A number of lemmas for REGULARIZE_TAC and regularizing card1.
--- a/QuotMain.thy Wed Oct 14 18:13:16 2009 +0200
+++ b/QuotMain.thy Thu Oct 15 10:25:23 2009 +0200
@@ -427,7 +427,7 @@
val rec_term = regularise t' rty rel lthy2;
val lam_term = Term.lambda_name (x, v) rec_term
in
- Const(@{const_name "All"}, at) $ lam_term
+ Const(@{const_name "Ex"}, at) $ lam_term
end
| ((Const (@{const_name "Ex"}, at)) $ P) =>
let
@@ -1147,21 +1147,6 @@
ML {* val li = Thm.freezeT (atomize_thm @{thm list.induct}) *}
-(* TODO: the following 2 lemmas should go to quotscript.thy after all are done *)
-lemma RIGHT_RES_FORALL_REGULAR:
- assumes a: "!x :: 'a. (R x --> P x --> Q x)"
- shows "All P ==> Ball R Q"
- using a
- apply (metis COMBC_def Collect_def Collect_mem_eq a)
- done
-
-lemma LEFT_RES_FORALL_REGULAR:
- assumes a: "!x. (R x \<and> (Q x --> P x))"
- shows "Ball R Q ==> All P"
- using a
- apply (metis COMBC_def Collect_def Collect_mem_eq a)
- done
-
prove {*
Logic.mk_implies
((prop_of li),
@@ -1177,6 +1162,19 @@
apply (assumption)
done
+ML {* val li = Thm.freezeT (atomize_thm @{thm card1_suc}) *}
+
+prove card1_suc_r: {*
+ Logic.mk_implies
+ ((prop_of li),
+ (regularise (prop_of li) @{typ "'a List.list"} @{term "op \<approx>"} @{context})) *}
+ apply (simp only: equiv_res_forall[OF equiv_list_eq])
+ apply (simp only: equiv_res_exists[OF equiv_list_eq])
+ done
+
+thm card1_suc
+ML {* @{thm card1_suc_r} OF [li] *}
+
ML {*
val m1_novars = snd(no_vars ((Context.Theory @{theory}), @{thm list.induct}))
*}
@@ -1234,8 +1232,9 @@
local_setup {* lift_theorem_fset @{binding "leqi4_lift"} @{thm list_eq.intros(4)} *}
local_setup {* lift_theorem_fset @{binding "leqi5_lift"} @{thm list_eq.intros(5)} *}
local_setup {* lift_theorem_fset @{binding "m2_lift"} @{thm m2} *}
-(*ML {* Toplevel.program (fn () => lift_theorem_fset @{binding "card_suc"} @{thm card1_suc} @{context}) *}
-local_setup {* lift_theorem_fset @{binding "card_suc"} @{thm card1_suc} *}*)
+thm card1_suc_r
+ML {* Toplevel.program (fn () => lift_theorem_fset @{binding "card_suc"} @{thm card1_suc_r} @{context}) *}
+(*local_setup {* lift_theorem_fset @{binding "card_suc"} @{thm card1_suc} *}*)
thm m1_lift
thm leqi4_lift
--- a/QuotScript.thy Wed Oct 14 18:13:16 2009 +0200
+++ b/QuotScript.thy Thu Oct 15 10:25:23 2009 +0200
@@ -403,6 +403,9 @@
using a1 a2 unfolding o_def expand_fun_eq
by (auto)
+
+(* TODO: Put the following lemmas in proper places *)
+
lemma equiv_res_forall:
fixes P :: "'a \<Rightarrow> bool"
assumes a: "EQUIV E"
@@ -415,5 +418,53 @@
shows "Bex (Respects E) P = (Ex P)"
using a by (metis EQUIV_def IN_RESPECTS a)
+lemma FORALL_REGULAR:
+ assumes a: "!x :: 'a. (P x --> Q x)"
+ and b: "All P"
+ shows "All Q"
+ using a b by (metis)
+
+lemma EXISTS_REGULAR:
+ assumes a: "!x :: 'a. (P x --> Q x)"
+ and b: "Ex P"
+ shows "Ex Q"
+ using a b by (metis)
+
+lemma RES_FORALL_REGULAR:
+ assumes a: "!x :: 'a. (R x --> P x --> Q x)"
+ and b: "Ball R P"
+ shows "Ball R Q"
+ using a b by (metis COMBC_def Collect_def Collect_mem_eq)
+
+lemma RES_EXISTS_REGULAR:
+ assumes a: "!x :: 'a. (R x --> P x --> Q x)"
+ and b: "Bex R P"
+ shows "Bex R Q"
+ using a b by (metis COMBC_def Collect_def Collect_mem_eq)
+
+lemma LEFT_RES_FORALL_REGULAR:
+ assumes a: "!x. (R x \<and> (Q x --> P x))"
+ shows "Ball R Q ==> All P"
+ using a
+ apply (metis COMBC_def Collect_def Collect_mem_eq a)
+ done
+
+lemma RIGHT_RES_FORALL_REGULAR:
+ assumes a: "!x :: 'a. (R x --> P x --> Q x)"
+ shows "All P ==> Ball R Q"
+ using a
+ apply (metis COMBC_def Collect_def Collect_mem_eq a)
+ done
+
+lemma LEFT_RES_EXISTS_REGULAR:
+ assumes a: "!x :: 'a. (R x --> Q x --> P x)"
+ shows "Bex R Q ==> Ex P"
+ using a by (metis COMBC_def Collect_def Collect_mem_eq)
+
+lemma RIGHT_RES_EXISTS_REGULAR:
+ assumes a: "!x :: 'a. (R x \<and> (P x --> Q x))"
+ shows "Ex P \<Longrightarrow> Bex R Q"
+ using a by (metis COMBC_def Collect_def Collect_mem_eq)
+
end