--- a/Nominal/Term1.thy Wed Mar 17 17:40:14 2010 +0100
+++ b/Nominal/Term1.thy Wed Mar 17 17:59:04 2010 +0100
@@ -12,9 +12,9 @@
| rLm1 "name" "rtrm1" --"name is bound in trm1"
| rLt1 "bp" "rtrm1" "rtrm1" --"all variables in bp are bound in the 2nd trm1"
and bp =
-(* BUnit*)
- BVr "name"
-(*| BPr "bp" "bp"*)
+ BUnit
+| BVr "name"
+| BPr "bp" "bp"
print_theorems
@@ -23,9 +23,9 @@
primrec
bv1
where
-(* "bv1 (BUnit) = {}"*)
- "bv1 (BVr x) = {atom x}"
-(*| "bv1 (BPr bp1 bp2) = (bv1 bp1) \<union> (bv1 bp2)"*)
+ "bv1 (BUnit) = {}"
+| "bv1 (BVr x) = {atom x}"
+| "bv1 (BPr bp1 bp2) = (bv1 bp1) \<union> (bv1 bp2)"
setup {* snd o define_raw_perms (Datatype.the_info @{theory} "Term1.rtrm1") 2 *}
thm permute_rtrm1_permute_bp.simps
@@ -33,7 +33,7 @@
local_setup {*
snd o define_fv_alpha (Datatype.the_info @{theory} "Term1.rtrm1")
[[[], [], [(NONE, 0, 1)], [(SOME (@{term bv1}, true), 0, 2)]],
- [[](*, [], []*)]] [(@{term bv1}, 1, [(*[],*) [0](*, [0, 1]*)])] *}
+ [[], [], []]] [(@{term bv1}, 1, [[], [0], [0, 1]])] *}
notation
alpha_rtrm1 ("_ \<approx>1 _" [100, 100] 100) and
@@ -52,8 +52,7 @@
snd o build_eqvts @{binding fv_rtrm1_fv_bp_eqvt} [@{term fv_rtrm1}, @{term fv_bp}] (build_eqvts_tac @{thm rtrm1_bp.induct} @{thms fv_rtrm1_fv_bp.simps permute_rtrm1_permute_bp.simps} @{context})
*}
-(*
-local_setup {*
+(*local_setup {*
snd o build_eqvts @{binding fv_rtrm1_fv_bv1_eqvt} [@{term fv_rtrm1}, @{term fv_bv1}] (build_eqvts_tac @{thm rtrm1_bp.induct} @{thms fv_rtrm1_fv_bv1.simps permute_rtrm1_permute_bp.simps} @{context})
*}
print_theorems
@@ -64,16 +63,9 @@
print_theorems
*)
-lemma alpha1_eqvt:
- "(rtrm1 \<approx>1 rtrm1a \<longrightarrow> (p \<bullet> rtrm1) \<approx>1 (p \<bullet> rtrm1a)) \<and>
- (bp \<approx>1b bpa \<longrightarrow> (p \<bullet> bp) \<approx>1b (p \<bullet> bpa)) \<and>
- (alpha_bv1 a b c \<longrightarrow> alpha_bv1 (p \<bullet> a) (p \<bullet> b) (p \<bullet> c))"
-by (tactic {* alpha_eqvt_tac @{thm alpha_rtrm1_alpha_bp_alpha_bv1.induct} @{thms alpha1_inj permute_rtrm1_permute_bp.simps} @{context} 1 *})
-
-(*
local_setup {*
(fn ctxt => snd (Local_Theory.note ((@{binding alpha1_eqvt}, []),
-build_alpha_eqvts [@{term alpha_rtrm1}, @{term alpha_bp}] [@{term "permute :: perm \<Rightarrow> rtrm1 \<Rightarrow> rtrm1"},@{term "permute :: perm \<Rightarrow> bp \<Rightarrow> bp"}] @{thms permute_rtrm1_permute_bp.simps alpha1_inj} @{thm alpha_rtrm1_alpha_bp_alpha_bv1.induct} ctxt) ctxt)) *}*)
+build_alpha_eqvts [@{term alpha_rtrm1}, @{term alpha_bp}, @{term alpha_bv1}] (fn _ => alpha_eqvt_tac @{thm alpha_rtrm1_alpha_bp_alpha_bv1.induct} @{thms permute_rtrm1_permute_bp.simps alpha1_inj} ctxt 1) ctxt) ctxt)) *}
lemma alpha1_eqvt_proper[eqvt]:
"pi \<bullet> (t \<approx>1 s) = ((pi \<bullet> t) \<approx>1 (pi \<bullet> s))"
@@ -92,6 +84,10 @@
done
thm eqvts_raw(1)
+lemma "(b \<approx>1 a \<longrightarrow> a \<approx>1 b) \<and> (x \<approx>1b y \<longrightarrow> y \<approx>1b x) \<and> (alpha_bv1 x y \<longrightarrow> alpha_bv1 y x)"
+apply (tactic {* symp_tac @{thm alpha_rtrm1_alpha_bp_alpha_bv1.induct} @{thms alpha1_inj} @{thms alpha1_eqvt} @{context} 1 *})
+done
+
lemma alpha1_equivp:
"equivp alpha_rtrm1"
"equivp alpha_bp"
@@ -99,9 +95,8 @@
(*
local_setup {* (fn ctxt => snd (Local_Theory.note ((@{binding alpha1_equivp}, []),
- (build_equivps [@{term alpha_rtrm1}, @{term alpha_bp}] @{thm rtrm1_bp.induct} @{thm alpha_rtrm1_alpha_bp_alpha_bv1.induct} @{thms rtrm1.inject bp.inject} @{thms alpha1_inj} @{thms rtrm1.distinct bp.distinct} @{thms alpha_rtrm1.cases alpha_bp.cases} @{thms alpha1_eqvt} ctxt)) ctxt)) *}
-thm alpha1_equivp
-*)
+ (build_equivps [@{term alpha_rtrm1}, @{term alpha_bp}, @{term alpha_bv1}] @{thm rtrm1_bp.induct} @{thm alpha_rtrm1_alpha_bp_alpha_bv1.induct} @{thms rtrm1.inject bp.inject} @{thms alpha1_inj} @{thms rtrm1.distinct bp.distinct} @{thms alpha_rtrm1.cases alpha_bp.cases} @{thms alpha1_eqvt} ctxt)) ctxt)) *}
+thm alpha1_equivp*)
local_setup {* define_quotient_type [(([], @{binding trm1}, NoSyn), (@{typ rtrm1}, @{term alpha_rtrm1}))]
(rtac @{thm alpha1_equivp(1)} 1) *}
@@ -138,17 +133,17 @@
lemmas
permute_trm1 = permute_rtrm1_permute_bp.simps[quot_lifted]
and fv_trm1 = fv_rtrm1_fv_bp.simps[quot_lifted]
-and fv_trm1_eqvt = fv_rtrm1_fv_bp_eqvt(1)[quot_lifted]
-and alpha1_INJ = alpha1_inj[unfolded alpha_gen, quot_lifted, folded alpha_gen]
+and fv_trm1_eqvt = fv_rtrm1_fv_bp_eqvt[quot_lifted]
+and alpha1_INJ = alpha1_inj[unfolded alpha_gen2, unfolded alpha_gen, quot_lifted, folded alpha_gen2, folded alpha_gen]
lemma supports:
"(supp (atom x)) supports (Vr1 x)"
"(supp t \<union> supp s) supports (Ap1 t s)"
"(supp (atom x) \<union> supp t) supports (Lm1 x t)"
"(supp b \<union> supp t \<union> supp s) supports (Lt1 b t s)"
-(* "{} supports BUnit"*)
+ "{} supports BUnit"
"(supp (atom x)) supports (BVr x)"
-(* "(supp a \<union> supp b) supports (BPr a b)"*)
+ "(supp a \<union> supp b) supports (BPr a b)"
apply(tactic {* ALLGOALS (supports_tac @{thms permute_trm1}) *})
done
@@ -197,84 +192,32 @@
apply (blast)+
done
-lemma "(Abs bs (x, x') = Abs cs (y, y')) = (\<exists>p. (bs, x) \<approx>gen op = supp p (cs, y) \<and> (bs, x') \<approx>gen op = supp p (cs, y'))"
-thm Abs_eq_iff
-apply (simp add: Abs_eq_iff)
-apply (rule arg_cong[of _ _ "Ex"])
-apply (rule ext)
-apply (simp only: alpha_gen)
-apply (simp only: supp_Pair eqvts)
-apply rule
-apply (erule conjE)+
-oops
-
-lemma "(f (p \<bullet> bp), p \<bullet> bp) \<approx>gen op = f pi (f bp, bp) = False"
-apply (simp add: alpha_gen fresh_star_def)
-oops
-
-(* TODO: permute_ABS should be in eqvt? *)
-
lemma Collect_neg_conj: "{x. \<not>(P x \<and> Q x)} = {x. \<not>(P x)} \<union> {x. \<not>(Q x)}"
by (simp add: Collect_imp_eq Collect_neg_eq[symmetric])
-lemma "
-{a\<Colon>atom. infinite ({b\<Colon>atom. \<not> (\<exists>pi\<Colon>perm. P pi a b \<and> Q pi a b)})} =
-{a\<Colon>atom. infinite {b\<Colon>atom. \<not> (\<exists>p\<Colon>perm. P p a b)}} \<union>
-{a\<Colon>atom. infinite {b\<Colon>atom. \<not> (\<exists>p\<Colon>perm. Q p a b)}}"
-oops
-
lemma inf_or: "(infinite x \<or> infinite y) = infinite (x \<union> y)"
by (simp add: finite_Un)
-
-
lemma supp_fv_let:
assumes sa : "fv_bp bp = supp bp"
- shows "\<lbrakk>fv_trm1 ta = supp ta; fv_trm1 tb = supp tb\<rbrakk>
- \<Longrightarrow> supp (Lt1 bp ta tb) = fv_trm1 (Lt1 bp ta tb)"
-apply(simp only: fv_trm1 fv_eq_bv sa[simplified fv_eq_bv])
-apply simp
+ shows "\<lbrakk>fv_trm1 ta = supp ta; fv_trm1 tb = supp tb; fv_bp bp = supp bp\<rbrakk>
+ \<Longrightarrow> supp (Lt1 bp ta tb) = supp ta \<union> (supp (bp, tb) - supp bp)"
apply(fold supp_Abs)
-apply(simp only: fv_trm1 fv_eq_bv sa[simplified fv_eq_bv,symmetric])
+apply(simp (no_asm) only: fv_trm1 fv_eq_bv sa[simplified fv_eq_bv,symmetric])
apply(simp (no_asm) only: supp_def)
apply(simp only: permute_set_eq permute_trm1)
-apply(simp only: alpha1_INJ)
+apply(simp only: alpha1_INJ alpha_bp_eq)
apply(simp only: ex_out)
apply(simp only: Collect_neg_conj)
apply(simp only: permute_ABS)
apply(simp only: Abs_eq_iff)
-apply(simp only: alpha_gen fv_eq_bv supp_Pair)
+apply(simp only: alpha_gen supp_Pair split_conv eqvts)
apply(simp only: inf_or[symmetric])
apply(simp only: Collect_disj_eq)
apply(tactic {* Cong_Tac.cong_tac @{thm cong} 1 *}) apply(rule refl)
-apply(simp only: supp_eqvt[symmetric] fv_trm1_eqvt[symmetric] bv1_eqvt fv_eq_bv sa[simplified fv_eq_bv,symmetric])
-apply(induct bp)
-apply(simp_all only: TrueI)
-apply(simp_all only: permute_trm1)
-apply(simp_all only: bv1.simps)
-apply(simp_all only: alpha1_INJ) (* Doesn't look true... *)
-apply(simp)
-sorry
-
-lemma
-"(\<not> (\<exists>p. (a \<rightleftharpoons> b) \<bullet> supp tb - {atom ((a \<rightleftharpoons> b) \<bullet> name)} = supp tb - {atom name} \<and>
- ({atom (p \<bullet> (a \<rightleftharpoons> b) \<bullet> name)} = {atom name}) \<and>
- ((a \<rightleftharpoons> b) \<bullet> supp tb - {atom ((a \<rightleftharpoons> b) \<bullet> name)}) \<sharp>* p \<and>
- p \<bullet> (a \<rightleftharpoons> b) \<bullet> tb = tb)) =
- (\<not> (\<exists>p. (a \<rightleftharpoons> b) \<bullet> supp tb - {atom ((a \<rightleftharpoons> b) \<bullet> name)} = supp tb - {atom name} \<and>
- ((a \<rightleftharpoons> b) \<bullet> supp tb - {atom ((a \<rightleftharpoons> b) \<bullet> name)}) \<sharp>* p \<and>
- p \<bullet> (a \<rightleftharpoons> b) \<bullet> tb = tb))"
-apply simp
-apply rule
-prefer 2
-apply (meson)[2]
-apply clarify
-apply (erule_tac x="p" in allE)
-apply simp
-apply (simp add: atom_eqvt[symmetric])
-sorry
-
-thm trm1_bp_inducts
+apply (simp only: eqvts[symmetric] fv_trm1_eqvt[symmetric])
+apply (simp only: eqvts Pair_eq)
+done
lemma supp_fv:
"supp t = fv_trm1 t"
@@ -292,28 +235,16 @@
apply(simp add: Abs_eq_iff)
apply(simp add: alpha_gen.simps)
apply(simp add: supp_eqvt[symmetric] fv_trm1_eqvt[symmetric])
-defer
-apply(simp (no_asm) add: supp_def permute_set_eq atom_eqvt)
+apply(simp add: supp_fv_let fv_trm1 fv_eq_bv supp_Pair)
+apply blast
+apply(simp add: supp_def permute_trm1 alpha1_INJ fv_trm1)
+apply(simp add: supp_def permute_trm1 alpha1_INJ fv_trm1)
apply(simp only: supp_at_base[simplified supp_def])
-apply(simp (no_asm) add: supp_def Collect_imp_eq Collect_neg_eq)
-apply(simp add: Collect_imp_eq[symmetric] Collect_neg_eq[symmetric] supp_def[symmetric])
-(*apply(rule supp_fv_let) apply(simp_all)*)
-apply(subgoal_tac "supp (Lt1 bp rtrm11 rtrm12) = supp (Abs (bv1 bp) (rtrm12)) \<union> supp(rtrm11)")
-(*apply(subgoal_tac "supp (Lt1 bp rtrm11 rtrm12) = supp (Abs (bv1 bp) (bp, rtrm12)) \<union> supp(rtrm11)")*)
-apply(simp add: supp_Abs fv_trm1 supp_Pair Un_Diff Un_assoc fv_eq_bv)
-apply(blast) (* Un_commute in a good place *)
-apply(simp (no_asm) only: supp_def permute_set_eq atom_eqvt permute_trm1)
-apply(simp only: alpha1_INJ permute_ABS permute_prod.simps Abs_eq_iff)
-apply(simp only: ex_out)
-apply(simp only: Un_commute)
-apply(simp only: alpha_bp_eq fv_eq_bv)
-apply(simp only: alpha_gen fv_eq_bv supp_Pair)
-apply(simp only: supp_eqvt[symmetric] fv_trm1_eqvt[symmetric] bv1_eqvt fv_eq_bv)
-apply(simp only: ex_out)
-apply(simp only: Collect_neg_conj finite_Un Diff_cancel)
-apply(simp)
+apply(simp (no_asm) only: supp_def permute_set_eq atom_eqvt permute_trm1 alpha1_INJ[simplified alpha_bp_eq])
+apply(simp add: Collect_imp_eq Collect_neg_eq[symmetric])
apply(fold supp_def)
-sorry
+apply simp
+done
lemma trm1_supp:
"supp (Vr1 x) = {atom x}"