--- a/Nominal/Ex/Let.thy Tue Jan 18 11:02:57 2011 +0100
+++ b/Nominal/Ex/Let.thy Tue Jan 18 21:12:25 2011 +0900
@@ -30,40 +30,54 @@
thm trm_assn.exhaust
thm trm_assn.strong_exhaust
-(*
+
lemma lets_bla:
- "x \<noteq> z \<Longrightarrow> y \<noteq> z \<Longrightarrow> x \<noteq> y \<Longrightarrow>(Lt (Lcons x (Vr y) Lnil) (Vr x)) \<noteq> (Lt (Lcons x (Vr z) Lnil) (Vr x))"
- by (simp add: trm_lts.eq_iff)
+ "x \<noteq> z \<Longrightarrow> y \<noteq> z \<Longrightarrow> x \<noteq> y \<Longrightarrow>(Let (ACons x (Var y) ANil) (Var x)) \<noteq> (Let (ACons x (Var z) ANil) (Var x))"
+ by (simp add: trm_assn.eq_iff)
+
lemma lets_ok:
- "(Lt (Lcons x (Vr y) Lnil) (Vr x)) = (Lt (Lcons y (Vr y) Lnil) (Vr y))"
- apply (simp add: trm_lts.eq_iff)
+ "(Let (ACons x (Var y) ANil) (Var x)) = (Let (ACons y (Var y) ANil) (Var y))"
+ apply (simp add: trm_assn.eq_iff Abs_eq_iff )
apply (rule_tac x="(x \<leftrightarrow> y)" in exI)
- apply (simp_all add: alphas eqvts supp_at_base fresh_star_def)
+ apply (simp_all add: alphas atom_eqvt supp_at_base fresh_star_def trm_assn.bn_defs trm_assn.supp)
done
lemma lets_ok3:
"x \<noteq> y \<Longrightarrow>
- (Lt (Lcons x (Ap (Vr y) (Vr x)) (Lcons y (Vr y) Lnil)) (Ap (Vr x) (Vr y))) \<noteq>
- (Lt (Lcons y (Ap (Vr x) (Vr y)) (Lcons x (Vr x) Lnil)) (Ap (Vr x) (Vr y)))"
- apply (simp add: alphas trm_lts.eq_iff)
+ (Let (ACons x (App (Var y) (Var x)) (ACons y (Var y) ANil)) (App (Var x) (Var y))) \<noteq>
+ (Let (ACons y (App (Var x) (Var y)) (ACons x (Var x) ANil)) (App (Var x) (Var y)))"
+ apply (simp add: trm_assn.eq_iff)
done
lemma lets_not_ok1:
"x \<noteq> y \<Longrightarrow>
- (Lt (Lcons x (Vr x) (Lcons y (Vr y) Lnil)) (Ap (Vr x) (Vr y))) \<noteq>
- (Lt (Lcons y (Vr x) (Lcons x (Vr y) Lnil)) (Ap (Vr x) (Vr y)))"
- apply (simp add: alphas trm_lts.eq_iff fresh_star_def eqvts)
+ (Let (ACons x (Var x) (ACons y (Var y) ANil)) (App (Var x) (Var y))) \<noteq>
+ (Let (ACons y (Var x) (ACons x (Var y) ANil)) (App (Var x) (Var y)))"
+ apply (simp add: alphas trm_assn.eq_iff trm_assn.supp fresh_star_def atom_eqvt Abs_eq_iff trm_assn.bn_defs)
done
lemma lets_nok:
"x \<noteq> y \<Longrightarrow> x \<noteq> z \<Longrightarrow> z \<noteq> y \<Longrightarrow>
- (Lt (Lcons x (Ap (Vr z) (Vr z)) (Lcons y (Vr z) Lnil)) (Ap (Vr x) (Vr y))) \<noteq>
- (Lt (Lcons y (Vr z) (Lcons x (Ap (Vr z) (Vr z)) Lnil)) (Ap (Vr x) (Vr y)))"
- apply (simp add: alphas trm_lts.eq_iff fresh_star_def)
+ (Let (ACons x (App (Var z) (Var z)) (ACons y (Var z) ANil)) (App (Var x) (Var y))) \<noteq>
+ (Let (ACons y (Var z) (ACons x (App (Var z) (Var z)) ANil)) (App (Var x) (Var y)))"
+ apply (simp add: alphas trm_assn.eq_iff fresh_star_def trm_assn.bn_defs Abs_eq_iff trm_assn.supp trm_assn.distinct)
done
-*)
+
+lemma
+ fixes a b c :: name
+ assumes x: "a \<noteq> c" and y: "b \<noteq> c"
+ shows "\<exists>p.([atom a], Var c) \<approx>lst (op =) supp p ([atom b], Var c)"
+ apply (rule_tac x="(a \<leftrightarrow> b)" in exI)
+ apply (simp add: alphas trm_assn.supp supp_at_base x y fresh_star_def atom_eqvt)
+ by (metis Rep_name_inverse atom_name_def flip_fresh_fresh fresh_atom fresh_perm x y)
+
+lemma
+ assumes "atom a \<noteq> atom c \<and> atom b \<noteq> atom c"
+ shows "\<exists>p. ([atom a], Var c) \<approx>lst (op =) supp p ([atom b], Var c) \<and> supp p \<subseteq> (supp (Var c) \<inter> {atom a}) \<union> (supp (Var c) \<inter> {atom b})"
+ apply (simp add: alphas trm_assn.supp supp_at_base assms trm_assn.eq_iff atom_eqvt fresh_star_def)
+ oops
end