
+  imp_eqvt [folded induct_implies_def]
+
+  (* nominal *)
+  supp_eqvt fresh_eqvt add_perm_eqvt atom_eqvt
+
+  (* datatypes *)
+  permute_prod.simps Pair_eqvt permute_list.simps
+
+  (* sets *)
+  image_eqvt
+
+
+section {* Test cases *}
+
+
 declare [[trace_eqvt = true]]
 
 lemma 
@@ -365,17 +370,15 @@
 apply(perm_simp exclude: The)
 oops
 
-
 thm eqvts
 thm eqvts_raw
 
-ML {*
-Nominal_ThmDecls.is_eqvt @{context} @{term "supp"}
-*}
+ML {* Nominal_ThmDecls.is_eqvt @{context} @{term "supp"} *}
 
 
-(* automatic equivariance procedure for 
-   inductive definitions *)
+section {* 
+  Automatic equivariance procedure for inductive definitions *}
+
 use "nominal_eqvt.ML"
 
 end