Changing = to \<equiv> in case if we want to use simp.
--- a/QuotList.thy Fri Dec 04 09:10:31 2009 +0100
+++ b/QuotList.thy Fri Dec 04 09:18:46 2009 +0100
@@ -15,7 +15,7 @@
| "LIST_REL R (x#xs) (y#ys) = (R x y \<and> LIST_REL R xs ys)"
lemma LIST_REL_EQ:
- shows "LIST_REL (op =) = (op =)"
+ shows "LIST_REL (op =) \<equiv> (op =)"
unfolding expand_fun_eq
apply(rule allI)+
apply(induct_tac x xa rule: list_induct2')
--- a/QuotMain.thy Fri Dec 04 09:10:31 2009 +0100
+++ b/QuotMain.thy Fri Dec 04 09:18:46 2009 +0100
@@ -956,7 +956,7 @@
(* (op =) ===> (op =) \<Longrightarrow> (op =), needed in order to apply respectfulness theorems *)
(* global simplification *)
- (*NDT ctxt "H" (CHANGED o (asm_full_simp_tac ((Simplifier.context ctxt empty_ss) addsimps @{thms eq_reflection[OF FUN_REL_EQ] eq_reflection[OF LIST_REL_EQ]})))*)
+ (*NDT ctxt "H" (CHANGED o (asm_full_simp_tac ((Simplifier.context ctxt empty_ss) addsimps @{thms FUN_REL_EQ LIST_REL_EQ})))*)
])
*}
--- a/QuotScript.thy Fri Dec 04 09:10:31 2009 +0100
+++ b/QuotScript.thy Fri Dec 04 09:18:46 2009 +0100
@@ -136,7 +136,7 @@
"E1 ===> E2 \<equiv> FUN_REL E1 E2"
lemma FUN_REL_EQ:
- "(op =) ===> (op =) = (op =)"
+ "(op =) ===> (op =) \<equiv> (op =)"
by (simp add: expand_fun_eq)
lemma FUN_QUOTIENT: