Qpaper/regularization proof.
--- a/Quotient-Paper/Paper.thy Sat Jun 05 07:26:22 2010 +0200
+++ b/Quotient-Paper/Paper.thy Sat Jun 05 08:02:39 2010 +0200
@@ -464,34 +464,38 @@
subsection {* Proving Regularization *}
text {*
- Isabelle provides
-
-
- Separtion of regularization from injection thanks to the following 2 lemmas:
- \begin{lemma}
- If @{term R2} is an equivalence relation, then:
- \begin{eqnarray}
- @{thm (rhs) ball_reg_eqv_range[no_vars]} & = & @{thm (lhs) ball_reg_eqv_range[no_vars]}\\
- @{thm (rhs) bex_reg_eqv_range[no_vars]} & = & @{thm (lhs) bex_reg_eqv_range[no_vars]}
- \end{eqnarray}
- \end{lemma}
+ Isabelle provides a set of \emph{mono} rules, that are used to split implications
+ of similar statements into simpler implication subgoals. These are enchanced
+ with special quotient theorem in the regularization goal. Below we only show
+ the versions for the universal quantifier. For the existential quantifier
+ and abstraction they are analoguous with some symmetry.
- Monos.
-
- Other lemmas used in regularization:
- @{thm [display] ball_reg_eqv[no_vars]}
- @{thm [display] babs_reg_eqv[no_vars]}
- @{thm [display] babs_simp[no_vars]}
+ First, bounded universal quantifiers can be removed on the right:
@{thm [display] ball_reg_right[no_vars]}
+ They can be removed anywhere if the relation is an equivalence relation:
+
+ @{thm [display] ball_reg_eqv[no_vars]}
+
+ And finally it can be removed anywhere if @{term R2} is an equivalence relation, then:
+ \[
+ @{thm (rhs) ball_reg_eqv_range[no_vars]} = @{thm (lhs) ball_reg_eqv_range[no_vars]}
+ \]
+
+ The last theorem is new in comparison with Homeier's package; it allows separating
+ regularization from injection.
+
*}
(*
+ @{thm (rhs) bex_reg_eqv_range[no_vars]} = @{thm (lhs) bex_reg_eqv_range[no_vars]}
@{thm [display] bex_reg_left[no_vars]}
@{thm [display] bex1_bexeq_reg[no_vars]}
@{thm [display] bex_reg_eqv[no_vars]}
+ @{thm [display] babs_reg_eqv[no_vars]}
+ @{thm [display] babs_simp[no_vars]}
*)
subsection {* Injection *}