--- a/Nominal/Nominal2_Base.thy Fri Jun 03 18:32:22 2011 +0900
+++ b/Nominal/Nominal2_Base.thy Fri Jun 03 18:33:11 2011 +0900
@@ -1709,20 +1709,6 @@
apply(rule THE_defaultI'[OF unique])
done
-lemma fundef_ex1_eqvt2:
- fixes x::"'a::pt"
- assumes f_def: "f == (\<lambda>x::'a. THE_default d (G x))"
- assumes eqvt: "eqvt_at G x"
- assumes ex1: "\<exists>!y. G x y"
- shows "(p \<bullet> (f x)) = f (p \<bullet> x)"
- apply(simp only: f_def)
- apply(subst the_default_eqvt)
- apply(rule ex1)
- using eqvt
- unfolding eqvt_at_def
- apply(simp)
- done
-
lemma fundef_ex1_eqvt:
fixes x::"'a::pt"
assumes f_def: "f == (\<lambda>x::'a. THE_default d (G x))"
@@ -1737,16 +1723,6 @@
apply(simp add: permute_fun_app_eq)
done
-lemma fundef_ex1_eqvt_at2:
- fixes x::"'a::pt"
- assumes f_def: "f == (\<lambda>x::'a. THE_default d (G x))"
- assumes eqvt: "eqvt_at G x"
- assumes ex1: "\<exists>!y. G x y"
- shows "eqvt_at f x"
- unfolding eqvt_at_def
- using assms
- by (auto intro: fundef_ex1_eqvt2)
-
lemma fundef_ex1_eqvt_at:
fixes x::"'a::pt"
assumes f_def: "f == (\<lambda>x::'a. THE_default d (G x))"
--- a/Quotient-Paper/Paper.thy Fri Jun 03 18:32:22 2011 +0900
+++ b/Quotient-Paper/Paper.thy Fri Jun 03 18:33:11 2011 +0900
@@ -106,7 +106,7 @@
theorem provers many questions concerning them are far from settled. In
this paper we address the question of how to establish a convenient reasoning
infrastructure
- for quotient constructions in the Isabelle/HOL,
+ for quotient constructions in the Isabelle/HOL
theorem prover. Higher-Order Logic (HOL) consists
of a small number of axioms and inference rules over a simply-typed
term-language. Safe reasoning in HOL is ensured by two very restricted
@@ -531,7 +531,7 @@
equivalence relations @{text "\<approx>\<^bsub>nat \<times> nat\<^esub>"} and @{text
"\<approx>\<^bsub>list\<^esub>"} defined in \eqref{natpairequiv} and
\eqref{listequiv}, respectively (the proofs about being equivalence
- relations is omitted). Given this data, we define for declarations shown in
+ relations are omitted). Given this data, we define for declarations shown in
\eqref{typedecl} the quotient types internally as
\begin{isabelle}\ \ \ \ \ %%%