Show that the new types are in finite support typeclass.
--- a/Nominal/Fv.thy Thu Mar 11 16:50:44 2010 +0100
+++ b/Nominal/Fv.thy Thu Mar 11 17:47:29 2010 +0100
@@ -119,7 +119,7 @@
fold (fn a => fn b =>
if a = @{term True} then b else
if b = @{term True} then a else
- HOLogic.mk_conj (a, b)) props @{term True};
+ HOLogic.mk_conj (a, b)) (rev props) @{term True};
fun mk_diff a b =
if b = noatoms then a else
if b = a then noatoms else
@@ -718,17 +718,21 @@
*}
ML {*
-fun mk_supports_eq cnstr =
+fun mk_supp ty x =
+ Const (@{const_name supp}, ty --> @{typ "atom set"}) $ x
+*}
+
+ML {*
+fun mk_supports_eq thy cnstr =
let
val (tys, ty) = (strip_type o fastype_of) cnstr
val names = Datatype_Prop.make_tnames tys
val frees = map Free (names ~~ tys)
val rhs = list_comb (cnstr, frees)
- fun mk_supp ty x =
- Const (@{const_name supp}, ty --> @{typ "atom set"}) $ x
+
fun mk_supp_arg (x, ty) =
- if is_atom @{theory} ty then mk_supp @{typ atom} (mk_atom ty $ x) else
- if is_atom_set @{theory} ty then mk_supp @{typ "atom set"} (mk_atoms x)
+ if is_atom thy ty then mk_supp @{typ atom} (mk_atom ty $ x) else
+ if is_atom_set thy ty then mk_supp @{typ "atom set"} (mk_atoms x)
else mk_supp ty x
val lhss = map mk_supp_arg (frees ~~ tys)
val supports = Const(@{const_name "supports"}, @{typ "atom set"} --> ty --> @{typ bool})
@@ -738,4 +742,40 @@
end
*}
+ML {*
+fun prove_supports ctxt perms cnst =
+let
+ val (names, eq) = mk_supports_eq (ProofContext.theory_of ctxt) cnst
+in
+ Goal.prove ctxt names [] eq (fn _ => supports_tac perms 1)
end
+*}
+
+ML {*
+fun mk_fs tys =
+let
+ val names = Datatype_Prop.make_tnames tys
+ val frees = map Free (names ~~ tys)
+ val supps = map2 mk_supp tys frees
+ val fin_supps = map (fn x => @{term "finite :: atom set \<Rightarrow> bool"} $ x) supps
+in
+ (names, HOLogic.mk_Trueprop (mk_conjl fin_supps))
+end
+*}
+
+ML {*
+fun fs_tac induct supports = ind_tac induct THEN_ALL_NEW (
+ rtac @{thm supports_finite} THEN' resolve_tac supports) THEN_ALL_NEW
+ asm_full_simp_tac (HOL_ss addsimps @{thms supp_atom finite_insert finite.emptyI finite_Un})
+*}
+
+ML {*
+fun prove_fs ctxt induct supports tys =
+let
+ val (names, eq) = mk_fs tys
+in
+ Goal.prove ctxt names [] eq (fn _ => fs_tac induct supports 1)
+end
+*}
+
+end
--- a/Nominal/Parser.thy Thu Mar 11 16:50:44 2010 +0100
+++ b/Nominal/Parser.thy Thu Mar 11 17:47:29 2010 +0100
@@ -283,6 +283,7 @@
ML {* val cheat_fv_eqvt = ref true *} (* The tactic works, building the goal needs fixing *)
ML {* val cheat_alpha_eqvt = ref true *} (* The tactic works, building the goal needs fixing *)
+
ML {*
fun nominal_datatype2 dts bn_funs bn_eqs binds lthy =
let
@@ -304,7 +305,7 @@
val dtinfos = map (Datatype.the_info (ProofContext.theory_of lthy2)) all_full_tnames;
val rel_dtinfos = List.take (dtinfos, (length dts));
val inject = flat (map #inject dtinfos);
- val distinct = flat (map #distinct dtinfos);
+ val distincts = flat (map #distinct dtinfos);
val rel_distinct = map #distinct rel_dtinfos;
val induct = #induct dtinfo;
val inducts = #inducts dtinfo;
@@ -331,7 +332,7 @@
val alpha_intros = #intrs alpha;
val alpha_cases_loc = #elims alpha
val alpha_cases = ProofContext.export lthy4 lthy3 alpha_cases_loc
- val alpha_inj_loc = build_alpha_inj alpha_intros (inject @ distinct) alpha_cases_loc lthy4
+ val alpha_inj_loc = build_alpha_inj alpha_intros (inject @ distincts) alpha_cases_loc lthy4
val alpha_inj = ProofContext.export lthy4 lthy3 alpha_inj_loc
fun alpha_eqvt_tac' _ =
if !cheat_alpha_eqvt then Skip_Proof.cheat_tac thy
@@ -362,7 +363,11 @@
Const (cname, map (typ_of_dtyp descr sorts) dts --->
typ_of_dtyp descr sorts (DtRec i))) l) descr);
val (consts_defs, lthy8) = fold_map Quotient_Def.quotient_lift_const (const_names ~~ raw_consts) lthy7;
- val (consts, const_defs) = split_list consts_defs;
+ val (consts_loc, const_defs) = split_list consts_defs;
+ val morphism_8_7 = ProofContext.export_morphism lthy8 lthy7;
+ val consts = map (Morphism.term morphism_8_7) consts_loc;
+ (* Could be done nicer *)
+ val q_tys = distinct (op =) (map (snd o strip_type o fastype_of) consts);
val (bns_rsp_pre, lthy9) = fold_map (
fn (bn_t, i) => prove_const_rsp Binding.empty [bn_t]
(fn _ => fvbv_rsp_tac (nth alpha_inducts i) raw_bn_eqs 1)) bns lthy8;
@@ -406,8 +411,15 @@
val q_eqvt = map (lift_thm lthy19) raw_fv_bv_eqvt;
val (_, lthy20) = Local_Theory.note ((Binding.empty,
[Attrib.internal (fn _ => Nominal_ThmDecls.eqvt_add)]), q_eqvt) lthy19;
+ val supports = map (prove_supports lthy20 q_perm) consts
+ val _ = map tracing (map PolyML.makestring supports);
+ val fin_supp = HOLogic.conj_elims (prove_fs lthy20 q_induct supports q_tys);
+ val thy3 = Local_Theory.exit_global lthy20;
+ val lthy21 = Theory_Target.instantiation (qty_full_names, [], @{sort fs}) thy3;
+ fun tac _ = Class.intro_classes_tac [] THEN (ALLGOALS (resolve_tac fin_supp))
+ val lthy22 = Class.prove_instantiation_instance tac lthy21;
in
- ((raw_dt_names, raw_bn_funs, raw_bn_eqs, raw_binds), lthy20)
+ ((raw_dt_names, raw_bn_funs, raw_bn_eqs, raw_binds), lthy22)
end
*}
--- a/Nominal/Term1.thy Thu Mar 11 16:50:44 2010 +0100
+++ b/Nominal/Term1.thy Thu Mar 11 17:47:29 2010 +0100
@@ -137,11 +137,7 @@
"{} supports BUnit"
"(supp (atom x)) supports (BVr x)"
"(supp a \<union> supp b) supports (BPr a b)"
-apply(simp_all add: supports_def fresh_def[symmetric] swap_fresh_fresh permute_trm1)
-apply(rule_tac [!] allI)+
-apply(rule_tac [!] impI)
-apply(tactic {* ALLGOALS (REPEAT o etac conjE) *})
-apply(simp_all add: fresh_atom)
+apply(tactic {* ALLGOALS (supports_tac @{thms permute_trm1}) *})
done
lemma rtrm1_bp_fs:
--- a/Nominal/Test.thy Thu Mar 11 16:50:44 2010 +0100
+++ b/Nominal/Test.thy Thu Mar 11 17:47:29 2010 +0100
@@ -4,6 +4,8 @@
text {* example 1, equivalent to example 2 from Terms *}
+atom_decl name
+
nominal_datatype lam =
VAR "name"
| APP "lam" "lam"
@@ -21,6 +23,9 @@
thm lam_bp_perm
thm lam_bp_induct
thm lam_bp_distinct
+ML {* Sign.of_sort @{theory} (@{typ lam}, @{sort fs}) *}
+
+term "supp (x :: lam)"
(* compat should be
compat (BP x t) pi (BP x' t')