First (untested) version of regularize for abstractions.
--- a/QuotMain.thy Tue Oct 13 09:26:19 2009 +0200
+++ b/QuotMain.thy Tue Oct 13 11:03:55 2009 +0200
@@ -300,12 +300,8 @@
|> writeln
*}
-ML {* op --> *}
-ML {* op ---> *}
-term FUN_REL
-term LIST_REL
-
-ML {* @{const_name "op ="} *}
+text {* tyRel takes a type and builds a relation that a quantifier over this
+ type needs to respect. *}
ML {*
fun tyRel ty rty rel lthy =
if ty = rty then rel
@@ -324,16 +320,46 @@
| _ => Const (@{const_name "op ="}, ty --> ty --> @{typ bool}))
*}
+definition
+ "x IN p ==> (Babs p m x = m x)"
+
+print_theorems
+thm Babs_def
+ML {* type_of @{term Babs } *}
ML {*
cterm_of @{theory} (tyRel @{typ "trm \<Rightarrow> bool"} @{typ "trm"} @{term "RR"} @{context})
*}
-
-(* ML {*
+ML {* type_of @{term Respects } *}
-fun regularise trm \<Rightarrow> new_trm
- (case trm of
- ??
- )
+ML {*
+(* trm \<Rightarrow> new_trm *)
+fun regularise trm rty rel lthy =
+ case trm of
+ Abs (x, T, t) =>
+ if T = rty then let
+ val ([x'], lthy2) = Variable.variant_fixes [x] lthy;
+ val v = Free (x', rty);
+ val t' = subst_bound (v, t);
+ val rec_term = regularise t' rty rel lthy2;
+ val lam_term = Term.lambda_name (x, v) rec_term;
+ val sub_res_term = tyRel T rty rel lthy;
+ val respects = Const (@{const_name Respects}, (fastype_of sub_res_term) --> T --> @{typ bool});
+ val res_term = respects $ sub_res_term;
+ val ty = fastype_of trm;
+ val rabs = Const (@{const_name Babs}, (fastype_of res_term) --> ty --> ty);
+ val rabs_term = rabs $ respects $ lam_term;
+ in
+ rabs_term
+ end else let
+ val ([x'], lthy2) = Variable.variant_fixes [x] lthy;
+ val v = Free (x', rty);
+ val t' = subst_bound (v, t);
+ val rec_term = regularise t' rty rel lthy2;
+ in
+ Term.lambda_name (x, v) rec_term
+ end
+ | _ => trm
+
*}
fun prove_reg trm \<Rightarrow> thm (we might need some facts to do this)
@@ -1138,12 +1164,6 @@
val cgoal2 = Thm.rhs_of (MetaSimplifier.rewrite true fset_defs_sym cgoal)
*}
-definition
- "x IN p ==> (Babs p m x = m x)"
-
-print_theorems
-thm Babs_def
-
lemma "(Ball (Respects ((op \<approx>) ===> (op =)))
(((REP_fset ---> id) ---> id)
(((ABS_fset ---> id) ---> id)