slides for talk in Leicester
authorChristian Urban <urbanc@in.tum.de>
Sat, 26 Nov 2011 09:47:21 +0000
changeset 3052 41ec301eb062
parent 3051 a06de111c70e
child 3053 324b148fc6b5
slides for talk in Leicester
IsaMakefile
Slides/Slides9.thy
Slides/document/root.tex
--- a/IsaMakefile	Sat Nov 26 09:44:34 2011 +0000
+++ b/IsaMakefile	Sat Nov 26 09:47:21 2011 +0000
@@ -168,7 +168,19 @@
 	cd Slides/generated8 ; $(ISABELLE_TOOL) latex -o pdf root.beamer.tex
 	cp Slides/generated8/root.beamer.pdf Slides/slides8.pdf 
 
-slides: slides1 slides2 slides3 slides4 slides5 slides6 slides7 slides8
+session9: Slides/ROOT9.ML \
+         Slides/document/root* \
+         Slides/Slides6.thy
+	@$(USEDIR) -D generated9 -f ROOT9.ML HOL-Nominal Slides
+
+slides9: session9
+	rm -f Slides/generated9/*.aux # otherwise latex will fall over                                      
+	cd Slides/generated9 ; $(ISABELLE_TOOL) latex -o pdf root.beamer.tex
+	cd Slides/generated9 ; $(ISABELLE_TOOL) latex -o pdf root.beamer.tex
+	cp Slides/generated9/root.beamer.pdf Slides/slides9.pdf 
+
+
+slides: slides1 slides2 slides3 slides4 slides5 slides6 slides7 slides8 slides8
 
 
 
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Slides/Slides9.thy	Sat Nov 26 09:47:21 2011 +0000
@@ -0,0 +1,1363 @@
+(*<*)
+theory Slides9
+imports "~~/src/HOL/Library/LaTeXsugar" "Nominal"
+begin
+
+notation (latex output)
+  set ("_") and
+  Cons  ("_::/_" [66,65] 65) 
+
+(*>*)
+
+
+text_raw {*
+  %% shallow, deep, and recursive binders
+  %%
+  %%\renewcommand{\slidecaption}{Cambridge, 8.~June 2010}
+  %%\renewcommand{\slidecaption}{Uppsala, 3.~March 2011}
+  \renewcommand{\slidecaption}{Leicester, 23.~November 2011}
+  \newcommand{\soutt}[1]{\tikz[baseline=(X.base), inner sep=-0.1pt, outer sep=0pt]
+  \node [cross out,red, ultra thick, draw] (X) {\textcolor{black}{#1}};}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1>[t]
+  \frametitle{%
+  \begin{tabular}{@ {\hspace{-3mm}}c@ {}}
+  \\
+  \LARGE General Binding Structures\\[-1mm] 
+  \LARGE in Nominal Isabelle 2\\
+  \end{tabular}}
+  \begin{center}
+  Christian Urban
+  \end{center}
+  \begin{center}
+  joint work with {\bf Cezary Kaliszyk}\\[0mm] 
+  \end{center}
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1>
+  \frametitle{\begin{tabular}{c}Binding in Old Nominal\end{tabular}}
+  \mbox{}\\[-6mm]
+
+  \begin{itemize}
+  \item the old Nominal Isabelle provided a reasoning infrastructure for single binders\medskip
+  
+  \begin{center}
+  Lam [a].(Var a)
+  \end{center}\bigskip
+
+  \item<2-> but representing 
+
+  \begin{center}
+  $\forall\{a_1,\ldots,a_n\}.\; T$ 
+  \end{center}\medskip
+
+  with single binders and reasoning about it is a \alert{\bf major} pain; 
+  take my word for it!
+  \end{itemize}
+
+  \only<1>{
+  \begin{textblock}{6}(1.5,11)
+  \small
+  for example\\
+  \begin{tabular}{l@ {\hspace{2mm}}l}
+   & a $\fresh$ Lam [a]. t\\
+   & Lam [a]. (Var a) \alert{$=$} Lam [b]. (Var b)\\
+   & Barendregt-style reasoning about bound variables\\
+   & (variable convention can lead to faulty reasoning)
+  \end{tabular}
+  \end{textblock}}
+  
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{}
+
+  \begin{tabular}{c@ {\hspace{2mm}}c}
+  \\[6mm]
+  \begin{tabular}{c}
+  \includegraphics[scale=0.11]{harper.jpg}\\[-2mm]
+  {\footnotesize Bob Harper}\\[-2.5mm]
+  {\footnotesize (CMU)}
+  \end{tabular}
+  \begin{tabular}{c}
+  \includegraphics[scale=0.37]{pfenning.jpg}\\[-2mm]
+  {\footnotesize Frank Pfenning}\\[-2.5mm]
+  {\footnotesize (CMU)}
+  \end{tabular} &
+
+  \begin{tabular}{p{6cm}}
+  \raggedright
+  \color{gray}{published a proof in\\ {\bf ACM Transactions on Computational Logic}, 2005,
+  $\sim$31pp}
+  \end{tabular}\\
+
+  \pause
+  \\[0mm]
+  
+  \begin{tabular}{c}
+  \includegraphics[scale=0.36]{appel.jpg}\\[-2mm] 
+  {\footnotesize Andrew Appel}\\[-2.5mm]
+  {\footnotesize (Princeton)}
+  \end{tabular} &
+
+  \begin{tabular}{p{6cm}}
+  \raggedright
+  \color{gray}{relied on their proof in a\\ {\bf security} critical application}
+  \end{tabular}
+  \end{tabular}\medskip\pause
+
+  \small
+  \begin{minipage}{1.0\textwidth}
+  (I also found an {\bf error} in my Ph.D.-thesis about cut-elimination
+  examined by Henk Barendregt and Andy Pitts.)
+  \end{minipage}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\begin{tabular}{c}Binding in Old Nominal\end{tabular}}
+
+  \begin{itemize}
+  \item<1-> but representing 
+
+  \begin{center}
+  $\forall\{a_1,\ldots,a_n\}.\; T$ 
+  \end{center}\medskip
+
+  with single binders and reasoning about it was a \alert{\bf major} pain; 
+  take my word for it!
+  \end{itemize}
+
+  
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1-6>
+  \frametitle{New Types in HOL}
+
+   \begin{center}
+  \begin{tikzpicture}[scale=1.5]
+  %%%\draw[step=2mm] (-4,-1) grid (4,1);
+  
+  \onslide<2-4,6>{\draw[very thick] (0.7,0.4) circle (4.25mm);}
+  \onslide<1-4,6>{\draw[rounded corners=1mm, very thick] ( 0.0,-0.8) rectangle ( 1.8, 0.9);}
+  \onslide<3-5,6>{\draw[rounded corners=1mm, very thick] (-1.95,0.85) rectangle (-2.85,-0.05);}
+  
+  \onslide<3-4,6>{\draw (-2.0, 0.845) --  (0.7,0.845);}
+  \onslide<3-4,6>{\draw (-2.0,-0.045)  -- (0.7,-0.045);}
+
+  \onslide<4-4,6>{\alert{\draw ( 0.7, 0.4) node {\footnotesize\begin{tabular}{@ {}c@ {}}$\alpha$-\\[-1mm]classes\end{tabular}};}}
+  \onslide<4-5,6>{\alert{\draw (-2.4, 0.4) node {\footnotesize\begin{tabular}{@ {}c@ {}}$\alpha$-eq.\\[-1mm]terms\end{tabular}};}}
+  \onslide<1-4,6>{\draw (1.8, 0.48) node[right=-0.1mm]
+    {\footnotesize\begin{tabular}{@ {}l@ {}}existing\\[-1mm] type\\ \onslide<4-4,6>{\alert{(sets of raw terms)}}\end{tabular}};}
+  \onslide<2-4,6>{\draw (0.9, -0.35) node {\footnotesize\begin{tabular}{@ {}l@ {}}non-empty\\[-1mm]subset\end{tabular}};}
+  \onslide<3-5,6>{\draw (-3.25, 0.55) node {\footnotesize\begin{tabular}{@ {}l@ {}}new\\[-1mm]type\end{tabular}};}
+  
+  \onslide<3-4,6>{\draw[<->, very thick] (-1.8, 0.3) -- (-0.1,0.3);}
+  \onslide<3-4,6>{\draw (-0.95, 0.3) node[above=0mm] {\footnotesize{}isomorphism};}
+
+  \onslide<6>{\draw[->, line width=2mm, red] (-1.0,-0.4) -- (0.35,0.16);}
+  \end{tikzpicture}
+  \end{center}
+  
+  \begin{center}
+  \textcolor{red}{\large\bf\onslide<6>{define $\alpha$-equivalence}}
+  \end{center}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1-4>
+  \frametitle{\begin{tabular}{c}Binding Sets of Names\end{tabular}}
+  \mbox{}\\[-3mm]
+
+  \begin{itemize}
+  \item binding sets of names has some interesting properties:\medskip
+  
+  \begin{center}
+  \begin{tabular}{l}
+  \textcolor{blue}{$\forall\{x, y\}.\, x \rightarrow y \;\;\approx_\alpha\;\; \forall\{y, x\}.\, y \rightarrow x$}
+  \bigskip\smallskip\\
+
+  \onslide<2->{%
+  \textcolor{blue}{$\forall\{x, y\}.\, x \rightarrow y \;\;\not\approx_\alpha\;\; \forall\{z\}.\, z \rightarrow z$}
+  }\bigskip\smallskip\\
+
+  \onslide<3->{%
+  \textcolor{blue}{$\forall\{x\}.\, x \rightarrow y \;\;\approx_\alpha\;\; \forall\{x, \alert{z}\}.\, x \rightarrow y$}
+  }\medskip\\
+  \onslide<3->{\hspace{4cm}\small provided $z$ is fresh for the type}
+  \end{tabular}
+  \end{center}
+  \end{itemize}
+  
+  \begin{textblock}{8}(2,14.5)
+  \footnotesize $^*$ $x$, $y$, $z$ are assumed to be distinct
+  \end{textblock}
+
+  \only<4>{
+  \begin{textblock}{6}(2.5,4)
+  \begin{tikzpicture}
+  \draw (0,0) node[inner sep=3mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
+  {\normalsize\color{darkgray}
+  \begin{minipage}{8cm}\raggedright
+  For type-schemes the order of bound names does not matter, and
+  $\alpha$-equivalence is preserved under \alert{vacuous} binders.
+  \end{minipage}};
+  \end{tikzpicture}
+  \end{textblock}}
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1-3>
+  \frametitle{\begin{tabular}{c}Other Binding Modes\end{tabular}}
+  \mbox{}\\[-3mm]
+
+  \begin{itemize}
+  \item alpha-equivalence being preserved under vacuous binders is \underline{not} always
+  wanted:\bigskip\bigskip\normalsize
+  
+  \textcolor{blue}{\begin{tabular}{@ {\hspace{-8mm}}l}
+  $\text{let}\;x = 3\;\text{and}\;y = 2\;\text{in}\;x - y\;\text{end}$\medskip\\
+  \onslide<2->{$\;\;\;\only<2>{\approx_\alpha}\only<3>{\alert{\not\approx_\alpha}}
+   \text{let}\;y = 2\;\text{and}\;x = 3\only<3->{\alert{\;\text{and}
+    \;z = \text{loop}}}\;\text{in}\;x - y\;\text{end}$}
+  \end{tabular}}
+  
+
+  \end{itemize}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1>
+  \frametitle{\begin{tabular}{c}\LARGE{}Even Another Binding Mode\end{tabular}}
+  \mbox{}\\[-3mm]
+
+  \begin{itemize}
+  \item sometimes one wants to abstract more than one name, but the order \underline{does} matter\bigskip
+  
+  \begin{center}
+  \textcolor{blue}{\begin{tabular}{@ {\hspace{-8mm}}l}
+  $\text{let}\;(x, y) = (3, 2)\;\text{in}\;x - y\;\text{end}$\medskip\\
+  $\;\;\;\not\approx_\alpha
+   \text{let}\;(y, x) = (3, 2)\;\text{in}\;x - y\;\text{end}$
+  \end{tabular}}
+  \end{center}
+  
+
+  \end{itemize}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1-2>
+  \frametitle{\begin{tabular}{c}\LARGE{}Three Binding Modes\end{tabular}}
+  \mbox{}\\[-3mm]
+
+  \begin{itemize}
+  \item the order does not matter and alpha-equivelence is preserved under
+  vacuous binders \textcolor{gray}{(restriction)}\medskip
+  
+  \item the order does not matter, but the cardinality of the binders 
+  must be the same \textcolor{gray}{(abstraction)}\medskip
+
+  \item the order does matter \textcolor{gray}{(iterated single binders)}
+  \end{itemize}
+
+  \onslide<2->{
+  \begin{center}
+  \isacommand{bind (set+)}\hspace{6mm}
+  \isacommand{bind (set)}\hspace{6mm}
+  \isacommand{bind}
+  \end{center}}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1-3>
+  \frametitle{\begin{tabular}{c}Specification of Binding\end{tabular}}
+  \mbox{}\\[-6mm]
+
+  \mbox{}\hspace{10mm}
+  \begin{tabular}{ll}
+  \multicolumn{2}{l}{\isacommand{nominal\_datatype} trm $=$}\\
+  \hspace{5mm}\phantom{$|$} Var name\\
+  \hspace{5mm}$|$ App trm trm\\
+  \hspace{5mm}$|$ Lam \only<2->{x::}name \only<2->{t::}trm
+  & \onslide<2->{\isacommand{bind} x \isacommand{in} t}\\
+  \hspace{5mm}$|$ Let \only<2->{as::}assns \only<2->{t::}trm
+  & \onslide<2->{\isacommand{bind} bn(as) \isacommand{in} t}\\
+  \multicolumn{2}{l}{\isacommand{and} assns $=$}\\
+  \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} ANil}\\
+  \multicolumn{2}{l}{\hspace{5mm}$|$ ACons name trm assns}\\
+  \multicolumn{2}{l}{\onslide<3->{\isacommand{binder} bn \isacommand{where}}}\\
+  \multicolumn{2}{l}{\onslide<3->{\hspace{5mm}\phantom{$|$} bn(ANil) $=$ []}}\\
+  \multicolumn{2}{l}{\onslide<3->{\hspace{5mm}$|$ bn(ACons a t as) $=$ [a] @ bn(as)}}\\
+  \end{tabular}
+
+
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1-2,4-8>
+  \frametitle{\begin{tabular}{c}Alpha-Equivalence\end{tabular}}
+  \mbox{}\\[-3mm]
+
+  \begin{itemize}
+  \item lets first look at pairs\bigskip\medskip
+
+  \textcolor{blue}{\begin{tabular}{@ {\hspace{1cm}}l}
+  $(as, x) \onslide<2->{\approx\!}\makebox[5mm][l]{\only<2-6>{${}_{\text{set}}$}%
+           \only<7>{${}_{\text{\alert{list}}}$}%
+           \only<8>{${}_{\text{\alert{set+}}}$}}%
+           \,\onslide<2->{(bs,y)}$
+  \end{tabular}}\bigskip
+  \end{itemize}
+
+  \only<1>{
+  \begin{textblock}{8}(3,8.5)
+  \begin{tabular}{l@ {\hspace{2mm}}p{8cm}}
+   & \textcolor{blue}{$as$} is a set of names\ldots the binders\\
+   & \textcolor{blue}{$x$} is the body (might be a tuple)\\
+   & \textcolor{blue}{$\approx_{\text{set}}$} is where the cardinality 
+  of the binders has to be the same\\
+  \end{tabular}
+  \end{textblock}}
+
+  \only<4->{
+  \begin{textblock}{12}(5,8)
+  \textcolor{blue}{
+  \begin{tabular}{ll@ {\hspace{1mm}}l}
+  $\dn$ & \onslide<5->{$\exists \pi.\,$} & $\text{fv}(x) - as = \text{fv}(y) - bs$\\[1mm]
+        & \onslide<5->{$\;\;\;\wedge$} & \onslide<5->{$\text{fv}(x) - as \fresh^* \pi$}\\[1mm]
+        & \onslide<5->{$\;\;\;\wedge$} & \onslide<5->{$(\pi \act x) = y$}\\[1mm]
+        & \only<6-7>{$\;\;\;\wedge$}\only<8>{\textcolor{gray}{\xout{$\;\;\;\wedge$}}} & 
+          \only<6-7>{$\pi \act as = bs$}\only<8>{\textcolor{gray}{\xout{$\pi \act as = bs$}}}\\
+  \end{tabular}}
+  \end{textblock}}
+  
+  \only<7>{
+  \begin{textblock}{7}(3,13.8)
+  \footnotesize $^*$ $as$ and $bs$ are \alert{lists} of names 
+  \end{textblock}}
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1-3>
+  \frametitle{\begin{tabular}{c}Examples\end{tabular}}
+  \mbox{}\\[-3mm]
+
+  \begin{itemize}
+  \item lets look at type-schemes:\medskip\medskip
+
+  \begin{center}
+  \textcolor{blue}{$(as, x) \approx\!\makebox[5mm][l]{${}_{\text{set}}$} (bs, y)$}
+  \end{center}\medskip
+
+  \onslide<2->{
+  \begin{center}
+  \textcolor{blue}{
+  \begin{tabular}{l}
+  $\text{fv}(x) = \{x\}$\\[1mm]
+  $\text{fv}(T_1 \rightarrow T_2) = \text{fv}(T_1) \cup \text{fv}(T_2)$\\
+  \end{tabular}}
+  \end{center}}
+  \end{itemize}
+
+  
+  \only<3->{
+  \begin{textblock}{4}(0.3,12)
+  \begin{tikzpicture}
+  \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
+  {\tiny\color{darkgray}
+  \begin{minipage}{3.4cm}\raggedright
+  \begin{tabular}{r@ {\hspace{1mm}}l}
+  \multicolumn{2}{@ {}l}{set+:}\\
+  $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
+  $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
+  $\wedge$ & $\pi \cdot x = y$\\
+  \\
+  \end{tabular}
+  \end{minipage}};
+  \end{tikzpicture}
+  \end{textblock}}
+  \only<3->{
+  \begin{textblock}{4}(5.2,12)
+  \begin{tikzpicture}
+  \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
+  {\tiny\color{darkgray}
+  \begin{minipage}{3.4cm}\raggedright
+  \begin{tabular}{r@ {\hspace{1mm}}l}
+  \multicolumn{2}{@ {}l}{set:}\\
+  $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
+  $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
+  $\wedge$ & $\pi \cdot x = y$\\
+  $\wedge$ & $\pi \cdot as = bs$\\
+  \end{tabular}
+  \end{minipage}};
+  \end{tikzpicture}
+  \end{textblock}}
+  \only<3->{
+  \begin{textblock}{4}(10.2,12)
+  \begin{tikzpicture}
+  \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
+  {\tiny\color{darkgray}
+  \begin{minipage}{3.4cm}\raggedright
+  \begin{tabular}{r@ {\hspace{1mm}}l}
+  \multicolumn{2}{@ {}l}{list:}\\
+  $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
+  $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
+  $\wedge$ & $\pi \cdot x = y$\\
+  $\wedge$ & $\pi \cdot as = bs$\\
+  \end{tabular}
+  \end{minipage}};
+  \end{tikzpicture}
+  \end{textblock}}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1-2>
+  \frametitle{\begin{tabular}{c}Examples\end{tabular}}
+  \mbox{}\\[-3mm]
+
+  \begin{center}
+  \textcolor{blue}{
+  \only<1>{$(\{x, y\}, x \rightarrow y) \approx_? (\{x, y\}, y \rightarrow x)$}
+  \only<2>{$([x, y], x \rightarrow y) \approx_? ([x, y], y \rightarrow x)$}}
+  \end{center}
+
+  \begin{itemize}
+  \item \textcolor{blue}{$\approx_{\text{set+}}$, $\approx_{\text{set}}$% 
+  \only<2>{, \alert{$\not\approx_{\text{list}}$}}}
+  \end{itemize}
+
+  
+  \only<1->{
+  \begin{textblock}{4}(0.3,12)
+  \begin{tikzpicture}
+  \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
+  {\tiny\color{darkgray}
+  \begin{minipage}{3.4cm}\raggedright
+  \begin{tabular}{r@ {\hspace{1mm}}l}
+  \multicolumn{2}{@ {}l}{set+:}\\
+  $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
+  $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
+  $\wedge$ & $\pi \cdot x = y$\\
+  \\
+  \end{tabular}
+  \end{minipage}};
+  \end{tikzpicture}
+  \end{textblock}}
+  \only<1->{
+  \begin{textblock}{4}(5.2,12)
+  \begin{tikzpicture}
+  \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
+  {\tiny\color{darkgray}
+  \begin{minipage}{3.4cm}\raggedright
+  \begin{tabular}{r@ {\hspace{1mm}}l}
+  \multicolumn{2}{@ {}l}{set:}\\
+  $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
+  $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
+  $\wedge$ & $\pi \cdot x = y$\\
+  $\wedge$ & $\pi \cdot as = bs$\\
+  \end{tabular}
+  \end{minipage}};
+  \end{tikzpicture}
+  \end{textblock}}
+  \only<1->{
+  \begin{textblock}{4}(10.2,12)
+  \begin{tikzpicture}
+  \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
+  {\tiny\color{darkgray}
+  \begin{minipage}{3.4cm}\raggedright
+  \begin{tabular}{r@ {\hspace{1mm}}l}
+  \multicolumn{2}{@ {}l}{list:}\\
+  $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
+  $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
+  $\wedge$ & $\pi \cdot x = y$\\
+  $\wedge$ & $\pi \cdot as = bs$\\
+  \end{tabular}
+  \end{minipage}};
+  \end{tikzpicture}
+  \end{textblock}}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1-2>
+  \frametitle{\begin{tabular}{c}Examples\end{tabular}}
+  \mbox{}\\[-3mm]
+
+  \begin{center}
+  \textcolor{blue}{\only<1>{$(\{x\}, x) \approx_? (\{x, y\}, x)$}}
+  \end{center}
+
+  \begin{itemize}
+  \item \textcolor{blue}{$\approx_{\text{set+}}$, $\not\approx_{\text{set}}$,
+        $\not\approx_{\text{list}}$}
+  \end{itemize}
+
+  
+  \only<1->{
+  \begin{textblock}{4}(0.3,12)
+  \begin{tikzpicture}
+  \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
+  {\tiny\color{darkgray}
+  \begin{minipage}{3.4cm}\raggedright
+  \begin{tabular}{r@ {\hspace{1mm}}l}
+  \multicolumn{2}{@ {}l}{set+:}\\
+  $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
+  $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
+  $\wedge$ & $\pi \cdot x = y$\\
+  \\
+  \end{tabular}
+  \end{minipage}};
+  \end{tikzpicture}
+  \end{textblock}}
+  \only<1->{
+  \begin{textblock}{4}(5.2,12)
+  \begin{tikzpicture}
+  \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
+  {\tiny\color{darkgray}
+  \begin{minipage}{3.4cm}\raggedright
+  \begin{tabular}{r@ {\hspace{1mm}}l}
+  \multicolumn{2}{@ {}l}{set:}\\
+  $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
+  $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
+  $\wedge$ & $\pi \cdot x = y$\\
+  $\wedge$ & $\pi \cdot as = bs$\\
+  \end{tabular}
+  \end{minipage}};
+  \end{tikzpicture}
+  \end{textblock}}
+  \only<1->{
+  \begin{textblock}{4}(10.2,12)
+  \begin{tikzpicture}
+  \draw (0,0) node[inner sep=1mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
+  {\tiny\color{darkgray}
+  \begin{minipage}{3.4cm}\raggedright
+  \begin{tabular}{r@ {\hspace{1mm}}l}
+  \multicolumn{2}{@ {}l}{list:}\\
+  $\exists\pi.$ & $\text{fv}(x) - as = \text{fv}(y) - bs$\\
+  $\wedge$ & $\text{fv}(x) - as \fresh^* \pi$\\
+  $\wedge$ & $\pi \cdot x = y$\\
+  $\wedge$ & $\pi \cdot as = bs$\\
+  \end{tabular}
+  \end{minipage}};
+  \end{tikzpicture}
+  \end{textblock}}
+
+  \only<2>{
+  \begin{textblock}{6}(2.5,4)
+  \begin{tikzpicture}
+  \draw (0,0) node[inner sep=5mm,fill=cream, ultra thick, draw=red, rounded corners=2mm] 
+  {\normalsize
+  \begin{minipage}{8cm}\raggedright
+  \begin{itemize}
+  \item \color{darkgray}$\alpha$-equivalences coincide when a single name is
+  abstracted
+  \item \color{darkgray}in that case they are equivalent to ``old-fashioned'' definitions of $\alpha$ 
+  \end{itemize}
+  \end{minipage}};
+  \end{tikzpicture}
+  \end{textblock}}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1->
+  \frametitle{\begin{tabular}{c}Our Specifications\end{tabular}}
+  \mbox{}\\[-6mm]
+
+  \mbox{}\hspace{10mm}
+  \begin{tabular}{ll}
+  \multicolumn{2}{l}{\isacommand{nominal\_datatype} trm $=$}\\
+  \hspace{5mm}\phantom{$|$} Var name\\
+  \hspace{5mm}$|$ App trm trm\\
+  \hspace{5mm}$|$ Lam x::name t::trm
+  & \isacommand{bind} x \isacommand{in} t\\
+  \hspace{5mm}$|$ Let as::assns t::trm
+  & \isacommand{bind} bn(as) \isacommand{in} t\\
+  \multicolumn{2}{l}{\isacommand{and} assns $=$}\\
+  \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} ANil}\\
+  \multicolumn{2}{l}{\hspace{5mm}$|$ ACons name trm assns}\\
+  \multicolumn{2}{l}{\isacommand{binder} bn \isacommand{where}}\\
+  \multicolumn{2}{l}{\hspace{5mm}\phantom{$|$} bn(ANil) $=$ $[]$}\\
+  \multicolumn{2}{l}{\hspace{5mm}$|$ bn(ACons a t as) $=$ $[$a$]$ @ bn(as)}\\
+  \end{tabular}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1->[t]
+  \frametitle{\begin{tabular}{c}Binder Clauses\end{tabular}}
+
+  \begin{itemize}
+  \item We need  to have a `clear scope' for a bound variable, and bound
+  variables should not be free and bound at the same time.\bigskip
+  \end{itemize}
+
+  \begin{center}
+  \only<1>{
+  \begin{tabular}{@ {\hspace{-5mm}}l}
+  \alert{\bf shallow binders}\\ 
+  \hspace{4mm}Lam x::name t::trm\hspace{4mm} \isacommand{bind} x \isacommand{in} t\\
+  \hspace{4mm}All xs::name set T::ty\hspace{4mm} \isacommand{bind} xs \isacommand{in} T\\
+  \hspace{4mm}Foo x::name t$_1$::trm t$_2$::trm\hspace{4mm} 
+     \isacommand{bind} x \isacommand{in} t$_1$, \isacommand{bind} x \isacommand{in} t$_2$\\
+  \hspace{4mm}Bar x::name t$_1$::trm t$_2$::trm\hspace{4mm} 
+     \isacommand{bind} x \isacommand{in} t$_1$ t$_2$\\
+  \end{tabular}}
+  \only<2>{
+  \begin{tabular}{@ {\hspace{-5mm}}l}
+  \alert{\bf deep binders} \\
+  \hspace{4mm}Let as::assns t::trm\hspace{4mm} \isacommand{bind} bn(as) \isacommand{in} t\\
+  \hspace{4mm}Foo as::assns t$_1$::trm t$_2$::trm\\
+  \hspace{20mm}\isacommand{bind} bn(as) \isacommand{in} t$_1$, \isacommand{bind} bn(as) \isacommand{in} t$_2$\\[4mm]
+  \makebox[0mm][l]{\alert{$\times$}}\hspace{4mm}Bar as::assns t$_1$::trm t$_2$::trm\\
+  \hspace{20mm}\isacommand{bind} bn$_1$(as) \isacommand{in} t$_1$, \isacommand{bind} bn$_2$(as) \isacommand{in} t$_2$\\
+  \end{tabular}}
+  \only<3>{
+  \begin{tabular}{@ {\hspace{-5mm}}l}
+  {\bf deep \alert{recursive} binders} \\
+  \hspace{4mm}Let\_rec as::assns t::trm\hspace{4mm} \isacommand{bind} bn(as) \isacommand{in} t as\\[4mm]
+
+  \makebox[0mm][l]{\alert{$\times$}}\hspace{4mm}Foo\_rec as::assns t$_1$::trm t$_2$::trm\hspace{4mm}\\ 
+  \hspace{20mm}\isacommand{bind} bn(as) \isacommand{in} t$_1$ as, \isacommand{bind} bn(as) \isacommand{in} t$_2$\\
+
+  \end{tabular}}
+  \end{center}
+  
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1-5>
+  \frametitle{\begin{tabular}{c}Our Work\end{tabular}}
+  \mbox{}\\[-6mm]
+
+    \begin{center}
+  \begin{tikzpicture}[scale=1.5]
+  %%%\draw[step=2mm] (-4,-1) grid (4,1);
+  
+  \onslide<1>{\draw[very thick] (0.7,0.4) circle (4.25mm);}
+  \onslide<1>{\draw[rounded corners=1mm, very thick] ( 0.0,-0.8) rectangle ( 1.8, 0.9);}
+  \onslide<1->{\draw[rounded corners=1mm, very thick] (-1.95,0.85) rectangle (-2.85,-0.05);}
+  
+  \onslide<1>{\draw (-2.0, 0.845) --  (0.7,0.845);}
+  \onslide<1>{\draw (-2.0,-0.045)  -- (0.7,-0.045);}
+
+  \onslide<1>{\alert{\draw ( 0.7, 0.4) node {\footnotesize\begin{tabular}{@ {}c@ {}}$\alpha$-\\[-1mm]classes\end{tabular}};}}
+  \onslide<1->{\alert{\draw (-2.4, 0.4) node {\footnotesize\begin{tabular}{@ {}c@ {}}$\alpha$-eq.\\[-1mm]terms\end{tabular}};}}
+  \onslide<1>{\draw (1.8, 0.48) node[right=-0.1mm]
+    {\footnotesize\begin{tabular}{@ {}l@ {}}existing\\[-1mm] type\\ \onslide<1>{\alert{(sets of raw terms)}}\end{tabular}};}
+  \onslide<1>{\draw (0.9, -0.35) node {\footnotesize\begin{tabular}{@ {}l@ {}}non-empty\\[-1mm]subset\end{tabular}};}
+  \onslide<1->{\draw (-3.25, 0.55) node {\footnotesize\begin{tabular}{@ {}l@ {}}new\\[-1mm]type\end{tabular}};}
+  
+  \onslide<1>{\draw[<->, very thick] (-1.8, 0.3) -- (-0.1,0.3);}
+  \onslide<1>{\draw (-0.95, 0.3) node[above=0mm] {\footnotesize{}isomorphism};}
+
+  \onslide<1>{\draw[->, line width=2mm, red] (-1.0,-0.4) -- (0.35,0.16);}
+  \end{tikzpicture}
+  \end{center}
+  
+  \begin{textblock}{9.5}(6,3.5)
+  \begin{itemize}
+  \item<1-> defined fv and $\alpha$
+  \item<2-> built quotient / new type
+  \item<3-> derived a reasoning infrastructure ($\fresh$, distinctness, injectivity, cases,\ldots) 
+  \item<4-> derive a {\bf stronger} cases lemma
+  \item<5-> from this, a {\bf stronger} induction principle (Barendregt variable convention built in)\\
+  \begin{center}
+  \textcolor{blue}{Foo ($\lambda x. \lambda y. t$) ($\lambda u. \lambda v. s$)} 
+  \end{center}
+  \end{itemize}
+  \end{textblock}
+
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1->
+  \frametitle{\begin{tabular}{c}Part I: Conclusion\end{tabular}}
+  \mbox{}\\[-6mm]
+
+  \begin{itemize}
+  \item the user does not see anything of the raw level\medskip
+  \only<1>{\begin{center}
+  Lam a (Var a) \alert{$=$} Lam b (Var b)
+  \end{center}\bigskip}
+
+  \item<2-> \textcolor{blue}{http://isabelle.in.tum.de/nominal/}
+  \end{itemize}
+
+  
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1->
+  \frametitle{\begin{tabular}{c}Part II: $\alpha\beta$-Equal Terms\end{tabular}}
+
+  \begin{itemize}
+  \item we have implemented a quotient package for Isabelle;
+  \item can now introduce the type of $\alpha\beta$-equal terms (starting
+  from $\alpha$-equal terms).
+  \item on paper this looks easy\pause\bigskip
+  \end{itemize}
+
+  \begin{center}
+  \begin{tabular}{lll}
+  \smath{x \approx_{\alpha\beta} y} & \smath{\;\not\Rightarrow\;} & 
+  \smath{\text{supp}(x) = \text{supp}(y)}\\
+  & \smath{\;\not\Rightarrow\;} & 
+  \smath{\text{size}(x) = \text{size}(y)}\\
+  \end{tabular}
+  \end{center}\pause
+
+  \small
+  \begin{center}
+  Andy: \smath{\;\;\text{supp}\mbox{\isasymlbrakk}x\mbox{\isasymrbrakk}_{\approx_{\alpha\beta}} = 
+  {\text{\large$\bigcap$}} \{ \text{supp}(y) \;|\; y \approx_{\alpha\beta} x\}}
+  \end{center}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{}
+
+  \begin{center}
+  \begin{tabular}{rcl}
+  \smath{x\;[y := s]} &           \smath{\dn} & \smath{\text{if}\;x=y\;\text{then}\;s\;\text{else}\;x}\bigskip\\
+  \smath{t_1 t_2\;[y := s]} &     \smath{\dn} & \smath{t_1[y := s]\;t_2[y := s]}\bigskip\\
+  \smath{\lambda x.t\;[y := s]} & \smath{\dn} & \smath{\lambda x.\; t[y := s]}\\
+  \multicolumn{3}{r}{provided \smath{x \fresh (y, s)}}
+  \end{tabular}
+  \end{center}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[t]
+  \frametitle{\begin{tabular}{c}Part III: Regular Languages\\[-8mm]\end{tabular}}
+
+  \begin{center}
+  \huge\bf\textcolor{gray}{in Theorem Provers}\\
+  \footnotesize\textcolor{gray}{e.g.~Isabelle, Coq, HOL4, \ldots}
+  \end{center}
+
+  \begin{itemize}
+  \item automata @{text "\<Rightarrow>"} graphs, matrices, functions
+  \item<2-> combining automata/graphs
+
+  \onslide<2->{
+  \begin{center}
+  \begin{tabular}{ccc}
+  \begin{tikzpicture}[scale=1]
+  %\draw[step=2mm] (-1,-1) grid (1,1);
+  
+  \draw[rounded corners=1mm, very thick] (-1.0,-0.3) rectangle (-0.2,0.3);
+  \draw[rounded corners=1mm, very thick] ( 0.2,-0.3) rectangle ( 1.0,0.3);
+
+  \node (A) at (-1.0,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+  \node (B) at ( 0.2,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+  
+  \node (C) at (-0.2, 0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+  \node (D) at (-0.2,-0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+
+  \node (E) at (1.0, 0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+  \node (F) at (1.0,-0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+  \node (G) at (1.0,-0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+
+  \draw (-0.6,0.0) node {\small$A_1$};
+  \draw ( 0.6,0.0) node {\small$A_2$};
+  \end{tikzpicture}}
+
+  & 
+
+  \onslide<3->{\raisebox{1.1mm}{\bf\Large$\;\Rightarrow\,$}}
+
+  &
+
+  \onslide<3->{\begin{tikzpicture}[scale=1]
+  %\draw[step=2mm] (-1,-1) grid (1,1);
+  
+  \draw[rounded corners=1mm, very thick] (-1.0,-0.3) rectangle (-0.2,0.3);
+  \draw[rounded corners=1mm, very thick] ( 0.2,-0.3) rectangle ( 1.0,0.3);
+
+  \node (A) at (-1.0,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+  \node (B) at ( 0.2,0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+  
+  \node (C) at (-0.2, 0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+  \node (D) at (-0.2,-0.13) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+
+  \node (E) at (1.0, 0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+  \node (F) at (1.0,-0.0) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+  \node (G) at (1.0,-0.2) [circle, very thick, draw, fill=white, inner sep=0.4mm] {};
+  
+  \draw (C) to [red, very thick, bend left=45] (B);
+  \draw (D) to [red, very thick, bend right=45] (B);
+
+  \draw (-0.6,0.0) node {\small$A_1$};
+  \draw ( 0.6,0.0) node {\small$A_2$};
+  \end{tikzpicture}}
+
+  \end{tabular}
+  \end{center}\medskip
+
+  \only<4-5>{
+  \begin{tabular}{@ {\hspace{-5mm}}l@ {}}
+  disjoint union:\\[2mm]
+  \smath{A_1\uplus A_2 \dn \{(1, x)\,|\, x \in A_1\} \,\cup\, \{(2, y)\,|\, y \in A_2\}}
+  \end{tabular}}
+  \end{itemize}
+
+  \only<5>{
+  \begin{textblock}{13.9}(0.7,7.7)
+  \begin{block}{}
+  \medskip
+  \begin{minipage}{14cm}\raggedright
+  Problems with definition for regularity:\bigskip\\
+  \smath{\;\text{is\_regular}(A) \dn \exists M.\;\text{is\_dfa}(M) \wedge {\cal L} (M) = A}\bigskip
+  \end{minipage}
+  \end{block}
+  \end{textblock}}
+  \medskip
+
+  \only<6->{\underline{A solution}:\;\;use \smath{\text{nat}}s \;@{text "\<Rightarrow>"}\; state nodes\medskip}
+
+  \only<7->{You have to \alert{rename} states!}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[t]
+  \frametitle{\normalsize Formal language theory\ldots\hfill\mbox{}}
+  \mbox{}\\[-15mm]\mbox{}
+
+  \begin{center}
+  \huge\bf\textcolor{gray}{in Theorem Provers}\\
+  \footnotesize\textcolor{gray}{e.g.~Isabelle, Coq, HOL4, \ldots}
+  \end{center}
+
+  \begin{itemize}
+  \item Kozen's ``paper'' proof of Myhill-Nerode:\\ 
+  \hspace{2cm}requires absence of \alert{inaccessible states}
+  \end{itemize}\bigskip\bigskip
+
+  \begin{center}
+  \smath{\;\text{is\_regular}(A) \dn \exists M.\;\text{is\_dfa}(M) \wedge {\cal L} (M) = A}
+  \end{center}
+
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[t]
+  \frametitle{}
+  \mbox{}\\[25mm]\mbox{}
+
+  \begin{textblock}{13.9}(0.7,1.2)
+  \begin{block}{}
+  \begin{minipage}{13.4cm}\raggedright
+  {\bf Definition:}\smallskip\\
+  
+  A language \smath{A} is \alert{regular}, provided there exists a\\ 
+  \alert{regular expression} that matches all strings of \smath{A}.
+  \end{minipage}
+  \end{block}
+  \end{textblock}\pause
+  
+  {\noindent\large\bf\alert{\ldots{}and forget about automata}}\bigskip\bigskip\pause
+
+  Infrastructure for free. But do we lose anything?\medskip\pause
+
+  \begin{minipage}{1.1\textwidth}
+  \begin{itemize}
+  \item pumping lemma\pause
+  \item closure under complementation\pause
+  \item \only<6>{regular expression matching}%
+       \only<7->{\soutt{regular expression matching}
+  {\footnotesize(@{text "\<Rightarrow>"}Brozowski'64, Owens et al '09)}}
+  \item<8-> most textbooks are about automata
+  \end{itemize}
+  \end{minipage}
+
+  
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\LARGE The Myhill-Nerode Theorem}
+
+  \begin{itemize}
+  \item provides necessary and suf\!ficient conditions\\ for a language 
+  being regular\\ \textcolor{gray}{(pumping lemma only necessary)}\bigskip
+
+  \item key is the equivalence relation:\medskip
+  \begin{center}
+  \smath{x \approx_{A} y \,\dn\, \forall z.\; x @ z \in A \Leftrightarrow y @ z \in A}
+  \end{center}
+  \end{itemize}
+
+ 
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\LARGE The Myhill-Nerode Theorem}
+
+  \begin{center}
+  \only<1>{%
+  \begin{tikzpicture}[scale=3]
+  \draw[very thick] (0.5,0.5) circle (.6cm);
+  \end{tikzpicture}}%
+  \only<2->{%
+  \begin{tikzpicture}[scale=3]
+  \draw[very thick] (0.5,0.5) circle (.6cm);
+  \clip[draw] (0.5,0.5) circle (.6cm);
+  \draw[step=2mm, very thick] (-1.4,-1.4) grid (1.4,1.4);
+  \end{tikzpicture}}
+  \end{center}
+  
+  \begin{itemize}
+  \item \smath{\text{finite}\, (U\!N\!IV /\!/ \approx_A) \;\Leftrightarrow\; A\; \text{is regular}}
+  \end{itemize}
+
+  \begin{textblock}{5}(2.1,5.3)
+  \begin{tikzpicture}
+  \node at (0,0) [single arrow, fill=red,text=white, minimum height=2cm]
+  {$U\!N\!IV$};
+  \draw (-0.3,-1.1) node {\begin{tabular}{l}set of all\\[-1mm] strings\end{tabular}};
+  \end{tikzpicture}
+  \end{textblock}
+
+  \only<2->{%
+  \begin{textblock}{5}(9.1,7.2)
+  \begin{tikzpicture}
+  \node at (0,0) [shape border rotate=180,single arrow, fill=red,text=white, minimum height=2cm]
+  {@{text "\<lbrakk>x\<rbrakk>"}$_{\approx_{A}}$};
+  \draw (0.9,-1.1) node {\begin{tabular}{l}an equivalence class\end{tabular}};
+  \end{tikzpicture}
+  \end{textblock}}
+
+  \only<3->{
+  \begin{textblock}{11.9}(1.7,3)
+  \begin{block}{}
+  \begin{minipage}{11.4cm}\raggedright
+  Two directions:\medskip\\
+  \begin{tabular}{@ {}ll}
+  1.)\;finite $\Rightarrow$ regular\\
+  \;\;\;\smath{\text{finite}\,(U\!N\!IV /\!/ \approx_A) \Rightarrow \exists r.\;A = {\cal L}(r)}\\[3mm]
+  2.)\;regular $\Rightarrow$ finite\\
+  \;\;\;\smath{\text{finite}\, (U\!N\!IV /\!/ \approx_{{\cal L}(r)})}
+  \end{tabular}
+
+  \end{minipage}
+  \end{block}
+  \end{textblock}}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+
+*}
+
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<-1>[c]
+  \frametitle{\begin{tabular}{@ {}l}\LARGE% 
+  Transitions between Eq-Classes\end{tabular}}
+
+  \begin{center}
+  \begin{tikzpicture}[scale=3]
+  \draw[very thick] (0.5,0.5) circle (.6cm);
+  \clip[draw] (0.5,0.5) circle (.6cm);
+  \draw[step=2mm, very thick] (-1.4,-1.4) grid (1.4,1.4);
+  \draw[blue, fill] (0.0, 0.6) rectangle (0.2, 0.8);
+  \draw[blue, fill] (0.8, 0.4) rectangle (1.0, 0.6);
+  \draw[white] (0.1,0.7) node (X) {$X$};
+  \draw[white] (0.9,0.5) node (Y) {$Y$};
+  \draw[blue, ->, line width = 2mm, bend left=45] (X) -- (Y);
+  \node [inner sep=1pt,label=above:\textcolor{blue}{$c$}] at ($ (X)!.5!(Y) $) {};
+  \end{tikzpicture}
+  \end{center}
+
+  \begin{center}
+  \smath{X \stackrel{c}{\longrightarrow} Y \;\dn\; X ; c \subseteq Y}
+  \end{center}
+
+  \onslide<8>{
+  \begin{tabular}{c}
+  \begin{tikzpicture}[shorten >=1pt,node distance=2cm,auto, ultra thick]
+  \tikzstyle{state}=[circle,thick,draw=blue!75,fill=blue!20,minimum size=0mm]
+  \node[state,initial] (q_0) {$R_1$};
+  \end{tikzpicture}
+  \end{tabular}}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[c]
+  \frametitle{\LARGE The Other Direction}
+
+  One has to prove
+
+  \begin{center}
+  \smath{\text{finite} (U\!N\!IV /\!/ \approx_{{\cal L}(r)})}
+  \end{center}
+
+  by induction on \smath{r}. Not trivial, but after a bit 
+  of thinking, one can find a \alert{refined} relation:\bigskip
+
+  
+  \begin{center}
+  \mbox{\begin{tabular}{c@ {\hspace{7mm}}c@ {\hspace{7mm}}c}
+  \begin{tikzpicture}[scale=1.1]
+  %Circle
+  \draw[thick] (0,0) circle (1.1);    
+  \end{tikzpicture}
+  &
+  \begin{tikzpicture}[scale=1.1]
+  %Circle
+  \draw[thick] (0,0) circle (1.1);    
+  %Main rays
+  \foreach \a in {0, 90,...,359}
+    \draw[very thick] (0, 0) -- (\a:1.1);
+  \foreach \a / \l in {45/1, 135/2, 225/3, 315/4}
+      \draw (\a: 0.65) node {\small$a_\l$};
+  \end{tikzpicture}
+  &
+  \begin{tikzpicture}[scale=1.1]
+  %Circle
+  \draw[red, thick] (0,0) circle (1.1);    
+  %Main rays
+  \foreach \a in {0, 45,...,359}
+     \draw[red, very thick] (0, 0) -- (\a:1.1);
+  \foreach \a / \l in {22.5/1.1, 67.5/1.2, 112.5/2.1, 157.5/2.2, 202.4/3.1, 247.5/3.2, 292.5/4.1, 337.5/4.2}
+      \draw (\a: 0.77) node {\textcolor{red}{\footnotesize$a_{\l}$}};
+  \end{tikzpicture}\\
+  \small\smath{U\!N\!IV} & 
+  \small\smath{U\!N\!IV /\!/ \approx_{{\cal L}(r)}} &
+  \small\smath{U\!N\!IV /\!/ \alert{R}}
+  \end{tabular}}
+  \end{center}
+
+  \begin{textblock}{5}(9.8,2.6)
+  \begin{tikzpicture}
+  \node at (0,0) [shape border rotate=270,single arrow, fill=red,text=white, minimum height=0cm]{\textcolor{red}{a}};
+  \end{tikzpicture}
+  \end{textblock}
+  
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[t]
+  \frametitle{\LARGE\begin{tabular}{c}Derivatives of RExps\end{tabular}}
+
+  \begin{itemize}
+  \item introduced by Brozowski~'64
+  \item a regular expressions after a character has been parsed\\[-18mm]\mbox{}
+  \end{itemize}
+
+  \only<1>{%
+  \textcolor{blue}{%
+  \begin{center}
+  \begin{tabular}{@ {}lc@ {\hspace{3mm}}l@ {}}
+  der c $\varnothing$     & $\dn$ & $\varnothing$\\
+  der c []                & $\dn$ & $\varnothing$\\
+  der c d                 & $\dn$ & if c $=$ d then [] else $\varnothing$\\
+  der c ($r_1 + r_2$)     & $\dn$ & (der c $r_1$) $+$ (der c $r_2$)\\
+  der c ($r^\star$)       & $\dn$ & (der c $r$) $\cdot$ $r^\star$\\
+  der c ($r_1 \cdot r_2$) & $\dn$ & if nullable $r_1$\\
+                          &       & then (der c $r_1$) $\cdot$ $r_2$ $+$ (der c $r_2$)\\
+                          &       & else (der c $r_1$) $\cdot$ $r_2$\\
+  \end{tabular}
+  \end{center}}}
+  \only<2>{%
+  \textcolor{blue}{%
+  \begin{center}
+  \begin{tabular}{@ {}l@ {\hspace{2mm}}c@ {\hspace{2mm}}l@ {}}
+  pder c $\varnothing$     & $\dn$ & \alert{$\{\}$}\\
+  pder c []                & $\dn$ & \alert{$\{\}$}\\
+  pder c d                 & $\dn$ & if c $=$ d then $\{$[]$\}$ else $\{\}$\\
+  pder c ($r_1 + r_2$)     & $\dn$ & (pder c $r_1$) \alert{$\cup$} (der c $r_2$)\\
+  pder c ($r^\star$)       & $\dn$ & (pder c $r$) $\cdot$ $r^\star$\\
+  pder c ($r_1 \cdot r_2$) & $\dn$ & if nullable $r_1$\\
+                          &       & then (pder c $r_1$) $\cdot$ $r_2$ \alert{$\cup$} (pder c $r_2$)\\
+                          &       & else (pder c $r_1$) $\cdot$ $r_2$\\
+  \end{tabular}
+  \end{center}}}
+
+  \only<2>{
+  \begin{textblock}{6}(8.5,4.7)
+  \begin{block}{}
+  \begin{quote}
+  \begin{minipage}{6cm}\raggedright
+  \begin{itemize}
+  \item partial derivatives
+  \item by Antimirov~'95
+  \end{itemize}
+  \end{minipage}
+  \end{quote}
+  \end{block}
+  \end{textblock}}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[t]
+  \frametitle{\LARGE Partial Derivatives}
+
+  \mbox{}\\[0mm]\mbox{}
+
+  \begin{itemize}
+
+  \item \alt<1>{\smath{\text{pders $x$ $r$ \mbox{$=$} pders $y$ $r$}}}
+            {\smath{\underbrace{\text{pders $x$ $r$ \mbox{$=$} pders $y$ $r$}}_{R}}} 
+        refines \textcolor{blue}{$x$ $\approx_{{\cal L}(r)}$ $y$}\\[16mm]\pause
+  \item \smath{\text{finite} (U\!N\!IV /\!/ R)} \bigskip\pause
+  \item Therefore \smath{\text{finite} (U\!N\!IV /\!/ \approx_{{\cal L}(r)})}. Qed.
+  \end{itemize}
+  
+  \only<2->{%
+  \begin{textblock}{5}(3.9,7.2)
+  \begin{tikzpicture}
+  \node at (0,0) [shape border rotate=270,single arrow, fill=red,text=white, minimum height=0cm]{\textcolor{red}{a}};
+  \draw (2.2,0) node {Antimirov '95};
+  \end{tikzpicture}
+  \end{textblock}}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[t]
+  \frametitle{\LARGE What Have We Achieved?}
+
+  \begin{itemize}
+  \item \smath{\text{finite}\, (U\!N\!IV /\!/ \approx_A) \;\Leftrightarrow\; A\; \text{is regular}}
+  \medskip\pause
+  \item regular languages are closed under complementation; this is now easy
+  \begin{center}
+  \smath{U\!N\!IV /\!/ \approx_A \;\;=\;\; U\!N\!IV /\!/ \approx_{\overline{A}}}
+  \end{center}\pause\medskip
+  
+  \item non-regularity (\smath{a^nb^n})\medskip\pause\pause
+
+  \item take \alert{\bf any} language; build the language of substrings\\
+  \pause
+
+  then this language \alert{\bf is} regular\;\; (\smath{a^nb^n} $\Rightarrow$ \smath{a^\star{}b^\star})
+  
+  \end{itemize}
+
+\only<2>{
+\begin{textblock}{10}(4,14)
+\small
+\smath{x \approx_{A} y \,\dn\, \forall z.\; x @ z \in A \Leftrightarrow y @ z \in A}
+\end{textblock}} 
+
+\only<4>{
+\begin{textblock}{5}(2,8.6)
+\begin{minipage}{8.8cm}
+\begin{block}{}
+\begin{minipage}{8.6cm}
+If there exists a sufficiently large set \smath{B} (for example infinitely large), 
+such that
+
+\begin{center}
+\smath{\forall x,y \in B.\; x \not= y \;\Rightarrow\; x \not\approx_{A} y}. 
+\end{center}  
+
+then \smath{A} is not regular.\hspace{1.3cm}\small(\smath{B \dn \bigcup_n a^n})
+\end{minipage}
+\end{block}
+\end{minipage}
+\end{textblock}
+}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}[b]
+  \frametitle{\mbox{}\\[2cm]\textcolor{red}{Thank you!\\[5mm]Questions?}}
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+
+
+
+text_raw {*
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+  \mode<presentation>{
+  \begin{frame}<1-2>[c]
+  \frametitle{\begin{tabular}{c}Examples\end{tabular}}
+  \mbox{}\\[-6mm]
+
+  \textcolor{blue}{
+  \begin{center}
+  $(\{a,b\}, a \rightarrow b) \approx_\alpha (\{a, b\}, a \rightarrow b)$
+  $(\{a,b\}, a \rightarrow b) \approx_\alpha (\{a, b\}, b \rightarrow a)$
+  \end{center}}
+
+  \textcolor{blue}{
+  \begin{center}
+  $(\{a,b\}, (a \rightarrow b, a \rightarrow b))$\\ 
+  \hspace{17mm}$\not\approx_\alpha (\{a, b\}, (a \rightarrow b, b \rightarrow a))$
+  \end{center}}
+  
+  \onslide<2->
+  {1.) \hspace{3mm}\isacommand{bind (set)} as \isacommand{in} $\tau_1$, 
+   \isacommand{bind (set)} as \isacommand{in} $\tau_2$\medskip
+
+   2.) \hspace{3mm}\isacommand{bind (set)} as \isacommand{in} $\tau_1$ $\tau_2$ 
+  }
+
+  \end{frame}}
+  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%     
+*}
+
+
+
+(*<*)
+end
+(*>*)
\ No newline at end of file
--- a/Slides/document/root.tex	Sat Nov 26 09:44:34 2011 +0000
+++ b/Slides/document/root.tex	Sat Nov 26 09:47:21 2011 +0000
@@ -1,4 +1,5 @@
 \usepackage{beamerthemeplainculight}
+
 \usepackage[T1]{fontenc}
 \usepackage{proof}
 \usepackage{german}
@@ -14,12 +15,13 @@
 \usepackage{pgf}
 \usepackage{calc} 
 \usepackage{ulem}
-%%%\newcommand{\uline}[1]{}
+\renewcommand{\uline}[1]{#1}
 \usetikzlibrary{arrows}
 \usetikzlibrary{automata}
 \usetikzlibrary{shapes}
 \usetikzlibrary{shadows}
 \usetikzlibrary{positioning}
+\usetikzlibrary{calc}
 %%%\usetikzlibrary{mindmap}
 
 \usepackage{graphicx}