--- a/Nominal-General/Nominal2_Base.thy Fri Sep 03 22:35:35 2010 +0800
+++ b/Nominal-General/Nominal2_Base.thy Sat Sep 04 05:43:03 2010 +0800
@@ -430,6 +430,19 @@
shows "p \<bullet> (\<not> A) = (\<not> (p \<bullet> A))"
by (simp add: permute_bool_def)
+lemma conj_eqvt:
+ shows "p \<bullet> (A \<and> B) = ((p \<bullet> A) \<and> (p \<bullet> B))"
+ by (simp add: permute_bool_def)
+
+lemma imp_eqvt:
+ shows "p \<bullet> (A \<longrightarrow> B) = ((p \<bullet> A) \<longrightarrow> (p \<bullet> B))"
+ by (simp add: permute_bool_def)
+
+lemma ex_eqvt:
+ shows "p \<bullet> (\<exists>x. P x) = (\<exists>x. (p \<bullet> P) x)"
+ unfolding permute_fun_def permute_bool_def
+ by (auto, rule_tac x="p \<bullet> x" in exI, simp)
+
lemma permute_boolE:
fixes P::"bool"
shows "p \<bullet> P \<Longrightarrow> P"
@@ -851,6 +864,7 @@
section {* Support for finite sets of atoms *}
+
lemma supp_finite_atom_set:
fixes S::"atom set"
assumes "finite S"
@@ -862,12 +876,6 @@
apply(simp add: swap_set_in)
done
-lemma supp_atom_insert:
- fixes S::"atom set"
- assumes a: "finite S"
- shows "supp (insert a S) = supp a \<union> supp S"
- using a by (simp add: supp_finite_atom_set supp_atom)
-
section {* Type @{typ perm} is finitely-supported. *}
lemma perm_swap_eq:
@@ -1065,6 +1073,7 @@
apply (simp_all add: supp_Nil supp_Cons finite_supp)
done
+
section {* Support and freshness for applications *}
lemma fresh_conv_MOST:
@@ -1112,6 +1121,78 @@
qed
+section {* Support of Finite Sets of Finitely Supported Elements *}
+
+lemma Union_fresh:
+ shows "a \<sharp> S \<Longrightarrow> a \<sharp> (\<Union>x \<in> S. supp x)"
+ unfolding Union_image_eq[symmetric]
+ apply(rule_tac f="\<lambda>S. \<Union> supp ` S" in fresh_fun_eqvt_app)
+ apply(simp add: permute_fun_def UNION_def Collect_def Bex_def ex_eqvt mem_def conj_eqvt)
+ apply(subst permute_fun_app_eq)
+ back
+ apply(simp add: supp_eqvt)
+ apply(assumption)
+ done
+
+lemma Union_supports_set:
+ shows "(\<Union>x \<in> S. supp x) supports S"
+proof -
+ { fix a b
+ have "\<forall>x \<in> S. (a \<rightleftharpoons> b) \<bullet> x = x \<Longrightarrow> (a \<rightleftharpoons> b) \<bullet> S = S"
+ unfolding permute_set_eq by force
+ }
+ then show "(\<Union>x \<in> S. supp x) supports S"
+ unfolding supports_def
+ by (simp add: fresh_def[symmetric] swap_fresh_fresh)
+qed
+
+lemma Union_of_fin_supp_sets:
+ fixes S::"('a::fs set)"
+ assumes fin: "finite S"
+ shows "finite (\<Union>x\<in>S. supp x)"
+ using fin by (induct) (auto simp add: finite_supp)
+
+lemma Union_included_in_supp:
+ fixes S::"('a::fs set)"
+ assumes fin: "finite S"
+ shows "(\<Union>x\<in>S. supp x) \<subseteq> supp S"
+proof -
+ have "(\<Union>x\<in>S. supp x) = supp (\<Union>x\<in>S. supp x)"
+ by (rule supp_finite_atom_set[symmetric])
+ (rule Union_of_fin_supp_sets[OF fin])
+ also have "\<dots> \<subseteq> supp S"
+ by (rule supp_subset_fresh)
+ (simp add: Union_fresh)
+ finally show "(\<Union>x\<in>S. supp x) \<subseteq> supp S" .
+qed
+
+lemma supp_of_fin_sets:
+ fixes S::"('a::fs set)"
+ assumes fin: "finite S"
+ shows "(supp S) = (\<Union>x\<in>S. supp x)"
+apply(rule subset_antisym)
+apply(rule supp_is_subset)
+apply(rule Union_supports_set)
+apply(rule Union_of_fin_supp_sets[OF fin])
+apply(rule Union_included_in_supp[OF fin])
+done
+
+lemma supp_of_fin_union:
+ fixes S T::"('a::fs) set"
+ assumes fin1: "finite S"
+ and fin2: "finite T"
+ shows "supp (S \<union> T) = supp S \<union> supp T"
+ using fin1 fin2
+ by (simp add: supp_of_fin_sets)
+
+lemma supp_of_fin_insert:
+ fixes S::"('a::fs) set"
+ assumes fin: "finite S"
+ shows "supp (insert x S) = supp x \<union> supp S"
+ using fin
+ by (simp add: supp_of_fin_sets)
+
+
section {* Concrete atoms types *}
text {*
@@ -1179,44 +1260,18 @@
thus ?thesis ..
qed
-lemma image_eqvt:
- shows "p \<bullet> (f ` A) = (p \<bullet> f) ` (p \<bullet> A)"
- unfolding permute_set_eq_image
- unfolding permute_fun_def [where f=f]
- by (simp add: image_image)
-
-lemma atom_image_cong:
- shows "(atom ` X = atom ` Y) = (X = Y)"
- apply(rule inj_image_eq_iff)
- apply(simp add: inj_on_def)
- done
-
-lemma atom_image_supp:
- shows "supp S = supp (atom ` S)"
- apply(simp add: supp_def)
- apply(simp add: image_eqvt)
- apply(subst (2) permute_fun_def)
- apply(simp add: atom_eqvt)
- apply(simp add: atom_image_cong)
- done
-
lemma supp_finite_set_at_base:
assumes a: "finite S"
shows "supp S = atom ` S"
-proof -
- have fin: "finite (atom ` S)" using a by simp
- have "supp S = supp (atom ` S)" by (rule atom_image_supp)
- also have "\<dots> = atom ` S" using fin by (simp add: supp_finite_atom_set)
- finally show "supp S = atom ` S" by simp
-qed
+apply(simp add: supp_of_fin_sets[OF a])
+apply(simp add: supp_at_base)
+apply(auto)
+done
-lemma supp_at_base_insert:
- fixes a::"'a::at_base"
- assumes a: "finite S"
- shows "supp (insert a S) = supp a \<union> supp S"
- using a by (simp add: supp_finite_set_at_base supp_at_base)
section {* library functions for the nominal infrastructure *}
use "nominal_library.ML"
+
+
end
--- a/Nominal-General/Nominal2_Eqvt.thy Fri Sep 03 22:35:35 2010 +0800
+++ b/Nominal-General/Nominal2_Eqvt.thy Sat Sep 04 05:43:03 2010 +0800
@@ -20,6 +20,20 @@
use "nominal_thmdecls.ML"
setup "Nominal_ThmDecls.setup"
+
+section {* eqvt lemmas *}
+
+lemmas [eqvt] =
+ conj_eqvt Not_eqvt ex_eqvt imp_eqvt
+ imp_eqvt[folded induct_implies_def]
+
+ (* nominal *)
+ supp_eqvt fresh_eqvt add_perm_eqvt atom_eqvt swap_eqvt uminus_eqvt
+
+ (* datatypes *)
+ Pair_eqvt permute_list.simps
+
+
text {* helper lemmas for the perm_simp *}
definition
@@ -79,14 +93,6 @@
shows "p \<bullet> False = False"
unfolding permute_bool_def ..
-lemma imp_eqvt[eqvt]:
- shows "p \<bullet> (A \<longrightarrow> B) = ((p \<bullet> A) \<longrightarrow> (p \<bullet> B))"
- by (simp add: permute_bool_def)
-
-lemma conj_eqvt[eqvt]:
- shows "p \<bullet> (A \<and> B) = ((p \<bullet> A) \<and> (p \<bullet> B))"
- by (simp add: permute_bool_def)
-
lemma disj_eqvt[eqvt]:
shows "p \<bullet> (A \<or> B) = ((p \<bullet> A) \<or> (p \<bullet> B))"
by (simp add: permute_bool_def)
@@ -104,11 +110,6 @@
shows "p \<bullet> (\<forall>x. P x) = (\<forall>x. p \<bullet> P (- p \<bullet> x))"
by (perm_simp add: permute_minus_cancel) (rule refl)
-lemma ex_eqvt[eqvt]:
- shows "p \<bullet> (\<exists>x. P x) = (\<exists>x. (p \<bullet> P) x)"
- unfolding permute_fun_def permute_bool_def
- by (auto, rule_tac x="p \<bullet> x" in exI, simp)
-
lemma ex_eqvt2:
shows "p \<bullet> (\<exists>x. P x) = (\<exists>x. p \<bullet> P (- p \<bullet> x))"
by (perm_simp add: permute_minus_cancel) (rule refl)
@@ -211,6 +212,12 @@
shows "p \<bullet> (insert x A) = insert (p \<bullet> x) (p \<bullet> A)"
unfolding permute_set_eq_image image_insert ..
+lemma image_eqvt:
+ shows "p \<bullet> (f ` A) = (p \<bullet> f) ` (p \<bullet> A)"
+ unfolding permute_set_eq_image
+ unfolding permute_fun_def [where f=f]
+ by (simp add: image_image)
+
lemma vimage_eqvt[eqvt]:
shows "p \<bullet> (f -` A) = (p \<bullet> f) -` (p \<bullet> A)"
unfolding vimage_def
@@ -230,6 +237,15 @@
shows "p \<bullet> finite A = finite (p \<bullet> A)"
unfolding finite_permute_iff permute_bool_def ..
+lemma supp_set:
+ fixes xs :: "('a::fs) list"
+ shows "supp (set xs) = supp xs"
+apply(induct xs)
+apply(simp add: supp_set_empty supp_Nil)
+apply(simp add: supp_Cons supp_of_fin_insert)
+done
+
+
section {* List Operations *}
lemma append_eqvt[eqvt]:
@@ -295,20 +311,6 @@
shows "a \<sharp> ()"
by (simp add: fresh_def supp_unit)
-section {* additional eqvt lemmas *}
-
-lemmas [eqvt] =
- imp_eqvt [folded induct_implies_def]
-
- (* nominal *)
- supp_eqvt fresh_eqvt add_perm_eqvt atom_eqvt swap_eqvt uminus_eqvt
-
- (* datatypes *)
- Pair_eqvt permute_list.simps
-
- (* sets *)
- image_eqvt
-
section {* Test cases *}
--- a/Nominal-General/Nominal2_Supp.thy Fri Sep 03 22:35:35 2010 +0800
+++ b/Nominal-General/Nominal2_Supp.thy Sat Sep 04 05:43:03 2010 +0800
@@ -474,81 +474,4 @@
qed
-section {* Support of Finite Sets of Finitely Supported Elements *}
-
-lemma Union_fresh:
- shows "a \<sharp> S \<Longrightarrow> a \<sharp> (\<Union>x \<in> S. supp x)"
- unfolding Union_image_eq[symmetric]
- apply(rule_tac f="\<lambda>S. \<Union> supp ` S" in fresh_fun_eqvt_app)
- apply(perm_simp)
- apply(rule refl)
- apply(assumption)
- done
-
-lemma Union_supports_set:
- shows "(\<Union>x \<in> S. supp x) supports S"
-proof -
- { fix a b
- have "\<forall>x \<in> S. (a \<rightleftharpoons> b) \<bullet> x = x \<Longrightarrow> (a \<rightleftharpoons> b) \<bullet> S = S"
- unfolding permute_set_eq by force
- }
- then show "(\<Union>x \<in> S. supp x) supports S"
- unfolding supports_def
- by (simp add: fresh_def[symmetric] swap_fresh_fresh)
-qed
-
-lemma Union_of_fin_supp_sets:
- fixes S::"('a::fs set)"
- assumes fin: "finite S"
- shows "finite (\<Union>x\<in>S. supp x)"
- using fin by (induct) (auto simp add: finite_supp)
-
-lemma Union_included_in_supp:
- fixes S::"('a::fs set)"
- assumes fin: "finite S"
- shows "(\<Union>x\<in>S. supp x) \<subseteq> supp S"
-proof -
- have "(\<Union>x\<in>S. supp x) = supp (\<Union>x\<in>S. supp x)"
- by (rule supp_finite_atom_set[symmetric])
- (rule Union_of_fin_supp_sets[OF fin])
- also have "\<dots> \<subseteq> supp S"
- by (rule supp_subset_fresh)
- (simp add: Union_fresh)
- finally show "(\<Union>x\<in>S. supp x) \<subseteq> supp S" .
-qed
-
-lemma supp_of_fin_sets:
- fixes S::"('a::fs set)"
- assumes fin: "finite S"
- shows "(supp S) = (\<Union>x\<in>S. supp x)"
-apply(rule subset_antisym)
-apply(rule supp_is_subset)
-apply(rule Union_supports_set)
-apply(rule Union_of_fin_supp_sets[OF fin])
-apply(rule Union_included_in_supp[OF fin])
-done
-
-lemma supp_of_fin_union:
- fixes S T::"('a::fs) set"
- assumes fin1: "finite S"
- and fin2: "finite T"
- shows "supp (S \<union> T) = supp S \<union> supp T"
- using fin1 fin2
- by (simp add: supp_of_fin_sets)
-
-lemma supp_of_fin_insert:
- fixes S::"('a::fs) set"
- assumes fin: "finite S"
- shows "supp (insert x S) = supp x \<union> supp S"
- using fin
- by (simp add: supp_of_fin_sets)
-
-lemma supp_set:
- fixes xs :: "('a::fs) list"
- shows "supp (set xs) = supp xs"
-apply(induct xs)
-apply(simp add: supp_set_empty supp_Nil)
-apply(simp add: supp_Cons supp_of_fin_insert)
-done
-
end
--- a/Nominal/Nominal2_FSet.thy Fri Sep 03 22:35:35 2010 +0800
+++ b/Nominal/Nominal2_FSet.thy Sat Sep 04 05:43:03 2010 +0800
@@ -36,14 +36,12 @@
end
-lemma permute_fset[simp]:
+lemma permute_fset[simp, eqvt]:
fixes S::"('a::pt) fset"
shows "(p \<bullet> {||}) = ({||} ::('a::pt) fset)"
and "p \<bullet> finsert x S = finsert (p \<bullet> x) (p \<bullet> S)"
by (lifting permute_list.simps)
-declare permute_fset[eqvt]
-
lemma fmap_eqvt[eqvt]:
shows "p \<bullet> (fmap f S) = fmap (p \<bullet> f) (p \<bullet> S)"
by (lifting map_eqvt)
@@ -113,7 +111,7 @@
apply (simp add: fresh_set_empty)
apply simp
apply (unfold fresh_def)
- apply (simp add: supp_atom_insert)
+ apply (simp add: supp_of_fin_insert)
apply (rule conjI)
apply (unfold fresh_star_def)
apply simp
--- a/Pearl-jv/Paper.thy Fri Sep 03 22:35:35 2010 +0800
+++ b/Pearl-jv/Paper.thy Sat Sep 04 05:43:03 2010 +0800
@@ -44,6 +44,8 @@
section {* Introduction *}
text {*
+ TODO: write about supp of finite sets
+
Nominal Isabelle provides a proving infratructure for
convenient reasoning about programming languages. At its core Nominal
Isabelle is based on the nominal logic work by Pitts at al