--- a/Nominal/Nominal2_FCB.thy Tue Jan 03 11:43:27 2012 +0000
+++ b/Nominal/Nominal2_FCB.thy Wed Jan 04 17:42:16 2012 +0000
@@ -212,67 +212,107 @@
qed
-text {* NOT DONE
lemma Abs_res_fcb2:
fixes as bs :: "atom set"
and x y :: "'b :: fs"
and c::"'c::fs"
assumes eq: "[as]res. x = [bs]res. y"
and fin: "finite as" "finite bs"
- and fcb1: "as \<sharp>* f as x c"
+ and fcb1: "(as \<inter> supp x) \<sharp>* f (as \<inter> supp x) x c"
and fresh1: "as \<sharp>* c"
and fresh2: "bs \<sharp>* c"
- and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f as x c) = f (p \<bullet> as) (p \<bullet> x) c"
- and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f bs y c) = f (p \<bullet> bs) (p \<bullet> y) c"
- shows "f as x c = f bs y c"
+ and perm1: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f (as \<inter> supp x) x c) = f (p \<bullet> (as \<inter> supp x)) (p \<bullet> x) c"
+ and perm2: "\<And>p. supp p \<sharp>* c \<Longrightarrow> p \<bullet> (f (bs \<inter> supp y) y c) = f (p \<bullet> (bs \<inter> supp y)) (p \<bullet> y) c"
+ shows "f (as \<inter> supp x) x c = f (bs \<inter> supp y) y c"
proof -
- have "supp (as, x, c) supports (f as x c)"
+ have "supp (as, x, c) supports (f (as \<inter> supp x) x c)"
unfolding supports_def fresh_def[symmetric]
- by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh)
- then have fin1: "finite (supp (f as x c))"
+ by (simp add: fresh_Pair perm1 fresh_star_def supp_swap swap_fresh_fresh inter_eqvt supp_eqvt)
+ then have fin1: "finite (supp (f (as \<inter> supp x) x c))"
using fin by (auto intro: supports_finite simp add: finite_supp supp_of_finite_sets supp_Pair)
- have "supp (bs, y, c) supports (f bs y c)"
+ have "supp (bs, y, c) supports (f (bs \<inter> supp y) y c)"
unfolding supports_def fresh_def[symmetric]
- by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh)
- then have fin2: "finite (supp (f bs y c))"
+ by (simp add: fresh_Pair perm2 fresh_star_def supp_swap swap_fresh_fresh inter_eqvt supp_eqvt)
+ then have fin2: "finite (supp (f (bs \<inter> supp y) y c))"
using fin by (auto intro: supports_finite simp add: finite_supp supp_of_finite_sets supp_Pair)
obtain q::"perm" where
- fr1: "(q \<bullet> as) \<sharp>* (x, c, f as x c, f bs y c)" and
- fr2: "supp q \<sharp>* ([as]res. x)" and
- inc: "supp q \<subseteq> as \<union> (q \<bullet> as)"
- using at_set_avoiding3[where xs="as" and c="(x, c, f as x c, f bs y c)" and x="[as]res. x"]
+ fr1: "(q \<bullet> (as \<inter> supp x)) \<sharp>* (x, c, f (as \<inter> supp x) x c, f (bs \<inter> supp y) y c)" and
+ fr2: "supp q \<sharp>* ([as \<inter> supp x]set. x)" and
+ inc: "supp q \<subseteq> (as \<inter> supp x) \<union> (q \<bullet> (as \<inter> supp x))"
+ using at_set_avoiding3[where xs="as \<inter> supp x" and c="(x, c, f (as \<inter> supp x) x c, f (bs \<inter> supp y) y c)"
+ and x="[as \<inter> supp x]set. x"]
fin1 fin2 fin
- by (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv)
- have "[q \<bullet> as]res. (q \<bullet> x) = q \<bullet> ([as]res. x)" by simp
- also have "\<dots> = [as]res. x"
+ apply (auto simp add: supp_Pair finite_supp Abs_fresh_star dest: fresh_star_supp_conv)
+ done
+ have "[q \<bullet> (as \<inter> supp x)]set. (q \<bullet> x) = q \<bullet> ([as \<inter> supp x]set. x)" by simp
+ also have "\<dots> = [as \<inter> supp x]set. x"
by (simp only: fr2 perm_supp_eq)
- finally have "[q \<bullet> as]res. (q \<bullet> x) = [bs]res. y" using eq by simp
+ finally have "[q \<bullet> (as \<inter> supp x)]set. (q \<bullet> x) = [bs \<inter> supp y]set. y" using eq
+ by(simp add: Abs_eq_res_set)
then obtain r::perm where
qq1: "q \<bullet> x = r \<bullet> y" and
qq2: "(q \<bullet> as \<inter> supp (q \<bullet> x)) = r \<bullet> (bs \<inter> supp y)" and
- qq3: "supp r \<subseteq> bs \<inter> supp y \<union> q \<bullet> as \<inter> supp (q \<bullet> x)"
+ qq3: "supp r \<subseteq> (bs \<inter> supp y) \<union> q \<bullet> (as \<inter> supp x)"
apply(drule_tac sym)
- apply(subst(asm) Abs_eq_res_set)
apply(simp only: Abs_eq_iff2 alphas)
apply(erule exE)
apply(erule conjE)+
apply(drule_tac x="p" in meta_spec)
- apply(simp add: set_eqvt)
+ apply(simp add: set_eqvt inter_eqvt supp_eqvt)
done
- have "(as \<inter> supp x) \<sharp>* f (as \<inter> supp x) x c" sorry (* FCB? *)
+ have "(as \<inter> supp x) \<sharp>* f (as \<inter> supp x) x c" by (rule fcb1)
then have "q \<bullet> ((as \<inter> supp x) \<sharp>* f (as \<inter> supp x) x c)"
by (simp add: permute_bool_def)
then have "(q \<bullet> (as \<inter> supp x)) \<sharp>* f (q \<bullet> (as \<inter> supp x)) (q \<bullet> x) c"
apply(simp add: fresh_star_eqvt set_eqvt)
- sorry (* perm? *)
- then have "r \<bullet> (bs \<inter> supp y) \<sharp>* f (r \<bullet> (bs \<inter> supp y)) (r \<bullet> y) c" using qq2
- apply (simp add: inter_eqvt)
- sorry
- (* rest similar reversing it other way around... *)
- show ?thesis sorry
+ apply(subst (asm) perm1)
+ using inc fresh1 fr1
+ apply(auto simp add: fresh_star_def fresh_Pair)
+ done
+ then have "(r \<bullet> (bs \<inter> supp y)) \<sharp>* f (r \<bullet> (bs \<inter> supp y)) (r \<bullet> y) c" using qq1 qq2
+ apply(perm_simp)
+ apply simp
+ done
+ then have "r \<bullet> ((bs \<inter> supp y) \<sharp>* f (bs \<inter> supp y) y c)"
+ apply(simp add: fresh_star_eqvt set_eqvt)
+ apply(subst (asm) perm2[symmetric])
+ using qq3 fresh2 fr1
+ apply(auto simp add: set_eqvt fresh_star_def fresh_Pair)
+ done
+ then have fcb2: "(bs \<inter> supp y) \<sharp>* f (bs \<inter> supp y) y c" by (simp add: permute_bool_def)
+ have "f (as \<inter> supp x) x c = q \<bullet> (f (as \<inter> supp x) x c)"
+ apply(rule perm_supp_eq[symmetric])
+ using inc fcb1 fr1
+ apply (auto simp add: fresh_star_def)
+ done
+ also have "\<dots> = f (q \<bullet> (as \<inter> supp x)) (q \<bullet> x) c"
+ apply(rule perm1)
+ using inc fresh1 fr1 by (auto simp add: fresh_star_def)
+ also have "\<dots> = f (r \<bullet> (bs \<inter> supp y)) (r \<bullet> y) c" using qq1 qq2
+ apply(perm_simp)
+ apply simp
+ done
+ also have "\<dots> = r \<bullet> (f (bs \<inter> supp y) y c)"
+ apply(rule perm2[symmetric])
+ using qq3 fresh2 fr1 by (auto simp add: fresh_star_def)
+ also have "... = f (bs \<inter> supp y) y c"
+ apply(rule perm_supp_eq)
+ using qq3 fr1 fcb2 by (auto simp add: fresh_star_def)
+ finally show ?thesis by simp
qed
-*}
+typedef ('a::fs, 'b::fs) ffun = "{f::'a => 'b. finite (supp f)}"
+apply(subgoal_tac "\<exists>x::'b::fs. x \<in> (UNIV::('b::fs) set)")
+apply(erule exE)
+apply(rule_tac x="\<lambda>_. x" in exI)
+apply(auto)
+apply(rule_tac S="supp x" in supports_finite)
+apply(simp add: supports_def)
+apply(perm_simp)
+apply(simp add: fresh_def[symmetric])
+apply(simp add: swap_fresh_fresh)
+apply(simp add: finite_supp)
+done
lemma Abs_lst_fcb2:
fixes as bs :: "atom list"